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Abstract— The shift between frozen and thawed conditions on
the Earth’s surface influences climate, hydrology, and ecology.
A primary objective of the Soil Moisture Active Passive (SMAP)
mission is to estimate the surface binary freeze/thaw (F/T)
state for the northern hemisphere above 45◦ N latitude with
a classification accuracy of 80% at 3-km spatial resolution and
2-day intervals. The objective was to be accomplished by the
SMAP L-band radar measurements. In July 2015, the radar
transmitter suffered an anomaly that prevented it from nominal
operation. The mission partially met the goal exceeding the
targeted 80% accuracy but at 36 km resolution. After the
radar anomaly, the SMAP mission switched the radar receiver
bandpass filter frequency to Global Positioning System (GPS)
L2c, acting as a full-polarimetric Global Navigation Satellite
System–Reflectometry (GNSS-R) receiver, known as SMAP-
Reflectometer (SMAP-R). This work focuses on using SMAP-R
signals to classify the F/T state over the Northern latitudes,
within the limitations of the dataset. An algorithm based on the
seasonal threshold approach that was originally envisioned for the
SMAP radar is applied to the SMAP-R data (i.e., bistatic radar).
Then the algorithm is evolved using a Random Forest algorithm
to aid threshold selection from the discriminator built in the
seasonal threshold approach. This algorithm is applied for years
2016 to 2022 over the Northern Hemisphere terrestrial cryosphere
and shows an F/T classification accuracy agreement better than
97% with respect to the classification of the official SMAP
F/T Radiometry product, proving the potential of polarimetric
GNSS-R to derive F/T.

Index Terms— Cryosphere, freeze/thaw (F/T), Global Navi-
gation Satellite System–Reflectometry (GNSS-R), polarimetry,
Stokes parameters.

I. INTRODUCTION

THE terrestrial cryosphere refers to areas of the Earth’s
surface land that are permanently or seasonally frozen.
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The observation and the analysis of the Earth’s surface
freeze/thaw (F/T) state, as well as the timing of the transition
between those states, are key to understanding the impact
of these processes on climate, hydrological, ecological, and
biogeochemical processes. The Soil Moisture Active Passive
(SMAP) mission’s radar was designed, based on an extensive
heritage from the ground, airborne, and satellite-based SAR
missions [1], [2], [3], [4] to provide the most accurate remote
sensing-based characterization of the Earth’s surface F/T state
at a global scale. The SMAP mission requirement was set to
provide “estimates of surface binary F/T state for the region
north of 45◦ N latitude, which includes the boreal forest zone,
with a mean spatial classification accuracy of 80% at 3 km
spatial resolution and 2-day average intervals” [5]. When the
SMAP radar failed, the SMAP mission implemented a F/T
product based on the measurements of the L-band radiometer,
which provided a reduced spatial resolution with respect to
the original plan of 36 and 9 km [6], and a different algorithm
performance, as explained in [5]. Derksen et al. [7] explore
the use of SMAP mission data to develop a high-resolution
product for identifying the F/T state of landscapes. The study
in [7] utilizes in situ observations to examine the sensitiv-
ity differences between 3-km radar and 36-km radiometer
measurements to landscape F/T conditions. It demonstrates
excellent agreement with in situ measurements, fulfilling the
SMAP mission’s accuracy requirements. The research in [7]
highlights the challenges and nuances of detecting F/T transi-
tions, particularly in the context of wet snow conditions, and
discusses the potential for optimizing detection methodologies
and validating results against other satellite data. The study
in [7] provides valuable insight into the capabilities and
limitations of current satellite-based methods for monitoring
F/T states, which is critical for understanding hydrological
and biospheric processes in northern landscapes and high
elevations.

In addition to the advancements provided by the SMAP mis-
sion, the Soil Moisture and Ocean Salinity (SMOS) mission
has also played a critical role in enhancing our understanding
of the Earth’s F/T cycles, particularly through the development
of F/T products. The SMOS mission, utilizing its L-band
passive microwave radiometry, has enabled the detection of
soil freezing and thawing processes with unprecedented accu-
racy. Among publications, [8] have pioneered the use of
SMOS data to develop prototype algorithms for detecting
autumn soil freezing, showcasing the potential of SMOS in
contributing to the global monitoring of seasonal F/T cycles.
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These developments are crucial for improving the accuracy
of hydrological models and enhancing predictions of seasonal
and annual changes in soil moisture content, which are vital for
agricultural planning, climate modeling, and understanding the
dynamics of carbon exchange between the Earth’s surface and
the atmosphere. Other advancements in the monitoring of land-
scape F/T status through various remote sensing techniques
contribute significantly to our understanding of climate change
impacts, hydrological cycles, and environmental processes in
both high-latitude and high-altitude regions. For instance, [9]
and [10] have developed and extended global Earth sys-
tem data records on the daily landscape freeze-thaw status,
determined from satellite passive microwave remote sensing,
emphasizing the methodology and potential applications in
climate change effects and hydrological cycle analysis. Sim-
ilarly, [11] introduced algorithms for detecting soil freezing
and freeze-thaw states over high-latitude regions, utilizing
Global Navigation Satellite System–Reflectometry (GNSS-R)
data, highlighting the significance of these technologies in
enhancing our understanding of seasonal freeze-thaw cycles.
Moreover, [12] and [13] have focused on the discrimination
and estimation of soil F/T states using AMSR-E passive
microwave imagery and the integration of microwave and ther-
mal infrared remote sensing data, particularly on the Tibetan
Plateau, demonstrating improved monitoring capabilities in
complex terrains.

The repurposing of the SMAP radar into a GNSS-R receiver
enabled the first full polarimetric GNSS-R instrument in space,
with more than eight years of data, starting in September 2015,
a few months after the radar transmitter failed to conduct
normal operations. While few investigations were conducted
two years after the collection started [14], [15], it was not
until seven years later when the dataset was mathematically
formulated through the Stokes parameter full polarimetric
scattering representation in [16] and then properly calibrated
in [17]. The Stokes parameter formulation and the proper
calibration enabled sensitivity analysis for both the land [18]
and the cryosphere [19]. The study in [19] showed the
sensitivity of the calibrated SMAP-R Stokes parameters over
the cryosphere for applications such as sea ice detection and
monitoring, Greenland ice sheet characterization, and F/T state
detection and state transition monitoring. In this manuscript,
we investigate the feasibility of an algorithm to produce F/T
maps from SMAP-R data. Rather than just looking at signal
sensitivities as it was done in [19], we now build a SMAP-R
methodology based on the algorithm that was originally envi-
sioned for the SMAP radar in [5], but using SMAP-R data
alone. With this work, we aim to provide the first polarimetric
forward-scattering characterization of the F/T state of surfaces
above 45◦ N latitude at 36 km and 1-month temporal scale as
SMAP-R is the first full polarimetric GNSS-R instrument in
space and its measurements offer insight on the capability of
such instruments. While the results are not meeting original
requirements for the SMAP mission it does provide an inde-
pendent assessment of how well SMAP-R data are sensitive
to F/T states by comparing the retrieved values with respect
to the validated SMAP F/T official product. Alternatively,

if properly calibrated toward in situ data rather than the SMAP
F/T official product itself, SMAP-R could be used in con-
junction with current SMAP F/T Radiometer products. This
study also serves as justification of the capabilities of future
polarimetric GNSS-R missions in development that will also
tackle cryosphere science investigations with a better revisit
and reduced sparsity, enabling products at 1-week scales.
These upcoming polarimetric GNSS-R missions carry dual-
polarization GNSS-R instruments and include the upcoming
European Space Agency (ESA) HydroGNSS mission [20],
constellations of satellites developed by private companies,
such as Muon Space or Spire, as well as the China’s first
commercial GNSS-R instrument Tianjin Yunyao Aerospace
Technology Company Ltd. (YUNYAO) [21].

As shown in [22] and [23], both the selection of the
receiving antenna polarization and its gain are key for the
sensitivity of the measurements to the Earth’s geophysical
parameters. In Munoz-Martin et al. [22] it was shown how
the detection probability varies over the terrestrial cryosphere
for a receiving antenna of 10 dB gain and a receiving antenna
of 14 dB gain. For more standard GNSS-R instrument designs,
antennas are selected to be RHCP/LHCP. If that is the case,
the RHCP channel would benefit in general from a larger
coherent integration time (∼4 ms). As shown in [22], even
using higher coherent integration times and a 14 dB antenna,
the measurements over the terrestrial cryosphere, especially
over Alaska, Russia, and China, would experience challenges
on the RHCP channel.

The manuscript is structured as Section II goes through the
theoretical background for the full Stokes parameter GNSS-R
formulation and the derivation of the reflectivity; Section III
delves into the description of the algorithm for F/T classi-
fication based on a seasonal discriminator, starting with the
methodology planned for the radar and evolving into the use
of random forest to set the seasonal thresholds of differ-
ent areas with similar electromagnetic features; Section IV
presents F/T classification maps obtained from full polari-
metric GNSS-R measurements as well as the performance
respect to the SMAP F/T official product. Section V provides
conclusions.

II. THEORETICAL BACKGROUND

The SMAP radar receiver, acting as a full polarimet-
ric GNSS reflectometer, collects forward scattered signals
reflected in the Earth’s surface and transmitted by the Global
Positioning System (GPS) constellation, using two receiving
chains, one at vertical (V ) and the other at horizontal (H)

polarization. In the case of GPS, the signal is transmitted in
right-hand circular polarization (RHCP) that, when observed
by a pair of orthogonally polarized antennas, sets up what
is known in the radar field as Hybrid Compact Polarimetry
(HCP). Raney et al. [24] discuss the use of compact and
quad-pol terminologies in the right-hand circular polarization
(SAR) field as compared to the original definition of the full
polarimetric system from radiometry. Furthermore, the author
concludes that in response to a balanced illumination, such as
circularly polarized transmissions, the resulting polarimetric
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portraits embrace all of the polarimetric scattering information
unique to the observed scene, and the system satisfies the orig-
inal sense of full polarimetric. To measure such polarimetric
portraits, the Stokes parameters of the signal are computed. For
the specific case of GNSS-R, this can be achieved by receiving
the H - and V -pol components of the RHCP transmitted
signal and processing them following [16]. Thanks to the
opportunistic nature of SMAP-R, born from a radar design, its
receiver measures the GPS RHCP signals from a pair of linear
orthogonal antennas, enabling full polarimetric GNSS-R.

A. SMAP-R Stokes Parameters

For the sake of providing a complete mathematical back-
ground, we summarize SMAP-R’s main equations formulated
in previous publications, such as [16]. The SMAP-R Stokes
parameters of the reflected signal are defined in the following
equation:

S0 = < |ERH |
2 > + < |ERV |

2 >=< |ER R|
2 > + < |ERL |

2 >

S1 = < |ERH |
2 > − < |ERV |

2 >
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where ERH is the electromagnetic field transmitted by the GPS
satellite at RHCP and received at the SMAP H polarization
antenna, and ERV is the electromagnetic field transmitted
by the GPS satellite at RHCP and received at the SMAP
V polarization antenna. Consequently, and for the sake of
illustration, ER+45◦/R−45◦ refers to the same transmitted signal
received by a ±45◦-polarized antenna, and ER R/L to a signal
received by two circularly polarized antennas. Usually, these
values are provided as normalized by the total signal intensity,
S0, i.e.: S̄1 = S1/S0, S̄2 = S2/S0, and S̄3 = S3/S0. Images of
the normalized Stokes parameters over the cryosphere were
extensively shown in [19]. In Fig. 1 we provide the normalized
Stokes parameters mapped over the terrestrial cryosphere for
2019, as an illustrative example.

Areas such as Greenland or the ocean are filtered with the
International Geosphere Biosphere Program (IGBP) dataset,
[25].

B. SMAP-R Reflectivity

The reflectivity over land is computed from the calibrated
bistatic radar cross section (BRCS, σ), obtained through
means of the Stokes parameters as

Pg =
S0 − S0noise

G
(2)

being Pg the received power of the first Stokes parameter,
S0noise the noise level of S0 at 30 delays away from the specular
point position, and G the system gain. This absolute power
calibration is covered in detail in [16, Sec. IV A]. This is
converted to σ applying

σ =
Pg(4π)3 R2

T R2
R L

PT λ2GT G R
(3)

where RT is the transmitter to specular point distance, RR is
the specular point to receiver distance, L are additional system
losses, including atmospheric loss, PT is the GPS transmit
power, GT is the transmitter antenna gain, and G R is the
SMAP receiving gain. Finally, the reflectivity over land can
be computed as in 3 from [18]

00 =
1

4π

(
R2

T +R2
R

)
R2

T R2
R

σ. (4)

Images of the reflectivity 00 over the cryosphere were exten-
sively shown in [19]. In Fig. 2, we provide 00 mapped over
the terrestrial cryosphere for 2019, as an illustrative example.

III. F/T CLASSIFICATION ALGORITHM AND
PERFORMANCE ANALYSIS

Following what was envisioned for the SMAP radar data,
we have developed an equivalent algorithm using SMAP-R
data alone. From the different approaches described in [5], the
seasonal threshold approach, the baseline one, is selected. This
algorithm considers the remote sensing signatures acquired
during seasonal reference frozen and thawed states, in this
case, the SMAP-R 00 signatures. Analogous to what is
described in [5], a seasonal discriminator 1 is built to identify
the F/T state at a particular given time, in the following
equation:

1(t) =
00(t) − 00 f r

00th − 00 f r
(5)

where 00(t) is the reflectivity measured at time t , for which
the F/T state is the classification to be assessed, 00th is the
reflectivity corresponding to the thawed state, obtained as the
00 mean for the periods when the landscapes are thawed,
and 00 f r is the reflectivity corresponding to the frozen state,
obtained as the 00 mean for the periods when the landscapes
are frozen.

A. Manual Selection of the F/T Discriminator Thresholds

For SMAP-R 00th and 00 f r states are generated from
averaging the 00 measured during July to September and
January to March for years 2016 to 2022, i.e., 7 years of data.
The periods ensure pixels of constant state (frozen or thawed).
Fig. 3 shows the F/T states used as reference for each grid cell.

A threshold T is then defined such as if 1(t) > T the
surface is thawed and if 1(t) ≤ T the surface is frozen.
This T is not necessarily a fixed number and can be selected
based on several conditions. One way to do this is to select
a T value depending on the landscape type. Another way is
to analyze 00 over the terrestrial cryosphere, understand the
levels of those signatures and classify per differences in 00 at
the F/T states. Indeed, the 00 levels and the change observed
between F/T states is a descriptor of the landscape itself. For
example, wetland areas will observe similar 00 levels and F/T
state-related changes on those levels across the globe. Forested
areas are more complex due to different tree structures and soil
composition, which play a significant role in the observed 00
levels and F/T state-related changes on those levels. On this
line, we have developed a land classification that is based on
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Fig. 1. SMAP-R normalized Stokes parameters for the terrestrial cryosphere at latitudes over 45◦ N latitude: (a) normalized second Stokes (S̄1); (b) normalized
third Stokes (S̄2); and (c) normalized fourth Stokes (S̄3). Data averaged for the entire year 2019, every cell contains an average of five measurements.

Fig. 2. View of the SMAP-R reflectivity 00 units in [dB] for the terrestrial cryosphere at latitudes over 45◦ N latitude. Data averaged for the entire year
2019, every cell contains an average of five measurements.

the 00 levels and the change observed between F/T states.
The classification is obtained using a k-means clustering [26]
algorithm based on grouping samples by their mean as a
representation of the properties of the pixels within the scene.
K-means clustering, also known as Lloyd’s algorithm, is an
iterative, data-partitioning algorithm that assigns the vector of
observations to the number of indicated clusters, with each
cluster defined by a centroid. The result is shown in Fig. 4.

Following the land classification in Fig. 4, we analyze the
time series of the mean value of the discriminator 1 (5) over
those seven depicted clusters, which will ultimately allow us
to set threshold T values for each cluster. Fig. 5 shows the
discriminator in 5, averaged over each cluster, as a function
of time. Note that to achieve the final number of clusters,
we progressively increased the number of clusters until we
found a limit in clearly showing a distinction between frozen
and thawed periods for the clusters. e.g., we took pixels in
cluster #2 and generated an extra cluster for this cluster. If it

provided a good distinction in any of the two, we added the
cluster, if not, we discarded the ability for those pixels to be
classified.

Seasonality can be seen in most of the grouped clusters,
allowing to select a proper T value to describe the F/T states
through the discriminator 1(t) in (5). We have selected the
values that mark the two states, i.e., T values are handpicked
by selecting a value that ensures most January, February, and
March monthly means for all years stay below the line, i.e.,
frozen. T values are represented in Fig. 5 through a dashed
gray line and summarized in Table I, saved as a threshold
Look-Up-Table (LUT) for the algorithm.

The seasonality in cluster #2 and cluster #6 is not as intense
as in the rest of the clusters. Fig. 6 shows the map of pixels
in clusters 2 and 6, which do not have a clear seasonality that
allows for a discrimination value.

As a summary, the diagram in Fig. 7 describes the imple-
mented algorithm.



RODRIGUEZ-ALVAREZ et al.: FULL POLARIMETRIC GNSS-R ASSESSMENT OF THE FREEZE AND THAW STATES 4301711

Fig. 3. Reference 00 over 45◦ N latitude for (a) thawed state, 00th ; (b) frozen state, 00 f r , (c) difference between thawed and frozen states. Data were
averaged over periods of three months (July to September and January to March, respectively) for seven years of data, which provides a mean of eight
measurements for each grid cell, providing values of frozen and thawed states for each grid cell.

Fig. 4. Land classification obtained for the terrestrial cryosphere at latitudes over 45◦ N latitude. This is computed by applying a k-means clustering algorithm
to the discriminator in (5) using SMAP-R data.

TABLE I
THRESHOLD LUT: T VALUES FOUND TO DESCRIBE THE SEASONALITY OF

DIFFERENT CLUSTERS

Next, we compute the performance of the algorithm pre-
sented in Fig. 7, through confusion matrix analysis.

B. Performance of the Algorithm Based on Manual Selection
of the F/T Discriminator Thresholds

The performance is assessed for each year computing the
corresponding confusion matrices. A confusion matrix is a

tabular representation used in the field of machine learning
and statistics to evaluate the performance of a classification
algorithm. It is a tool that helps understand the accuracy
and effectiveness of a model’s predictions by comparing its
predictions to the actual or target values. For each confusion
matrix, we show:

1) True Thawed (TT): This represents the number of cases
where the model correctly predicted the thawed class,
target = 0 and predicted = 0.

2) True Frozen (TF): This represents the number of cases
where the model correctly predicted the frozen class,
target = 1 and predicted = 1.

3) False Thawed (FT): This represents the number of cases
where the model incorrectly predicted the thawed class,
target = 0 and predicted = 1.

4) False Frozen (FF): This represents the number of cases
where the model incorrectly predicted the frozen class,
target = 1 and predicted = 0.
where in our analysis, Target = F/T SMAP official
product classification at 36 km [27], Predicted = F/T
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Fig. 5. Monthly mean discriminator 1 value as a function of time computed
at the different clusters: (a) Cluster #1. (b) Cluster #2. (c) Cluster #3.
(d) Cluster #4. (e) Cluster #5. (f) Cluster #6 and (g) Cluster #7. Each point
corresponds to a monthly mean, resulting from adding cells within one cluster,
∼ 1800 pixels corresponding to the same cluster each month.

Fig. 6. View of the SMAP-R reflectivity 00 for k-means cluster #2 and #6,
for the terrestrial cryosphere at latitudes over 45◦ N latitude.

SMAP-R derived product at 36 km. From the [TT, TF,
FT, FF] values in each confusion matrix, we can then
compute:

5) the accuracy, which measures the overall correctness of
the classification model, as

Accuracy = 100∗
TT + TF

(TT + TF + FT + FF)
[%] (6)

6) the precision, which quantifies the ability of the model
to make accurate thawed predictions, as

Precision = 100∗
TT

(TT + FT)
[%] (7)

7) the sensitivity, which measures the model’s ability to
correctly identify all relevant instances of the thawed
class, as

Sensitivity = 100∗
TT

(TT + FF)
[%] (8)

Fig. 7. Flow diagram summarizing the implemented F/T Classification based
on 1(t).

8) the specificity, which measures the ability of the model
to correctly identify frozen instances, as

Specificity = 100∗
TF

(TF + FT)
[%]. (9)

Table II and Table III show the performance results for the
algorithm in Fig. 7, for years 2016 to 2018.

The complexity of the landscape makes the simple clus-
tering methodology applied not complete to understand the
F/T conditions of some pixels, as shown through the poor
performance in Table II and Table III. Additionally, the
threshold value for some clusters in Table I could not be
manually found. For this reason, we implement a random
forest decision algorithm, that ingests the discriminator itself
together with full polarimetric information contained in the
SMAP-R dataset.

C. F/T Classification Based on a Random Forest Decision
Algorithm

An expanded methodology is proposed where we implement
a machine learning approach that takes as inputs the full
polarimetric information of SMAP-R, along with the reflec-
tivity 00, the discriminator in (5), and the land classification
built from k-means clustering of the discriminator as shown in
Fig. 4. The output target is obtained from the current official
validated product from the SMAP radiometer. We select data
from the seven years from frozen (January to March) and
thaw (July to September) periods. For each period, we select
pixels that remain constant in the same state (either frozen or
thawed) for the duration of that period. We collocate SMAP-R
measurements, i.e., full polarimetric GNSS-R data, during the
same periods to obtain all input measurements belonging to
each state. Then we use random forest methodology to build a
decision tree, using the official SMAP radiometer F/T product
as our target product. This is depicted in the diagram in Fig. 8.
The SMAP official product is therefore used as targeted values,
and its only use in the input specification is related to pixel
collocation—to select pixels of guaranteed constant state that
will then be used for training the random forest. Similar to
what was done in [28] we used a randomization of multiple
decision trees to construct the classification algorithm. This
algorithm is based on a machine learning approach known as
random forest [29], which builds multiple decision trees based
on different combinations of input variables. The population
of training data is 142 729 of a total of 438 835 available
samples: i.e., 32.52% of the samples randomly selected over a
few years of data are used for training, only the first four years,
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TABLE II
SET OF CONFUSION MATRICES FOR YEARS 2016, 2017, AND 2018. EACH CONFUSION MATRIX SHOWS THE % OF CLASSIFIED VALUES FOR EACH

TARGET CATEGORY. TARGET = F/T SMAP OFFICIAL PRODUCT CLASSIFICATION, PREDICTED = F/T SMAP-R DERIVED PRODUCT

TABLE III
ACCURACY, PRECISION, SENSITIVITY, AND SPECIFICITY OBTAINED FOR

YEARS 2016, 2017, AND 2018

TABLE IV
TRAINING/VALIDATION AND TESTING DISTRIBUTION

leaving the last three for testing. This sample includes only
constantly frozen and constantly thawed pixels over periods
of 1 month. The F/T state distribution for the used 32.52% of
the total samples is:

1) Population of constant 0 is 77 995 out 142 729, i.e.,
54.65%.

2) Population of constant 1 is 64 734 out 142 729, i.e.,
45.35%.

The random forest uses 20 randomizations to build forest
trees using 20 different combinations of observables from all
available. For each one then, we use 70% of the available data
for training the random forest and 30% for validation of that
random forest. The 70% is selected 20 times randomly. This
generates 400 forest trees.

Then data from every year is entered into those 400 random
forest trees and the final class is selected using mode function
in MATLAB that provides the more frequent value in a sample.

Population of testing data includes 438 835 samples, dis-
tributed as shown in Table IV.

Samples are unevenly distributed over the years because we
chose to pick them randomly.

D. Performance of the Random Forest Decision Algorithm

The performance is assessed following the methodology in
Section III-B, through computation of the confusion matri-
ces, where the F/T classification from the SMAP radiometer
product is used as target (reference true), i.e., Target = F/T

TABLE V
SET OF CONFUSION MATRICES FOR EACH YEAR. SHOWING THE % OF

CLASSIFIED VALUES FOR EACH TARGET CATEGORY. TARGET = F/T
SMAP OFFICIAL PRODUCT CLASSIFICATION, PREDICTED = F/T

SMAP-R DERIVED PRODUCT

TABLE VI
YEARLY VALUES OF ACCURACY, PRECISION, SENSITIVITY, AND SPECI-

FICITY OBTAINED FOR THE SMAP-R F/T PRODUCT

SMAP official product classification at 36 km and Predicted =

F/T SMAP-R derived product at 36 km. Also, the accuracy,
precision, sensitivity, and specificity metric for the F/T clas-
sification algorithm is calculated following Section III-C. The
resulting performance is shown in Table V and Table VI.

The overall performance of the algorithm proposed shows
a mean accuracy of 97.13%, a mean precision of 99.09%,
a mean sensitivity of 95.77%, and a mean specificity of
98.86%. This accuracy is related to the SMAP F/T official
product, i.e., SMAP-R F/T product accuracy is comparable
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Fig. 8. Improved algorithm diagram flow. Note the use of the SMAP-R full polarimetric GNSS-R data, i.e., the Stokes parameters, in the algorithm.

Fig. 9. (Left) F/T classification comparison for 2020 showing the months of February, June, and November from top to bottom: (Right) F/T SMAP official
product, and F/T SMAP-R product.

Fig. 10. (Left) F/T classification comparison for 2022 showing the months of January, May, and September from top to bottom: (Right) F/T SMAP official
product, and F/T SMAP-R product.

to that of the validated SMAP F/T official product. The
value of the random forest comes from the use of full
polarimetric GNSS-R data (use of the four Stokes parameters)

which provide a full reconstruction of the Earth polarimetric
signatures and enables therefore building a decision based on
those parameters as well as the discriminator and the land
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Fig. 11. F/T classification difference between products for the year
2020 showing the months of February, June, and November from top to
bottom.

Fig. 12. F/T classification difference between products for the year
2022 showing the months of January, May, and September from top to bottom.

classification, rather than using the discriminator alone to
obtain a threshold handpicked based on seasonality per cluster.
Next, the section shows the resulting F/T classification maps
using the Random Forest Decision Algorithm and compares
them to the official SMAP F/T radiometer products.

IV. F/T MAPPING ERROR ASSESSMENT

This section presents the results obtained for the methodol-
ogy described in Fig. 8, where monthly data are input to the
Random Forest Decision Algorithm for F/T classification. The
results are shown in the next figures. In Fig. 9, the SMAP F/T
official product and the SMAP-R F/T product derived from
this study are shown for 2020. Note that only a few months,

February–June–November, are shown, for the sake of reducing
the number of plots in the manuscript. Similarly, Fig. 10
shows the results for January 2022, May 2022, and September
2022. In those maps 0 denotes thawed state and 1 frozen
state.

The difference between the F/T SMAP official product and
the F/T SMAP-R derived product for January 2020, May
2020, and September 2020 are shown in Fig. 11, where most
of the pixels show a value of 0. Instances where the F/T
SMAP official product classifies pixels as frozen, and the
F/T SMAP-R derived product classifies pixels as thawed are
positive 1. Instances where the F/T SMAP official product
classifies pixels as thawed, and the F/T SMAP-R derived
product classifies frozen as thawed are negative 1. Similarly,
Fig. 12 shows the results for the difference between the F/T
SMAP official product and the F/T SMAP-R derived product
for January 2022, May 2022, and September 2022.

V. CONCLUSION

The manuscript describes the development of an algorithm
for classifying the frozen and thawed states of the terres-
trial cryosphere based on SMAP-R data following a similar
approach to the one originally developed by the SMAP mission
for its radar. The algorithm uses a seasonal threshold approach,
where a discriminator 1 is calculated based on the reflectivity
00 measured at different times. A threshold T is used to
classify the surface as frozen or thawed and different T
values are assigned to specific landscape types. The algorithm
includes a land classification step using k-means clustering to
group samples based on their mean 00 and 1 values. The
algorithm further refines the threshold values based on the
evolution of mean 1 values over time within each cluster,
leading to a T LUT for the different clusters.

Since some clusters do not exhibit clear seasonality,
a machine learning decision algorithm based on random for-
est is introduced to incorporate polarimetric information for
improved classification. The developed algorithm combines
statistical and machine learning techniques to classify frozen
and thawed states of the terrestrial cryosphere using SMAP-R
data, obtaining an overall performance with a mean accuracy
of 97.13%, a mean precision of 99.09%, a mean sensitivity of
95.77%, and a mean specificity of 98.86%, when compared to
the validated SMAP FT official product.

This manuscript has proven the capability and added value
of full polarimetric GNSS-R measurements, such as the cur-
rently available from the SMAP-R instrument, to provide F/T
classifications of the cryosphere. We have obtained estimates
of surface binary F/T state for the region north of 45◦ N lati-
tude, which includes the boreal forest zone, with a mean spatial
classification accuracy of 97.13% at 36 km spatial resolution
and 30-day average intervals. While the spatial resolution and
the average intervals do not meet the SMAP mission’s initial
objective for the F/T product, this manuscript intends to prove
the utility of polarimetric GNSS-R data to assess FT classifica-
tions. The work developed achieves a binary F/T classification,
and therefore does not capture transitional values. As it was
shown in [30], the mean polarimetric signatures of different
areas can also serve to observe and assess transitional periods.
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While this manuscript’s goal is not to address F/T transition
conclusions, there is potential for this type of measurement to
help determine if the F/T state transition occurs earlier or later
in the year. This information would enable the determination
of a trend in the time of the transition and could potentially
link it to global warming effects. For these measurements
to be meaningful, higher temporal resolutions are needed.
Future constellations of polarimetric GNSS-R instruments are
planned by private companies, which will enable meaningful
maps below the 1-week time scale. Regarding SMAP-R data
the average interval can be improved using 15-day to 30-
day temporal moving windows through the year, or using
daily sparse measurements. These data can be combined
with the SMAP radiometer to improve the accuracy of the
assessments, but in that case, the SMAP-R algorithm should
be first assessed using in situ data. The intent is, therefore,
not to develop an operational F/T product but to demonstrate
that polarimetric GNSS-R signals can produce accuracies like
those of a radiometer. Future missions such as NASA-ISRO
Synthetic Aperture Radar (NASAR) will also be an asset in
adding high spatial resolution measurements, that will add
relevant backscatter information to the brightness temperatures
from radiometers, such as SMAP and SMOS, as well as to
the forward-scattering information from polarimetric GNSS-R,
such as SMAP-R measurements or the measurements from the
future planned constellations of satellites from Muon Space,
HydroGNSS and YUNYAO.
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