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Abstract
Communication networks are critical social infra-

structures, and network failure due to natural disas-
ters can impact severely our daily lives. The research 
community has extensively studied how to assess 
the robustness of networks against natural disasters. 
Although communication networks are protected 
by facilities such as buildings and underground con-
duits, conventional studies have not considered net-
works in robustness assessments. Thus, this study 
investigated the impact of underground conduits on 
network robustness during earthquakes. An actual 
conduit dataset was considered, including tens of 
thousands of conduits with their attributes (struc-
ture, material, length, and age) and damage status 
from past earthquake inspections. We employed a 
conduit damage prediction technique, a machine 
learning method developed in infrastructure engi-
neering, and evaluated the robustness of regional 
communication networks with and without conduit 
attributes. The evaluation results revealed that the 
estimated outage scales could differ by a maximum 
factor of seven, depending on the conduit attri-
butes. Additionally, a what-if analysis for conduit 
upgrades was conducted, which involved recogniz-
ing conduit attributes. These findings support the 
significance of facility factors in network assessment 
during natural disasters, and open up a new inter-
disciplinary research field between infrastructure 
engineering and telecommunication networks.

Introduction
Contemporary society strongly depends on tele-
communication networks, which are often affect-
ed by severe natural disasters such as earthquakes 
and hurricanes [1]. Thus, network operators should 
evaluate network robustness during natural disas-
ters and augment them to make them disaster tol-
erant. The telecommunications network research 
community has developed several methods for 
evaluating and augmenting network robustness 
against natural disasters, including probabilistic 
models for earthquakes [2], reliability evaluation 
for compound disasters [3], link augmentation 
against earthquakes [4], and network planning 
for earthquakes and hurricanes [5]. These studies 
focused on the topological aspects of a network 
and the geographic distribution of hazards. How-

ever, telecommunication facilities such as build-
ings and underground conduits (Fig. 1, top), which 
protect communication media such as transceivers 
and cables, have been neglected. Communication 
facilities have unique attributes in terms of struc-
ture, materials, and age, and these facility factors 
could have a significant impact on the network’s 
robustness during disasters; that is, a vulnerable or 
old facility is likely to fail even if the hazard that 
strikes it is not strong. To the best of our knowl-
edge, past studies on communication networks 
have not considered the impact of facility factors 
on network robustness. Note that the fate sharing 
among communication cables through the same 
facility has often been considered, as with the 
shared risk link group (SRLG), but the facility attri-
butes have not been considered.

The fragility of telecommunication facilities has 
been studied in infrastructure engineering. Owing 
to recent advancements in statistical methods, 
including machine learning, state-of-the-art tech-
niques have successfully identified the fragilities 
of each facility duet al.ring natural disasters, lever-
aging large datasets on facilities and disaster haz-
ards. Ito et al. [6] developed a damage prediction 
method for underground conduits by employing a 
tree-boosting algorithm with a large training dataset 
of seismic hazards and conduit attributes. Firdaus et 
al. [7] examined bridge failures during floods, and 
Wang et al. [8] investigated the fragility of power 
towers against typhoon winds. These studies indi-
cate that the fragility of a facility largely depends 
on its attributes; however, research interests in 
infrastructure engineering are limited to facilities 
themselves, and the impact of facility factors on 
communication networks has not been studied.

Thus, communication networks under a natural 
disaster have been studied in both the fields of 
telecommunication network and infrastructure 
engineering; however, a question remains: do 
attributes of individual facilities have significant 
impacts on the robustness of the whole communi-
cation network? If the answer is yes, we may not 
have accurately evaluated the robustness, result-
ing in unexpected network outages owing to the 
overestimation of robustness or over-augmenta-
tion of networks owing to underestimation. This 
study examines the impact of telecommunications 
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facilities on network robustness during natural 
disasters and provides comprehensive directions 
for this interdisciplinary research fi eld.

This study assessed the robustness of com-
munication networks using connectivity-based 
network reliability [9], that is, the probability of 
connecting specified nodes on a network. Net-
work reliability has traditionally been a fundamen-
tal metric in network design and forms the basis 
for other metrics, such as network component 
criticality [10] and survivability [2].

This study focused on underground conduits 
against earthquakes as examples of facilities and 
hazards because damage prediction methods 
for underground conduits under seismic hazards 
have matured [6], and communication cables in 
major networks are usually protected by under-
ground conduits. However, the basic concept of 
this study can be applied to other facilities and 
hazards, and we hope that further research will 
be expanded. Moreover, although the analyses in 
this study utilized a dataset from Japan, the con-
cept presented is not limited to Japan.

The contributions of this study are summarized 
as follows:
• A reliability evaluation method was proposed 

by employing a damage prediction method for 
underground conduits under seismic hazards. 

• A reliability evaluation was conducted using a 
dataset of actual conduits from NTT, the larg-
est network provider in Japan. This is the fi rst 
study to evaluate the network reliability using 
an actual facility dataset. 

• The impact of telecommunications facilities on 
network reliability was demonstrated by consid-
ering two recent strong earthquakes in Japan. 
The results showed that the outage scale (num-
ber of disconnected buildings) could shift by 
a factor of several times without conduit attri-
butes. In addition, a what-if analysis assuming 
conduit upgrades was conducted, which is 
impossible without conduit attributes. 

• A rich body of interdisciplinary research top-
ics between telecommunication networks 
and infrastructure engineering was discussed.

network relIAbIlIty evAluAtIon wIth 
conduIt dAmAges

This section presents a method to evaluate net-
work reliability employing the damage prediction 
technique for underground conduits against a 
seismic hazard. The next sub-section overviews 
the method with a network model including 
underground conduits. We then elaborate on the 
conduit damage prediction and describe datasets 
used in the prediction.

network model And relIAbIlIty evAluAtIon method
This subsection describes the reliability evaluation 
method for conduit damage prediction, as shown 
in Fig. 2. First, network and seismic hazards were 
provided as problem inputs, as shown in the first 
step in Fig. 2. A network is represented as a graph 
with telecommunication buildings and manholes 
as nodes and tunnels and conduits as edges; tun-
nels are large-scale structures that enable per-
sonnel to enter, while conduits are smaller and 
designed to only accommodate the cables they 
protect. Communication devices such as transceiv-
ers were installed in buildings and connected by 
communication cables through tunnels and con-
duits. We neglected the communication “capacity” 
and focused on the connectivity of networks. A 
seismic hazard is defi ned as the ground motion at 
the location of each conduit, and the details are 
described below. Note that the red Xs in the first 
step are marked to illustrate the connectivity later; 
thus, they are not provided as problem inputs.

Next, a failure model for network components 
is described. Communication device failures were 
not considered because telecommunications 
buildings are very sturdy and contain power gen-
erators. Moreover, the failures of the tunnels and 
manholes were also ignored because they are 
extremely robust. In this study, only conduit fail-
ures were considered; conduits fail stochastically 
based on the physics of seismic hazards, ground 
conditions, and conduit attributes. Conduits were 
divided into sections by manholes installed at 
approximately 150 m intervals, and conduit fail-
ures were examined for each section. A conduit 
state can be either intact or failed/disconnected, 
and the buildings cannot communicate through 
failed conduits; in Fig. 2, the X-marked conduits 
failed, so building b2 was disconnected and could 

FIGURE 1. Underground telecommunication facilities with conduit structures and damages.

FIGURE 2. Reliability evaluation procedure with the damage prediction technique for underground conduits against a seismic hazard.
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not communicate with the other buildings. In the 
second step in Fig. 2, the failure probability of 
each conduit was estimated using the prediction 
technique, assuming independence in conduit 
failures; details of the prediction technique is dis-
cussed below.

Based on the probability of the conduit fail-
ure, the reliability of the network was evaluated. 
In this study, a regional communication network 
comprising tens of telecommunications buildings 
in an area of roughly 100 km was considered; 
a strong earthquake could damage the entire 
area, but the extent of damage would be quite 
different within the area. A regional network 
has gateways through which other buildings can 
reach external networks, such as the Internet. 
Gateways are deployed in multiple buildings for 
redundancy, and other buildings must be con-
nected to at least one gateway. The number 
of buildings disconnected from any gateway is 
considered as the outage scale; in Fig. 2, only 
building b2 is disconnected from the gateways, 
and the outage scale is one. Communication 
networks should be designed such that larger 
outages are less likely to occur; thus, we used 
a reliability measure called scale-wise unreliabil-
ity, which reflects outage scales [11]. Scale-wise 
unreliability plots the probability of disconnect-
ing x or more buildings from any gateway. The 
third step in Fig. 2 illustrates an example of scale-
wise unreliability, which indicates that outages 
disconnecting two or more buildings occurred 
with a 30 percent probability. Scale-wise unreli-
ability has been used in the reliability design of 
communication networks [11], but it has been 
difficult to apply it to networks under disasters. 
This is because scale-wise unreliability had to be 
approximately evaluated by ignoring simultane-
ous link failures to avoid the high computational 
burden (#P-complete, a complexity class of a 
counting problem that is at least as hard as the 
corresponding NP decision problem), but simul-
taneous failures could not be ignored during 
disasters owing to the high failure probability. 
Recently, Nakamura et al. developed an efficient 
algorithm that exactly computes the scale-wise 
unreliability for practical-scale networks [12]; 
therefore, we employed the algorithm in this 
study to plot the scale-wise unreliability.

Conduit Damage Prediction and Datasets 
This subsection describes the machine learning 
technique used to predict the probability of con-
duit failure against seismic hazard [6]. We begin 
with the features used in the prediction (Table 1):
•	 The seismic features included peak ground 

velocity (PGV) and peak ground acceleration 
(PGA) at the location where the conduit was 
installed. These two features are representa-
tive of seismic indices because other indices 
such as seismic intensity, spectral intensity, 
equivalent predominant frequency, and con-
verted displacement are all calculated from 
the PGV and PGA. The PGV and PGA of 
earthquakes that occurred and are expected 
to occur in Japan are available on the J-SHIS 
website (https://www.j-shis.bosai.go.jp).

•	 The ground features included the elevation, 
angle, artificial flat terrain, and liquefaction 
at the conduit location. Lower elevations 
are often associated with soft ground such 
as reclaimed land and alluvial plains. The 
slope angle is associated with mountainous 
terrains. Furthermore, artificial flat terrain indi-
cates soft ground, such as an embankment. 
The occurrence of liquefaction indicates that 
the location has liquefied in the past. Lique-
faction causes the conduits to float and fail. 
Liquefaction data are available from J-SHIS, 
whereas other data were obtained from the 
National Spatial Planning and Regional Policy 
Bureau in Japan (https://nlftp.mlit.go.jp).

•	 Conduit features included length, age, and 
type (structure and material). The length is the 
traveling distance of the conduit. Age is the 
number of years elapsed since installation; the 
older the conduit, the more corroded and brit-
tle it is. Finally, the conduit types are defined 
by their structures and materials. The NTT has 
five conduit types: screw-joint steel (SS) pipe, 
adhesive-splicing vinyl (SV) pipe, screw-joint 
cast-iron (SI) pipe, push-lock polyethylene steel 
(PS) pipe, and push-lock vinyl (PV) pipe. They 
are classified into old and new types based 
on their joint structure (Fig. 1, lower left); 
old-type conduits (SS, SV, and SI) are rigidly 
connected by screw joints or adhesive splic-
es and prone to failure at the joints owing to 
ground displacement, while new-type conduits 
(PS and PV) have a pipe-in-pipe structure, 
which renders them elastic in the axial direc-
tion and facilitates displacement absorption. 
For all types, the conduits were connected 
by their joints every 5.5 m, and the diameter 
was approximately 10 cm. Conduit data were 
retrieved from NTT’s facility database.
The sets of seismic, ground, and conduit fea-

tures are denoted as S, G, and C, respectively. 
For example, SG refers to seismic and ground fea-
tures, such as PGV, PGA, elevation, angle, artifi-
cial flat terrain, and liquefaction occurrence.

Next, we describe the conduit damage dataset 
used to build the prediction model (a binary classi-
fier for conduit failure). NTT researchers inspected 
32,968 conduits in areas affected by recent strong 
earthquakes: the 1995 southern Hyogo earthquake 
(Mw = 7.3), 2004 mid-Niigata earthquake (Mw 
6.8), 2007 Niigata Chuetsu-oki earthquake (Mw 
6.8), 2011 earthquake off the Pacific coast of 

TABLE 1. Features and dataset statistics

Source Feature Mean Std dev

Numeric 
features

Seismic
PGV [cm/s] 60.7 30.7

PGA [cm/s2] 565.7 203.8

Ground
Elevation [m] 50.1 95.9

Angle [degree] 2.42 3.73

Conduit
Length [m] 137.1 72.7

Age [year] 34.2 10.1

Categorical 
features

Source Feature Categories Ratio of 
true/mode

Ground
Artificial flat terrain {true, false} 0.078

Liquefaction {true, false} 0.115

Conduit Type {SS, SV, SI, PS, PV} (SS) 0.720
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Tohoku (Mw 9.0), and the 2016 Kumamoto earth-
quake (Mw 7.3). Conduits damaged by bending, 
breaking, separation, sediment inflow, or flattening 
were marked as failed conduits (Fig. 1, lower right). 
The failure rate of the old conduit was 4.5 percent, 
whereas that of the new conduit was 2.0 percent. 
Old-type conduits accounted for 89.5 percent of 
the dataset, with SS pipes, the most frequent type, 
accounting for 72.0 percent. The inspected con-
duits were associated with their features, and their 
statistics are listed in Table 1.

The conduit damage prediction technique 
[6] builds a binary classifier by employing a 
tree-boosting algorithm, XGBoost [13], which 
utilizes an ensemble of decision trees to form a 
strong predictive model. The hyperparameters of 
XGBoost, for example, the maximum tree depth 
and regularization weights, are tuned using a 
tree-structured Parzen estimator [14]. The entire 
dataset was divided into training, tuning, and test 
subsets (6:2:2). The classifier was trained on the 
training dataset, while the hyperparameters were 
tuned on the tuning dataset. Then, the prediction 
performance was measured on the test dataset 
using a performance indicator called the area 
under the receiver operating characteristic curve 
(ROC-AUC). The ROC curve plots the true posi-
tive rate against the false positive rate at various 
thresholds. The AUC quantifies the classifier per-
formance between 0.5 of random prediction and 
1.0 of perfect prediction. ROC-AUC is useful for 
imbalanced class distributions, such as the dataset 
used in this study, because it is unaffected by the 
proportion of class distribution. The trained clas-
sifier can be used to estimate the probability of 
belonging to one of the two classes, that is, the 
failure probability of each conduit.

Our method is not limited to the dataset used 
in this study; it can be applied to other datasets 
with the same features.

Impacts of Conduit Attributes on  
Network Reliability

This section examines impacts of conduit attri-
butes on network reliability. We assumed that 
the 2016 Kumamoto earthquake and the 2011 
earthquake off the Pacific coast of Tohoku would 
occur again because we had already retrieved the 
conduit data in the post-earthquake inspections. 
However, in practice, network operators must 
perform the same evaluation of future seismic 
hazards. We describe network topologies used in 
the reliability evaluation below. Then we discuss 
the impact of conduit attributes on network reli-
ability. Following that, we conduct a what-if anal-
ysis of conduit upgrades, which is made possible 
by the use of conduit data.

Network Topologies Used in Reliability Evaluation
In this study, we performed a network reliability 
evaluation using real data from telecommunica-
tions buildings and conduits. For security reasons, 
we used hypothetical network topologies, that 
is, we did not disclose how the buildings were 
linked. In addition, we did not illustrate the geo-
graphic conduit routes in the topology maps. The 
hypothetical topologies were generated as fol-
lows: First, for each building pair connected by 
conduit routes, the shortest route was assumed to 

connect the buildings because buildings are usual-
ly connected along the (almost) shortest route to 
minimize transmission delay and power. Topolo-
gies generated in this manner are likely to have a 
dense structure; however, regional networks, such 
as rings, are usually sparse. Thus, we removed lon-
ger routes, such that every building had at most 
five conduit routes. Figure 3 shows the hypotheti-
cal network topologies for Kumamoto and Ibaraki 
(Tohoku) using a map of Japan. The Kumamoto 
network had 31 buildings, whereas the Ibaraki 
network had 76. The gray buildings, the farthest 
node pair, were 60.0 km apart in Kumamoto and 
122.4 km in Ibaraki and were designated as gate-
ways. The average travel distances between adja-
cent buildings were 7.2 km for Kumamoto and 
11.0 km for Ibaraki. Certain buildings appeared 
to have only a single route to a gateway because 
aerial cables, which are strung above the ground 
between poles, were omitted in this evaluation.

Network Reliability With And Without Conduit Attributes
The effects of conduit attributes on network reli-
ability were investigated by comparing the results 
of different feature sets: S, SG, and SGC. As 
previous studies [2–5] only considered hazard 
distributions, we used the S feature set (hazard 
intensities) as the baseline. The seismic hazards 
were those of two earthquakes (2016 Kumamo-
to and 2011 Tohoku). The ground and conduit 
data are described above. The damage predic-
tion models were trained with a dataset exclud-
ing the conduits of the target region. The dataset 
for Kumamoto included 26,109 conduit records, 
whereas that for Ibaraki had 25,234 records. The 
prediction performance of the trained model 
(ROC-AUC) is shown in the left column of Fig. 4. 
The SGC feature set, including all features, out-
performed the other feature sets, with 0.908 for 
Kumamoto and 0.879 for Ibaraki. Note that we 
examined feature combinations other than S, SG, 
and SGC, but none outperformed SGC. 

Cumulative distribution functions (CDFs) of the 
predicted conduit failure probabilities are shown 
in the center column of Fig. 4. The probability of 
conduit failure strongly depends on the feature 
sets. In Kumamoto, the SGC feature set shifted 
the failure probability to the left, that is, the failure 
probability decreased; the averages were 0.073, 
0.073, and 0.034 for feature sets S, SG, and SGC, 
respectively. In Ibaraki, the average failure proba-
bilities did not significantly shift: 0.011, 0.012, and 
0.009 for S, SG, and SGC, respectively. Interest-
ingly, the most vulnerable conduits with the SGC 
feature set were not located with the strongest 
seismic intensity; in Kumamoto, the most vulnera-
ble conduit yielded a PGV and PGA of 52.8 and 
565.4, which are less than the averages of 78.5 
and 660.9, respectively, in the Kumamoto con-
duits in our dataset. However, in Ibaraki, the most 
vulnerable conduit yielded 32.6 and 379.4, which 
are also less than the averages of 43.5 and 563.1 
in the Ibaraki dataset. These vulnerable conduits 
are old-type SV pipes, indicating that the impact 
of conduit attributes is not negligible.

For simplicity, we did not distinguish between 
conduit failure and cable cutting so far. How-
ever, even if a conduit fails, the communication 
cables through the conduit are not always cut. 
In the following reliability evaluation, a historical 

NTT researchers inspected 
32,968 conduits in areas 
affected by recent strong 

earthquakes: the 1995 south-
ern Hyogo earthquake (Mw = 
7.3), 2004 mid-Niigata earth-
quake (Mw 6.8), 2007 Niigata 
Chuetsu-oki earthquake (Mw 
6.8), 2011 earthquake off the 
Pacific coast of Tohoku (Mw 

9.0), and the 2016 Kumamoto 
earthquake (Mw 7.3).
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average of 4 percent was used; the cable was 
cut with a probability of 4 percent when the con-
duit failed. Buildings can communicate when all 
cables between them are intact, even if the con-
duits fail. Elaboration on a cable-cut model under 
conduit failure is an important future work and is 
discussed below

Next, the impact of the conduit attributes 
on network reliability was examined. The right 
column of Fig. 4 shows the scale-wise unreliabil-
ity of the three feature sets. In Kumamoto, the 
scale-wise unreliability was reduced (improved) 
according to the decrease in the conduit fail-
ure probability, as shown in the center of Fig. 4. 
Remarkably, the outage scale with a probability of 
1 percent was 19 and 22 buildings for the S fea-
ture set and SG set, respectively, but only three 
buildings for the SGC set. We could drastically 
overestimate the risk ignoring the conduit fea-
tures. The large gap was obtained because there 
are 17 buildings overestimating the disconnec-
tion probability by a factor of five or more, for 
example, building b22 had a 14.3 percent discon-
nection probability with the S feature set and 2.7 
percent with the SGC set. Ibaraki did not yield as 
large a gap as in Kumamoto; however, the risk 
was underestimated when we ignored the con-
duit attributes. The outage scale with a probability 
of 10 percent was eight buildings with the SGC 
feature set but only two with the S and SG sets, 
which would be perilous to overlook the risk of 
isolating eight buildings with a 10 percent prob-
ability. A detailed examination revealed that the 
worst 10 vulnerable buildings underestimated the 
disconnection probability by a factor of 1.5. For 
example, building b67 had a 10.1 percent discon-
nection probability with the SGC set, but it had 
only 4.6 percent with the S set, which resulted in 
a gap in the 10 building range. Thus, the results 
show that network reliability strongly depends on 
the conduit attributes.

What-if Analysis: Conduit Upgrades
A what-if analysis was performed assuming con-
duit upgrades. As noted previously, old conduits 
accounted for approximately 90 percent of the 
dataset, and this ratio was almost the same in 
Kumamoto (89.8 percent) and Ibaraki (91.3 per-
cent). We replaced all the conduits with new PV 
pipes, which are less vulnerable owing to their 
pipe-in-pipe structure. We then evaluated the 
improvement in scale-wise unreliability. The fea-
ture set used was the SGC.

The center column of Fig. 4 shows the con-
duit failure probabilities for the current-conduit 
mix (SGC) and upgraded PV pipes. In Kumamo-
to, the overall failure probabilities were reduced 
by upgrades. In Ibaraki, the probabilities were 
reduced for a wide range of x greater than 0.008; 
however, they were not reduced for very small x 
values, which could be owing to prediction errors.

The right column of Fig. 4 shows the scale-
wise unreliability of the current–conduit mix and 
the upgraded PV pipes. The scale-wise unreli-
ability was greatly improved by these upgrades. 
In Kumamoto, it decreased from 36.4 percent 
to 26.0 percent when the outage scale was one 
building, and the improvement ratio increased 
slightly with the outage scale. A closer look 
revealed that the disconnection probability from 
gateways was reduced for most buildings; for 
example, the disconnection probability of building 
b{20 was largely reduced from 4.5 percent to 1.0 
percent because the route to the nearest gateway 
comprised only old-type pipes.

In Ibaraki, scale-wise unreliability was reduced 
from 21.0 percent to 14.9 percent when the 
outage scale was one building, and the improve-
ment ratio increased up to outages with eight 
buildings. As in Kumamoto, the disconnection 
probability from gateways was reduced for most 
buildings, for example, that of building b{67 was 
largely reduced from 10.1 percent to 3.5 percent 

FIGURE 3. Hypothetical regional networks in Kumamoto and Ibaraki. The concentric circles in the Japan map indicate the epicenters.



IEEE Communications Magazine • January 2025 143
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

because the route to the nearest gateway was 
very long (45.6 km) and mostly comprised old-
type conduits (94.8 percent).

future reseArch toPIcs
Facility attributes signifi cantly impact network reli-
ability during natural disasters. Therefore, facility 
factors should be considered in the evaluation. 
However, several research topics still need to be 
addressed to improve the network design against 
natural disasters.

gAP between the conduIt And cAble condItIons
Damage prediction techniques for underground 
facilities were fi rst studied for water and gas ducts 
in infrastructure engineering. While service would 
be interrupted if ducts failed to supply water and 
gas, the service could continue even if conduits 
failed in telecommunication unless the internal 
cables were cut. Thus, cable damage prediction 
is a challenge unique to telecommunications and 
remains a missing piece. In this study, a uniform 
probability of 4 percent, the historical average, 
was applied; however, cable vulnerability should 
depend on hazards and conduits [15]. Therefore, 
further research is required. In addition, inspect-
ing the cable conditions is diffi  cult. While conduit 
conditions can be observed easily, cable condi-
tions must be tested using transmission instru-
ments, such as optical time-domain refl ectometers 
(OTDRs), which increase inspection costs. More-
over, if multiple points on the cable are damaged, 
it is diffi  cult for an OTDR to identify all the dam-
aged points. Thus, a novel sensing technique that 
identifi es all damaged points is required.

network relIAbIlIty evAluAtIon for dIstAnce
correlAtIon of fAcIlIty fAIlures

This study assumed independence in conduit fail-
ures. However, our conduit inspection dataset 
revealed a correlation in the straight-line distanc-
es separating the conduits. Figure 5 shows the 
correlation versus conduit distances, that is, for 
every pair of conduits within x m, we computed 

the ratio of the actual number of simultaneous 
failures to the expected number of simultaneous 
failures based on the damage prediction. The fi g-
ure shows a positive correlation with proximity, 
that is, y is greater than 1.0. Note that the haz-
ard data for PGV and PGA were included in our 
training dataset; therefore, this correlation was not 
caused by the similarity between PGV and PGA. 
First, we should study the origin of the correlation, 
for example, certain seismic features, utilizing the 
knowledge of earthquake engineering. Subse-
quently, the research community on communica-
tion networks should develop a network reliability 
evaluation method that addresses the distance 
correlation between facilities.

communIcAtIon fAcIlItIes other thAn underground conduIts
Communication networks comprise various types 
of facilities. Conduits are not always buried under-
ground but are sometimes installed along bridges 
to cross a river. Bridge tolerance against fl oods has 
been extensively studied in civil engineering [8] 
and can be applied to the evaluation of network 
reliability under fl oods. Communication cables are 
often relayed aerially in mountainous areas. If dam-
age prediction techniques are developed for aerial 
cables, most cable route can be covered.

FIGURE 4. Results of reliability evaluation without (S and SG) and with (SGC) conduit attributes. The left column shows that the prediction accuracy is low with-
out conduit attributes. The right column demonstrates that the evaluated network reliability is considerably diff erent with and without conduit attributes, 
as indicated by the red dotted arrows. PV in the center and right columns assumes that all conduits would be upgraded to PV pipes, a new type, improving 
network reliability, as indicated by the green dotted arrows. 

FIGURE 5. Distance correlation of conduit failures for Kumamoto and 
Ibaraki.
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This study makes a prac-
tical contribution to the 

robustness assessment of 
communication networks. 
In addition, it contributes 

academically to the explora-
tion of the interdisciplinary 

research area between infra-
structure engineering and 
communication networks. 

Network Robustness Against Different 
Types of Natural Disasters

This study focused on earthquakes as natural disas-
ters; however, if the conduit failure prediction 
model is modified for another disaster, network 
robustness could be evaluated for the disaster by 
integrating the modified model into our method.

Network Robustness Against Multiple 
Natural Disasters Expected in a Region

This study assessed communication networks by 
assuming a particular earthquake; however, net-
works must be tolerant of all natural disasters 
expected in the region. Thus, network robustness 
must be evaluated by assuming multiple hazards [3].

Optimal Strategy for Upgrading Conduits
The what-if analysis upgraded all the conduits in 
a network; however, in practice, they are partially 
upgraded under budget constraints. The problem 
of maximizing network reliability should be stud-
ied by selecting the best subset of conduits for 
upgrading, which could be an NP-hard combina-
torial optimization problem.

Network Digital Twins, Including 
Telecommunication Facilities

Network digital twins have recently attracted 
attention for optimizing and testing communica-
tion networks in real time. Network models with 
communication facilities allow digital twins to 
assess external threats such as natural disasters. 
We must develop a real-time update scheme for 
facility conditions in a model to track the current 
network status.

Generality of the Prediction Model
Other network operators could perform a similar 
analysis with their own datasets. They should be 
careful to avoid overfitting when training a pre-
diction model with smaller datasets. Theoretically, 
our trained model is portable to other operators, 
as long as their test data contain the same stan-
dard seismic and ground features and the same 
conduit types. However, as communication infra-
structures often have operator and country-specif-
ic aspects, a demonstration is a future challenge. 

Benchmark Model of Communication Facilities
A benchmark model representing communica-
tion facilities must be developed to facilitate new 
research on facility-aware communication networks. 
However, the details of communication facilities 
are generally undisclosed for security reasons. Nev-
ertheless, we have the following opportunities to 
develop a benchmark model.  Underground con-
duits are often laid along major roads for maintain-
ability; therefore, the routes are modeled based on 
roads between telecommunication buildings. Con-
duit type, length, and age can be determined if a 
generative model of conduit sequences reflecting 
neighboring environments is published.

Conclusion
This study makes a practical contribution to the 
robustness assessment of communication net-

works. In addition, it contributes academically to 
the exploration of the interdisciplinary research 
area between infrastructure engineering and com-
munication networks. Although these research 
areas have been studied independently, they 
are both essential components that support tele-
communication services. Thus, a collaboration 
between the two is imperative for disaster resil-
ience, as well as for digital twins in communica-
tion networks. This interdisciplinary research field 
holds great promise for the future. The codes that 
evaluate the scale-wise unreliability are available 
at https://github.com/nttcslab/scale-wise-unrel.
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