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Latent Semantic and Disentangled Attention
Jen-Tzung Chien and Yu-Han Huang

Abstract—Sequential learning using transformer has achieved
state-of-the-art performance in natural language tasks and many
others. The key to this success is the multi-head self attention
which encodes and gathers the features from individual tokens
of an input sequence. The mapping or decoding is performed to
produce an output sequence via cross attention. There are threefold
weaknesses by using such an attention framework. First, since the
attention would mix up the features of different tokens in input
and output sequences, it is likely that redundant information exists
in sequence data representation. Second, the patterns of attention
weights among different heads tend to be similar. The model ca-
pacity is bounded. Third, the robustness in an encoder-decoder
network against the model uncertainty is disregarded. To handle
these weaknesses, this paper presents a Bayesian semantic and
disentangled mask attention to learn latent disentanglement in
multi-head attention where the redundant features in transformer
are compensated with the latent topic information. The attention
weights are filtered by a mask which is optimized through semantic
clustering. This attention mechanism is implemented according to
Bayesian learning for clustered disentanglement. The experiments
on machine translation and speech recognition show the merit of
Bayesian clustered disentanglement for mask attention.

Index Terms—Sequential learning, Bayesian learning, disen-
tangled representation, mask attention, transformer.

I. INTRODUCTION

S EQUENTIAL learning has been widely developed to build
a variety of information systems in presence of audio

signals, video streams, natural sentences or medical sequence
data. It is crucial to enhance the learning representation by
incorporating self attention within a sequence and cross at-
tention between source and target sequences. Accordingly, the
encoder-decoder attention network based on transformer [1] was
proposed and has achieved state-of-the-art results in a wide
range of sequence-to-sequence learning tasks such as speech
recognition, machine translation, question answering, dialogue
generation, to name a few. In spite of the success by using
attention mechanism, the issues of computational complexity
and representation redundancy still considerably constrain the
efficiency in learning process [2]. In order to cope with theses
issues, several extensions of transformer using mask attention
have been proposed. These extensions consist of reformer [3],
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routing transformer [4], and sparse transformer [5] where the
dot-product in attention was calculated by only considering a
small portion of word tokens. The computational complexity
was reduced by applying binary mask on attention weights. In
contrast to binary mask, the real-valued mask was constructed
in the adaptively sparse transformer [6] and the adversarial
sparse transformer [7] where the α-entmax function [8] was
presented to remove redundant features in calculation of at-
tention weights. In [9], the distance between two tokens of a
sequence was used to implement a dynamic attention mask in
a mask attention network. In addition, the relation between a
pair of tokens was measured to construct an attention mask,
which was adopted to carry out the Gaussian-weighted self
attention [10] in transformer [11]. On the other hand, there were
a number of works pointing out that some of attention heads
were redundant [6] and the semantic interpretation of attention
weights was missing. In [12], the similarity of attention patterns
between individual heads was high in standard transformer.
Therefore, similar performance was obtained even though some
attention heads were pruned. In [13], [14], the attention weights
or mask coefficients were estimated through adversarial training.
The resulting transformer obtained comparable outputs while
the attention weights could be very different. This circumstance
reveals that the estimated attention weights did not really convey
sufficient semantic information.

To overcome these shortcomings in attention-based net-
work [15], this paper presents a new sequential learning to
enhance the semantic meaning as well as reduce the redundancy
of attention weights within each individual head and across dif-
ferent heads. There are two stages in construction of the disentan-
gled transformer with attention weights under a latent variable
representation. Bayesian learning is implemented to enhance the
robustness to random perturbation in model construction. At the
first stage, the disentanglement of attention weights in individual
heads is conducted. The semantics of these heads are character-
ized by latent clusters or topics in accordance with Bayesian
sequential learning [16], [17] where the mixture of Gaussians
as the prior density of topics is merged. Bayesian clustering
is proposed to build a semantic mask which is operated over
attention weights in latent space for those semantically-close
tokens. The real-valued clusters of attention mask are learned
to strengthen the attention mechanism based on the variational
inference procedure. In addition, the second stage is devoted
to reduce the redundancy of attention model and disentangle
the multi-head attention across various heads. The disentan-
glement objective based on the mutual information of query
vectors between two heads is constructed and minimized to
enhance the compactness of attention patterns in attention-based
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Fig. 1. Sequence-to-sequence learning with attention.

sequential learning. There are threefold novelties presented in
this study. First, the topic-based mask attention is developed to
build a hierarchical latent representation which strengthens the
attention weights for semantically related word tokens. Second,
a Bayesian learning approach is proposed to carry out uncer-
tainty modeling [18] for latent topic disentanglement over mask
attention in sequence data representation. Third, a Bayesian
sequence-to-sequence learning is implemented for a probabilis-
tic transformer in accordance with an information-theoretic
objective for disentanglement. The experiments on sequential
learning in machine translation and speech recognition under
various settings illustrate the merit of the proposed Bayesian
semantic mask in an attention-based encoder-decoder network.

II. UNSUPERVISED SEQUENTIAL LEARNING

First of all, attention-based sequential learning and latent
variable disentangled modeling are surveyed.

A. Mask Attention for Sequence Data

Sequence-to-sequence (S2S) model is learned for domain
mapping from source sequence x = {xi}nx

i=1 to target sequence
y = {yi}ny

i=1 with different lengths. Fig. 1 depicts a S2S learn-
ing model with attention consisting of an encoder to extract
hidden features or states zx = {zxi}nx

i=1 from x, a decoder to
generate target samples y through a mapping, and an attention
module to conduct self attention and cross attention over x
and y. Here, encoder and decoder calculates a kind of source
and target embeddings, respectively. Attention scheme is per-
formed to deal with the challenges of capturing and storing
long-distance temporal information in long sequence modeling
and mapping. Accordingly, transformer [1] is developed to
fulfill an encoder-decoder framework for S2S learning where
the attention module consists of three components including
multi-head self attention in encoder, masked multi-head self
attention in decoder, multi-head cross attention between encoder
and decoder. The multi-head attention in three components
shares the same calculation form. In particular, Fig. 2 shows
the calculation of masked multi-head self attention by using
an input or embedding sequence y. In calculation of multi-
head self attention, the same embedding yi of a word token
at time i is transformed to find query qh

i = Wh
q yi + bh

q , key
kh
i = Wh

k yi + bh
k and value vh

i = Wh
v yi + bh

v , respectively,
where h is the head index The attention parameters consist

Fig. 2. Masked multi-head self attention for a target sequence y.

of θa = {Wh
q ,b

h
q ,W

h
k ,b

h
k ,W

h
v ,b

h
v}. A softmax function is

calculated to find attention weight Ah
ij for a query qh

i to attend
a key kh

j ∈ Rdk via

Ah
ij = Softmax

(
((kh

1:J )
�qh

i )/
√

dk

)
j

(1)

from the set of J key tokens kh
1:J . Notably, a causal mask is

employed to find the masked attention weight

Āh
ij =

Mh
ijA

h
ij∑

j′ M
h
ij′A

h
ij′

(2)

where Mij = 1 for i ≥ j and Mij = 0 for i < j. Multi-head
query, key and value are augmented as qi = [q1

i ; . . . ;q
nh
i ],

ki = [k1
i ; . . . ;k

nh
i ] and vi = [v1

i ; . . . ;v
nh
i ], respectively. The

attended feature of an output sequence zy = {zyi} is calcu-
lated at each time i by a linear transform zyi = Ā�vi where
Ā = [Ā1; . . . ; Ānh ] and Āh = {Āh

ij}. This study presents a new
latent variable model for unsupervised learning of disentangled
features and semantic clusters. In what follows, some basics
of information-theoretic learning and Bayesian learning are
introduced.

B. Latent Disentangled Representation

Disentangled representation is seen as a horizon of re-
searches [19], [20], [21] which aim to factorize the latent rep-
resentation into several independent low-dimensional features
by optimizing an objective function for decomposition. These
researches have been widely employed in various technical
data such as images [22], sentences [23], [24] and voices [25].
This work infers the mutually independent latent variables from
information-theoretic perspective by following the variation of
information (VI). VI is defined as the distance between two
clusterings of variables zi and zj , which is closely related to the
mutual information (MI) by

VI(zi, zj) = H(zi) + H(zj)− 2I(zi, zj) (3)

where H and I denotes the entropy and MI, respectively,
and VI(zi, zj) ≥ 0. The independent components can be opti-
mized by minimizing MI or comparably maximizing VI. Impor-
tantly, VI is a distance metric and obeys the triangle inequality
VI(x, zi) + VI(x, zj) ≥ VI(zi, zj) for any observed variable
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x and its corresponding latent components zi and zj . The
equality happens when random vectors zi and zj are parallel or
statistically independent. The disentanglement or independence
between latent variables zi and zj from the observed variable x
is accordingly measured by the difference D between two sides
of triangular inequality which can be manipulated and written
by

D(x; zi, zj) = 2(I(zi, zj)− I(x, zi)− I(x, zj) + H(x))
(4)

where D(x; zi, zj) ≥ 0. To learn the disentangled latent repre-
sentation, the term H(x) is a constant and the three MI terms in
(4) are included to form a disentanglement objective. But, the
direct calculation of MI does not exit. It is practical to implement
information-theoretic disentanglement through estimating the
upper and lower bounds of MI [26], [27]. The disentanglement
or independence is therefore optimized by minimizing the differ-
ence D(x; zi, zj), or comparably minimizing the upper bound of
MI I(zi, zj) and at the same time maximizing the lower bounds
of both MIs I(x, zi) and I(x, zj). In this study, these bounds are
empirically estimated and optimized to extract latent features in
transformer.

C. Latent Semantic Clustering

Based on the latent disentanglement, this paper develops the
semantic mask attention where the variational clustering using
neural network is proposed to capture the latent semantic mean-
ing in the process of mask attention. In [28], the latent embedding
in neural network was assumed to be distributed by a Gaussian
mixture model (GMM) which was feasible to implement the
variational deep embedding. The GMM distribution of a latent
variable z ∈ Rd is formed by

p(z) =

nc∑
c=1

p(c)p(z|c) =
nc∑
c=1

πcN
(
z;μc, diag{σ2

c}
)

(5)

where c denotes a latent cluster or semantic topic [29] corre-
sponding to a latent sample z from an observed sample x. GMM
parameters consist of the mixture weights π = {πc} ∈ Rnc ,
the mean vectors μ = {μc} ∈ Rnc×d and the variance vec-
tors of diagonal matrices σ2 = {σ2

c} ∈ Rnc×d. A variational
autoencoder (VAE) [30] is feasible to implement a variational
clustering by maximizing the marginal likelihood over latent
variables z and c where z is encoded from training data x and
distributed by a GMM, and x is then decoded for reconstruction.
The learning loss LELBO for semantic clustering is yielded by
the negative evidence lower bound (ELBO) which is derived by

− log p(x) = − log

∫ ∑
c

p(x, z, c)dz ≤ −Ez,c[log p(x|z, c)]

+DKL(q(z|x)‖p(z|c)) +DKL(q(c|x)‖p(c)) � LELBO.
(6)

In right-hand-side of (6), the first term is seen as a recon-
struction error for training data x under a latent variable model
and the other two terms reflect the Kullback-Leibler (KL) diver-
gence DKL due to two latent variables z and c characterized
by a variational distribution q(z, c|x) which is decomposed

Fig. 3. Semantic and disentangled mask attention in transformer.

into q(z|x) and q(c|x) getting close to their priors p(z|c) and
p(c), respectively, by minimizing two KL terms. A Bayesian
clustering is realized as a new variant of VAE in presence of
GMM as the prior. Variational distribution q(z, c|x) is adopted
for Bayesian learning. In this study, latent semantic clustering is
implemented for deep embedding and clustering where similar
samples with the same latent semantic topics are represented to
carry out the semantic mask attention in transformer.

III. SEMANTIC AND DISENTANGLED ATTENTION

Fig. 3 shows the implementation of semantic and disentan-
gled mask attention (SDMA) in an encoder-decoder framework,
which is extended from a vanilla transformer, consisting of add
& norm, multi-head attention and feed-forward network. The
attention modules based on self attention and cross attention
in the encoder and decoder of vanilla transformer are now
replaced by SDMA. Different from self attended SDMA in
encoder and cross attended SDMA in decoder, the masked
SDMA runs the self attention to prevent attending to subsequent
positions in the output prediction. There are two components
which are combined with according to learning perspectives.
First, the semantic clusters of latent features are inferred to carry
out attention mechanism using the semantic mask. Variational
Bayesian approach to a latent variable model is presented. Sec-
ond, the disentanglement over attention heads is implemented to
reduce the redundancy in learning representation using trans-
former. The information-theoretic learning is performed by
maximizing the independence among nh heads in the queries
q of word sequences x. A generic solution to semantic and
disentangled mask attention is proposed.

A. Variational Sequence-to-Sequence Model

This study develops a latent variable model to carry out a
Bayesian transformer for sequence-to-sequence classification
where the conditional likelihood of target sequence y given
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Fig. 4. Illustration of variational sequence-to-sequence model.zn is the output
of the nth transformer block (TB). The left and right transformers show the
scenario when the first one and the first two TBs (shown by orange) are used
to estimate the latent feature z of input x, and the other TBs (shown by blue)
are used to map a source sequence x to a target sequence y by given the latent
variables z1 and z2, respectively.

by source sequence x is maximized. A hierarchical Bayesian
model is configured by merging a GMM of clusters or topics
c to characterize the prior density of latent variable z. Latent
semantic clustering in an unsupervised model in Section II-C
is now extended to a supervised classification model which is
feasible to machine translation and speech recognition. The S2S
classification lossLS2S is yielded as a negative ELBO consisting
of cross entropy (CE) classification loss LCE and KL loss Lz

KL
as given by [31]

−
∑
n,h

{
E(zn,h,cn,h)∼q(zn,h,cn,h|x)

[
log p(y|zn,h, cn,h,x)]

+DKL(q(z
n,h, cn,h|x)‖p(zn,h, cn,h))} � LCE + Lz

KL.
(7)

Using transformer, zn,h denotes the latent features from the
outputs of feed-forward network of transformer block or layer
1 ≤ n ≤ N after calculating the multi-head self or cross atten-
tion using source sequence x where h denotes the head index.
Also, cn,h denotes the one-hot cluster vectors of block n and
head h reflecting the latent semantic topics from word tokens in
x. Fig. 4 displays how this variational S2S model is performed
according to the loss LS2S by aggregating the negative ELBO
from different transformer block or layer n of latent variable zn

and semantic topic cn.
A sophisticated attention is then proposed to implement

Bayesian transformer by following (7). For example, the com-
putational complexity for self attention is proportional to the
square of sequence length nx or ny where the memory and
computation requirements are extensive. In [32], the clustered
attention applied the local sensitive hashing to calculate the at-
tention via maximum inner product search so as to approximate
the softmax attention. In [33], a linear transformer handled this
issue by changing the order of matrix multiplication in attention
mechanism. More attractively, mask attention is a line of re-
searches which aim to reduce the redundancy or computational
complexity of attention. A number of solutions were exploited to
implement various types of sparse attention for transformer [34],
[35], [36]. This paper proposes the semantic mask attention

where the semantic relation among the embeddings of word
tokens is characterized in a semantic mask which is used to
adjust the corresponding attention weights.

B. Latent Semantic Mask Attention

A hierarchical latent variable model is constructed with two
levels of variables zn,h and cn,h. The prior density p(zn,h) is
modeled via a GMM by referring to (5) with parameters θz .
Generally, the inferred Gaussian component c naturally captures
the distribution of latent semantic topics from the embedding
sequence z or equivalently the word sequencex. Latent semantic
clustering is developed to carry out mask attention to enhance
the attention-based representation using transformer. According
to the stochastic gradient variational Bayes estimator [30], a
Gaussian sampling process is run to draw latent sample zn,h

from the variational distribution q(zn,h|x) by applying a repa-
rameterization trick

zn,h = Transformern,h(x) + σ2ε, where ε ∼ N (0, 1). (8)

Transformern,h denotes the output of layer n and head h,
and σ2 is a sampling parameter. Then, the corresponding cluster
variable chz = c of an embedding zhi of head h of a word token
xi is determined by the clustering probability

p(chz = c|zhi ) =
πz
cN (zhi |μz

c , diag{(σz
c)

2})∑
c′ π

z
c′N (zhi |μz

c′ , diag{(σz
c′)

2}) . (9)

For ease of expression, the layer index n is ignored here-
after. In addition to the multi-head attention parameters in
transformer layers θa = {Wh

q ,b
h
q ,W

h
k ,b

h
k ,W

h
v ,b

h
v}, we incor-

porate the GMM parameters θz = {πz
c ,μ

z
c , (σ

z
c)

2} which are
jointly trained with θa by minimizing Ls2s in (7). This study
estimatesΘ = {θa, θz} for S2S classification based on the latent
semantic mask attention (SMA).

Given the estimated prior of semantic topic c using GMM,
the semantic correlation between two latent features zhi and zhj
corresponding to the word tokens xi and xj is computed by con-
structing the semantic mask M = {Mh

ij} based on aggregation
of the clustering probabilities p(chz = c|zhi ) and p(chz = c|zhj )
of the tokens under the same cluster c via

Mh
ij =

∑
c p(c

h
z = c|zhi )p(chz = c|zhj )∑

j

∑
c′ p(c

h
z = c′|zhi )p(chz = c′|zhj )

. (10)

Notably, this calculation reveals a probabilistic relation be-
tween xi and xj measured through different semantic clusters
c. This semantic mask is real-valued by 0 ≤Mh

ij ≤ 1. This is
different from the causal mask with the value of Mh

ij being 0
or 1 for self attention in decoder as mentioned in Section II-A.
Typically, the mask calculated in (10) is helpful to enrich the
semantic information of attention weight as Āh

ij by using Mh
ij

as the soft mask of original attention weight Ah
ij . Here, original

attention Ah
ij and masked attention Āh

ij have been shown in (1)
and (2), respectively. In the implementation, the estimation of
SMA model can be further improved by an interpolation scheme
to find the smoothed attention for each word pair (i, j) as

Âh
ij = (1− γ)Ah

ij + γĀh
ij (11)
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Fig. 5. Three steps for semantic and disentangled mask attention (SDMA).
In the step of semantic clustering, the input token xi at time i in head h is
clustered by semantic clusters chz . The clustering probability is used to construct
the semantic mask M in mask attention indicated by dotted line. In the step of
head disentanglement,xi is transformed to queryqh

i by parameters {Wh
q ,bh

q },

and is clustered by a set of additional clusters cq for the disentanglement of qh
i

in different head. In the step of mask attention, the semantic mask M is applied
on the attention weight Ah calculated byqh and kh to construct a new attention
weight Āh. The calculation of key kh is omitted in the figure. nh, nq and nk

denotes the number of heads, queries and keys, respectively. SDMA is reduced
to SMA without head disentanglement.

where an annealing mixing rate at each learning iteration t
is selected as γ = 1−max(1− ν, e(5×10

−4)t) with a hyperpa-
rameter of upper bound ν. New weights Â = {Âh

ij} are used
to implement a semantic-aware transformer with the attended
context vector zi = Â�vi in multi-head attention.

C. Latent Disentangled Mask Attention

Although the semantic maskM = {Mh
ij} in (10) is calculated

to reduce the redundancy in attention weightsA = {Ah
ij} driven

by latent semantic topics c, the compactness of mask attention
can be further strengthened by enhancing the disentanglement
of multi-head representation. To optimize the mask attention for
model capacity, this paper presents the semantic and disentan-
gled mask attention (SDMA) where the disentangled represen-
tation based on D in (4) is learned. Fig. 5 depicts the overview of
a new variant of attention mechanism based on SDMA, which is
implemented by three steps including semantic clustering, head
disentanglement and mask attention. In particular, the semantic
mask attention is implemented by using the disentangled query
vectors {qh}nh

h=1 in multi-head attention method. Following the
disentanglement over two latent variables {zi, zj} in (4), the dis-
entanglement loss LD � D(·) over multiple latent queries from
nh attention heads in SDMA is then extended and constructed
by

D(x;qh=1, . . . ,qh=nh) =

nh∑
h=1

nh∑
h′ 	=h

I(qh,qh′)− I(x,qh)

(12)
whereqh = {qh

i } denotesnq ornx queries of input word tokens
x = {xi}nq

i=1 in head h. Latent disentanglement is accordingly

fulfilled by minimizing LD which comparably promotes the
semantic disentanglement for the queries {qh

i ,q
h′
j } belong-

ing to different heads h′ 	= h. The semantic and disentangled
mask attention is therefore developed via the semantic mask
attention driven by latent semantic topics c of word tokens
via GMM where the attention weights are calculated by using
the disentangled queries which are learned by minimizing the
disentanglement loss

LD = LDqq
− LDxq

(13)

or equivalently minimizing the self MI loss LDqq
and maximiz-

ing the cross MI lossLDxq
. The disentangled queriesqh = {qh

i }
are used to enhance the compactness of the attention weights
calculated across different heads.

However, the exact calculation of MI terms I(qh,qh′) and
I(qh,x) in (12) does not exist. Finding the estimator of these
two terms is required for latent disentangled learning. In the
implementation, the first MI term is minimized or equivalently
the upper bound of this MI is minimized. This boundLDqq

aims
to pursue the disentanglement of queries across different heads
h and h′, i.e., h′ 	= h, is given by [37]

I(qh,qh′) ≤ E

[
1

nq

nq∑
i=1

(
log p(qh

i |qh′
i )

− 1

nq − 1

nq∑
j 	=i

log p(qh
i |qh′

j )

⎞⎠⎤⎦ . (14)

Simultaneously, the second MI term is maximized, or equiva-
lently the lower bound of this MI is maximized. The boundLDxq

is designed to be maximized to assure the highest expressiveness
of query sequence qh or observation sequence x as yielded
by [37]

I(x,qh) ≥ E

[
1

nq

nq∑
i=1

(
log

exp(f(qh
i ,xi))

1
nq

∑nq

j=1 exp(f(q
h
i ,xj))

)]
(15)

where nq is the number of samples in qh or qh′ .
To implement (14), a variational leave-one-out upper bound

of MI between qh and qh′ is calculated by using the conditional
probabilities p(qh

i |qh′
i ) and p(qh

i |qh′
j ) within the same token xi

and across two tokens xi and xj , respectively, as

p(qh
i |qh′

i ) =
∑
c

p(qh
i |cq = c)p(cq = c|qh′

i ). (16)

Here, the clustering probability of the query cluster p(cq =
c|qh

i ) is computed similar to that of transformer block output
p(chz = c|zhi ) as shown in (9). The likelihood function of the
query given a cluster is calculated by

p(qh
i |cq = c) =

p(cq = c|qh
i )p(q

h
i )∑

i′ p(cq = c|qh
i′)p(q

h
i′)

(17)

where a new GMM prior for query qh
i of a token xi given by

query clusters cq = c is introduced in a form of

p(qh
i ) =

∑
c

πq
cN (μq

c , diag{(σq
c)

2}) (18)
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with parameters θq = {πq
c ,μ

q
c , (σ

q
c)

2}. In implementation of
(15), an ELBO is measured by using a critic function f(qh

i ,xj)
which reflects the semantic correlation between qh

i and xj by
aggregating the correlation across query clusters or topics c by
using the clustering probabilities

f(qh
i ,xj) �

∑
c

p(cq = c|qh
i )p(cq = c|qh

j ). (19)

The probabilistic correlation between qh
i and xj under the

same cluster or query topic cq = c is measured. This study
considers two levels of semantic clustering. In addition to
the first level of clustering over latent features zhi , the sec-
ond level of clustering over queries qh

i is constructed to
carry out the disentangled mask attention. Starting from the
prior probability and clustering probability, the first bound
is computed via p(qh

i )→ p(cq = c|qh
i )→ p(qh

i |cq = c)→
p(qh

i |qh′
i )→ LDqq

while the second bound is computed via
p(qh

i )→ p(cq = c|qh
i )→ f(qh

i ,xj)→ LDxq
. The parameters

of the proposed SDMA Θ = {θa, θz, θq} are arranged and esti-
mated through a hierarchical Bayesian learning procedure.

D. Learning Objectives With Regularization

This study presents a S2S classifier based on transformer
where the semantic and disentangled mask attention is im-
plemented. A hierarchical latent variable model is constructed
in presence of four latent variables consisting of transformer
features and feature clusters {zn,h, cn,hz }, head queries and
query clusters {qn,h, cnq }. Latent semantic clusters cn,hz and
cnq are formed due to the word tokens in sequence x = {xi}
or y = {yi} in the feature level and query level, respectively.
This hierarchical model is learned via variational inference
by minimizing the negative ELBO or the S2S classification
loss LS2S as shown in (7) where an additional set of latent
variables {qn,h, cnq } is incorporated and an additional KL term
DKL(q(q

n,h, cnq |x)‖p(qn,h, cnq )) is merged. SMA is upgraded
to SDMA where the queries qh = {qh

i } are disentangled across
different attention headsh under the same layern. Using SDMA,
a KL term is imposed to regularize the variational distribution
q(qh

i |x) to get close to a shared GMM prior p(qh
i ). Thus, KL

terms {Lz
KL,Lq

KL} for latent variables {z,q} and their clusters
{cz, cq} are formed. KL loss for semantic mask is given by

Lz
KL =

1

Nnhnq

∑
n,h,i

{
DKL(q(z

n,h
i |x)‖p(zn,hi |cn,hz ))

+DKL(q(c
n,h
z |x)‖p(cn,hz ))

}
(20)

while that for disentangled head Lq
KL is similarly obtained.

Bayesian learning is fulfilled to build a semantic mask at-
tention while the information-theoretic learning is performed
to enhance the attention weight Aij by enforcing the disentan-
glement over groups of queries qh across various heads h. In
implementation of the disentangled transformer, the estimates
of MI bounds in LD (12) are obtained by

LDqq
≈ − 1

nqn2
h

∑
i

∑
h

∑
h′ 	=h

log(1− p(qh
i |qh′

i )) (21)

Algorithm 1: Inference Procedure for SDMA-T.

LDxq
=

1

nqnh

∑
i

∑
h

log
exp(f(qh

i ,xi))∑
j exp(f(q

h
i ,xj))

. (22)

Notably, the estimate of LDqq
in (21) is approximated for a

rapid calculation by only minimizing the first term of (14) and
applying the property I(qh,qh′) ≥ 0 where mutual information
cannot be negative.

In this study, the diversity of semantic clustering is fur-
ther enhanced and regularized towards increasing the proba-
bilistic correlation within each variable zn,hi via maximizing∑

c p(c
n,h
z = c|zn,hi )p(cn,hz = c|zn,hi ) and simultaneously de-

creasing the correlation between variables zn,hi and zn,hj via

minimizing
∑

c p(c
n,h
z = c|zn,hi )p(cn,hz = c|zn,hj ), accordingly

different samples zn,hi and zn,hj likely go to different clusters c.
An objective to enhance the cluster diversity (DV) is calculated
by summing up all entries (i, j)of the squared values of a masked
matrix [38]

LDV =
1

Nnhn2
q

∑
n,h

nq∑
i=1

nq∑
j=1

[
M̂ � (CC� − Inq

)
]2
i,j

(23)

where Inq
is an identity matrix, M̂ = αInq

+ β(1− Inq
) is a

mask with hyperparameters {α, β},C = [Cic],Cz
ic � p(cn,hz =

c|zn,hi ) for GMM of zn,hi , and Cq
ic � p(cnq = c|qh

i ) for GMM
of qh

i . 1 is a matrix of 1 in all entries. � is the element-wise
product. The mask M̂ is used to control the ratio between the
diagonal terms for negative within-correlation of zn,hi via α and
the non-diagonal terms for positive between-correlation of zn,hi

and zn,hj via β. Diagonal term in CC� − Inq
is always negative

since

0 < [CC�]i,i =
∑
c

p(cn,hz = c|zn,hi )p(cn,hz = c|zn,hi ) < 1.
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The measures of cluster diversity in two levels {Lz
DV,Lq

DV} are
enhanced. The total loss L for the transformer based on SDMA
is formed by

LCE+λk(Lz
KL+Lq

KL)+λqLDqq
−λxLDxq

+λd(Lz
DV+Lq

DV)
(24)

where the regularization parameters {λk, λq, λx, λd} are
adopted in various objective terms. The parameters Θ
of transformation matrices of query, key and value θa =
{Wh

q ,b
h
q ,W

h
k ,b

h
k ,W

h
v ,b

h
v} in encoder and decoder for

self attention and cross attention, and GMMs {θz, θq} =
{πz

c ,μ
z
c , (σ

z
c)

2, πq
c ,μ

q
c , (σ

q
c)

2} for semantic clustering and dis-
entanglement are estimated by finding the gradients ofL over in-
dividual parameters in Θ = {θa, θz, θq}. Algorithm 1 shows the
inference procedure for SDMA transformer (SDMA-T) where
the losses Lz

KL, Lq
KL, LDqq

, LDxq
, Lz

DV, Lq
DV are accumulated

in a process from input embeddings x to output features z. The
classification lossLCE is calculated from the transformer outputs
given by the targets y.

IV. EXPERIMENTS

This paper conducted the experiments on machine translation
tasks by using IWSLT’14 De-En, WMT’14 En-De and WMT’17
Zh-En as well as Chinese speech recognition task by using
Aishell-1 [39]. The models were preprocessed and trained by
using Fairseq [40] and ESPnet [41] toolkits based on a PC with
a GPU via GeForce RTX 3090 Ti 24 GB, a CPU via Intel Core
i9-10900K, and a memory with 128 G RAM.

A. Experimental Settings

1) Dataset Descriptions: German-to-English (De-En),
English-to-German (En-De) and Chinese-to-English (Zh-En)
translation tasks were evaluated. IWSLT 2014 De-En task
contained 160K, 7K and 7K of German and English sentence
pairs as training, validation and test data, respectively. WMT
2014 En-De task contained 4M, 6K and 7K of English and
German sentence pairs as training, validation and test data,
respectively. For the WMT 2017 Zh-En task, the results were
reported by only using 227K Chinese and English sentence
pairs in ‘news-commentary-v12’ set where training, validation
and test data contained 208.1K, 2.1K and 2.0K sentence
pairs. respectively. The byte-pair-encoding (BPE) dictionary
of the models in WMT’14 En-De were shared for English
and German in encoder and decoder. For the other two tasks,
encoder and decoder had individual BPE dictionaries for
different languages. Jieba https://github.com/fxsjy/jieba was
used as the tokenization tool for Chinese sentences. In addition,
Aishell-1 [39], [42] contained Chinese speech over 400 speakers
with various accents in 11 domains including finance, sports,
news, etc. which were used to evaluate the results on S2S
learning for speech recognition. The training, validation and
test sets consisted of speech utterances with lengths of 150, 20,
10 hours, respectively.

2) Evaluation Metrics: The proposed method was evaluated
for machine translation tasks IWSLT’14 De-En and WMT’17
Zh-En where BLEU score was calculated by using the script

provided by Fairseq [40]. The BLEU score of the models
using WMT’14 En-De task was evaluated after applying the
compound splitting similar to the setting in [43]. In addition
to BLEU score, there were two metrics introduced to measure
the redundancy of attention weights Â = {Ân,h

i,j } based on the
Jensen-Shannon (JS) distance [6], [12]

LR � 1

N

N∑
n=1

(
log2 nh − 1

nq

∑
i

JS(Ân,h=1
i,: , . . . , Ân,h=nh

i,: )

)

HR � 1

N2n2
h

N∑
n1,n2

nh∑
h1,h2

1

nq

∑
i

(
1− JS(Ân1,h1

i,: , Ân2,h2

i,: )
)

which are the layer redundancy (LR) and head redundancy (HR),
respectively, where Ân,h

i,: denotes the ith row of attention matrix

Ân,h. Basically, LR measures the similarity of attention weights
among nh attention heads under the same layer n while HR
measures the similarity of attention weights between individual
pairs of attention headsh1 andh2 at layersn1 andn2 in the whole
model, respectively. The lower the values of redundancies LR
and HR, the larger the difference of attention weights between
individual layers and individual heads, respectively. Moreover,
the character error rate (CER) was measured to evaluate the
performance of Chinese speech recognition. To analyze the com-
putational complexity, the number of floating-point operations
(FLOPs) was evaluated under different models and settings.

3) Model Configurations: This study viewed vanilla trans-
former (denoted as V-T) with standard attention as the baseline
model for comparison with the proposed transformer using
SDMA (denoted as SDMA-T). For ablation study, SDMA-T
without head disentanglement, denoted by SMA-T, was im-
plemented. State-of-the-art model based on DeLighT [44] was
included for comparison. The settings in different transform-
ers were consistent for fair comparison. This paper adopted
a trick of magnifying the gradient for updating the cluster
centroids μz

c and μq
c of GMMs via a learning rate η and a

scalar hyperparameter cg in μc ← μc − η(cg
∂L
∂µc

). This trick
was helpful to speed up the convergence of training GMMs.
Table I shows the experimental settings for four tasks including
dimensions of embedding (Embed) and feed-forward network
(FFN) layers, number of layers or TBs N in encoder and
decoder, number of heads nh, number of clusters nc in GMM
parameters θz and θq, regularization hyperparameters λk, λq,
λx, λd, cg , BPE dictionary size, number of mini-batch itera-
tions and number of model parameters. Warmup iterations were
changed from 4K to 8K. The other hyperparameters α=1.25,
β=0.75, σ2=0.01 and ν = 0.9 were fixed. The scaling factor
s of the scaled-dot production attention in (1) as shown in
Algorithm 1 was reduced from 10 to 1. Adam optimizer was
used with maximum learning rate 5×10−4, dropout rate 0.3
and weight decay parameter 10−4. Before evaluation, the weight
parameters were averaged over those of the last 5 epochs. During
evaluation, the beam search was applied to predict output se-
quence with beam size 5. In the implementation, the variational
distributions q(zhi |x) and q(qh

i |x) of an input tokenxi were sim-
ply modeled by a single Gaussian with a constant variance σ̃2 =
0.1 and zhi and qh

i as means, i.e., q(zhi |x) = N (zhi , diag{σ̃2})

https://github.com/fxsjy/jieba
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TABLE I
MODEL CONFIGURATIONS OF SDMA TRANSFORMER IN DIFFERENT TASKS

Fig. 6. (a) Clustering probability (p(chz = c|zhi ) in (9)) and (b) semantic mask
(Mh

ij in (10)) of SDMA transformer, and (c) self attention weight (Ah
ij in (1))

of transformer in the first head of the sixth encoder layer where the BPE tokens
in two axes of (b) and (c) are from the tokens of a German sentence in (a).
IWSLT’14 De-En test set is evaluated.

and q(qh
i |x) = N (qh

i , diag{σ̃2}), respectively. The semantic
mask in the transformer block of the masked SDMA in decoder
was disregarded in test phase. To evaluate the proposed model
under different model sizes, SDMA transformer was built with
three configuration types, which were base, small and tiny where
the dimensions of embedding and FFN layers were changed.

B. Experimental Analyses

1) Analysis on Semantic Clustering: Fig. 6 depicts the clus-
tering probability p(chz = c|zhi ) (9) of cluster c given token i and
the corresponding semantic mask Mh

ij (10) of another token j
in SDMA transformer. A number of German BPE tokens from
IWSLT’14 De-En dataset are evaluated with eight GMM clusters
for parameters θz . The measures of p(chz = c|zhi ) and Mh

ij cor-
responding to the first head in the sixth encoder layer are shown.
For comparison, the self attention weights Ah

ij (1) in vanilla
transformer are shown. Typically, each token is likely related
to different clusters without collapsing into the same cluster or
semantic topic. This is affected due to the regularization term
Lz

DV. It is also found that the semantic mask is composed of

Fig. 7. (a) Clustering probability and (b) semantic mask of SDMA transformer,
and (c) self attention weight of transformer in the first head of the second encoder
layer. (d) Semantic mask of SDMA transformer and (e) self attention weight of
transformer in the first head of the sixth encoder layer. Tokens of a test English
sentence in WMT’14 En-De are evaluated.

several rectangles which express local features during semantic
clustering. Nevertheless, each token is still closely related with
an individual cluster where the last encoder layer is examined.
The semantic masks are estimated to express the semantic re-
lation between tokens with long distance. The weights Ah

ij in
transformer are highly self attended on tokens themselves with-
out clustering effect. In addition, Fig. 7 displays the clustering
probability and semantic mask of SDMA transformer, and self
attention weight of transformer where WMT’14 En-De task is
evaluated. The first head in the second encoder layer is examined
with a number of English tokens. The results corresponding
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Fig. 8. Query samples qh
i of four heads h (shown by colors) from 104

sentences (13,312 tokens) in the last decoder layer of (a) transformer and (b)
SDMA transformer. IWSLT’14 De-En test set is used.

to the first head in the sixth encoder layer are also shown.
Comparing with the semantic masks in the second and sixth
layers, the second layer (Fig. 7(b)) captures local dependencies
in BPE tokens while the sixth layer (Fig. 7(d)) characterizes
long-distance semantic dependencies. Self attention weights
(Fig. 7(c)(e)) simply capture the token-level connection without
clear semantic topic features. In this task, we find that the topic
words, namely the tokens with high clustering probabilities,
corresponding to a specific cluster contain ‘es’, ‘ing’, ‘ed’, ‘ies’,
etc which are semantically similar. Also, the semantically-close
topic tokens ‘year’, ‘time’, ‘Thursday’, and ‘times’ are found
to be associated with the same cluster. The semantic clustering
and masking via GMM in a joint estimation could capture the
semantic meaning.

2) Analysis on Latent Representations: Figs. 8 and 9 depict
two-dimensional query samples qh

i of tokens xi calculated by
using the attention weights {Wh

q ,b
h
q } in the last decoder layer

of vanilla and SDMA transformers where IWSLT’14 De-En and
WMT’14 En-De translation tasks are investigated, respectively.
Different heads are shown by different colors. Dimension re-
duction Rdk → R2 using the t-distributed stochastic neighbor
embedding [45] is applied. Typically, using V-T and SDMA-T,
the query samples from different heads h properly represent
high-level semantic meanings in different regions of latent
space. Since the query vectors in SDMA-T are disentangled
via minimizingLDqq

and maximizingLDxq
, the resulting latent

queries within the same head are more diverse and the gaps of

Fig. 9. Query samples of eight heads using (a) transformer and (b) SDMA
transformer. 88 test sentences from WMT’14 En-De are used.

Fig. 10. Head redundancy in encoder of (a) transformer and (b) SDMA
transformer is evaluated by using IWSLT’14 De-En test set.

queries between different heads are more separate than those of
V-T where latent disentanglement is disregarded. The semantic
diversity of query vectors using SDMA-T is truly increased in
both tasks.

3) Analysis on Attention Redundancy: Next, the effect of
query samples on attention weights is evaluated. Figs. 10 and 11
depict the head redundancy (HR) between individual heads in
IWSLT’14 De-En and WMT’14 De-En translation tasks where
the self attention weights over all 24 heads (6 layers× 4 heads)
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Fig. 11. Head redundancy in encoder of (a) transformer and (b) SDMA
transformer is evaluated by using WMT’14 En-De test set.

and all 48 heads (6 layers×8 heads) in the encoder are shown, re-
spectively. The results of using vanilla and SDMA transformers
are compared. It is found that the similarity of attention weights
between individual heads in SDMA-T is generally smaller than
that in V-T. This phenomenon likely happens since the semantic
diversities of SDMA query samples in the same heads as well as
different heads are both increased as shown in Figs. 8 and 9. As a
result, the attention weights of SDMA-T are more diverse than
those of V-T. HR using SDMA-T is consistently smaller than
HR using V-T for both tasks with either 4 or 8 attention heads
per layer. The proposed SDMA encourages different attention
heads to capture various semantic relations between individual
tokens. This is an evidence to illustrate the efficiency in learning
representation by reducing the redundancy of attention weights
in different layer-wise heads using SDMA.

C. Experimental Results

1) Comparison on Machine Translation: The experimen-
tal results on three machine translation tasks are investigated.
The results of LR, HR and BLEU on vanilla transformer (V-
T) [1], [44], DeLighT [44] and the proposed SDMA transformer
(SDMA-T) with different number of parameters (or configu-
rations base, small and tiny) and number of BPE tokens in
encoder/decoder. SDMA-T without disentanglement (SMA-T)
is included for comparison. Number of clusters nc in GMMs
of θz and θq is both fixed to be four. Tables II, III and IV
report the results on using IWSLT’14 De-En, WMT’14 En-De
and WMT’17 Zh-En tasks, respectively. For all three transla-
tion tasks, SDMA-T consistently achieves higher BLEU score,
lower layer redundancy (LR) and lower head redundancy (HR)
than V-T. For the results on IWSLT’14 De-En and WMT’14
En-De tasks, SDMA-T is consistently better than SMA-T in
terms of LR, HR and BLEU. The performance is improved
due to head disentanglement. Among the results in IWSLT’14
De-En task, the highest BLEU is obtained by SDMA-T (base)
which absolutely improved 0.8 BLEU score over V-T. It is
interesting that the BLEU 34.96 using SDMA-T (tiny) with

TABLE II
COMPARISON OVER DIFFERENT METHODS IN IWSLT’14 DE-EN TASK

TABLE III
COMPARISON OVER DIFFERENT METHODS IN WMT’14 EN-DE TASK

TABLE IV
COMPARISON OVER DIFFERENT METHODS IN WMT’17 ZH-EN TASK

model size as small as 11.9M is even higher than 33.80 using
the competitive work DeLighT [44] with model size 14.0M.
This BLEU 34.96 is higher than those of V-T where 3.32
times of parameters are required. In addition, the pre-trained
BERT [46] is incorporated to implement the BERT-fused V-T
(BV-T) and SDMA-T (BSDMA-T) with base model where the
positional encoding and input/output embeddings are replaced
by BERT contextual embeddings [47]. It is found that BLEU
is increased by using BV-T and BSDMA-T relative to V-T and
SDMA-T, respectively. In this comparison, BSDMA-T (base)
considerably reduces LR and HR and consistently obtains the
highest BLEU both in IWSLT’14 De-En and WMT’14 En-De
tasks as reported in Tables II and III, respectively. In IWSLT’14
De-En task, the lowest LR 0.59 and HR 0.46 are obtained by
using BSDMA-T (base). The absolute reduction of LR and HR
relative to those of V-T (base) is 0.15 and 0.19, respectively. In
WMT’14 En-De task, BSDMA-T (base) obtains 1.98 absolute
improvement of BLEU relative to V-T (base). Again, SDMA-T
(small) with model size 46.4M obtains even higher BLEU than
DeLighT [44] with model size 54.0M. Under the same task, the
improvement of SDMA-T (tiny) over DeLighT [44] (tiny) with
smaller model size and higher BLEU is similarly obtained. In
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TABLE V
ABLATION STUDY ON CLUSTER NUMBER nc UNDER IWSLT’14 DE-EN TASK

case of very different languages in WMT’17 Zh-En task, it is
found that the absolute increase of BLEU, decrease of LR and
decrease of HR using SDMA-T (base) relative to V-T (base)
are 0.87, 0.09 and 0.05, respectively. These results illustrate
that SDMA transformer obtains higher BLEU than the other
models for translation with grammatically similar and different
languages. LR and HR are consistently reduced. Efficiency in
learning representation is revealed.

2) Analyses on Model Size And Computation Cost: In the
experiments, only two additional GMMs θz and θq are in-
troduced for latent semantic and disentangled attention. The
additional model parameters using SDMA-T compared to V-T
are very limited in model size. In IWSLT’14 De-En task (Ta-
ble II), SDMA-T (tiny) obtains 0.46 BLEU score higher than
V-T (base) by using only 30% of model parameters. Com-
pared to DeLighT [44], SDMA-T (tiny) obtains 1.16 BLEU
score higher by using 5% smaller number of parameters. In
WMT14’En-De task (Table III), SDMA-T (small) attains 0.41
BLEU score higher than V-T (base) by reducing 30% of model
parameters. On the other hand, the performance of SDMA-T
(base) is even higher than V-T (big) [1] by 0.55 BLEU score,
but using only one third of model parameters. Introducing the
objectives of variational clustering and disentangled attention
heads into transformer does strengthen the latent representation
of sequence data. Similar or even higher BLEU is obtained by
using much smaller model. On the other hand, the effect on
FLOPs by using different methods is comparable with that on
parameter size [48]. Relative to V-T, the computational overhead
using SDMA-T is very limited, but the improvement on BLEU
is clear.

3) Ablation Study on Cluster Number: In what follow, the
ablation study is conducted by varying the number of clusters
nc in IWSLT’14 De-En task as shown in Table V. The BLEU
score of SDMA-T is absolutely improved by 0.09 relative to
V-T when increasing the cluster number to eight. However,
BLEU is decreased after increasing the cluster number to twelve.
Choosing a proper cluster number is an issue of model selection
for semantic representation. Basically, the size of GMMs does
not change too much the overall model size. LR and HR are
comparable for SDMA-T with various cluster numbers.

4) Ablation Studies on Dictionary Size and BERT Fusion:
The ablation study is further implemented by varying BPE
dictionary size in WMT’14 En-De task as reported in Table VI
where the sizes of 37K and 44K are compared by fixing nc = 4.
Typically, the models with larger dictionary tend to have higher
BLEU scores. SDMA-T with BPE dictionary size of 37K even
obtains 0.19 BLEU score higher than V-T with BPE dictionary
size of 44K while using 5% smaller number of parameters.
This is due to the merit of semantic information of SDMA-T

TABLE VI
ABLATION STUDY ON DICTIONARY SIZE UNDER WMT’14 EN-DE TASK

TABLE VII
COMPARISON OVER DIFFERENT METHODS IN AISHELL-1 TASK FOR CHINESE

SPEECH RECOGNITION

through semantic clustering so that similar performance as V-T
can be achieved by using SDMA-T even when the number of
parameters is reduced.

5) Comparison on Speech Recognition: In evaluation of Chi-
nese speech recognition on Aishell-1 with recipe [41], [42], a
speech frame was expressed by 80-dimensional filter-bank fea-
tures and then transformed into a 256-dimensional embedding
vector where a convolution module consisting of two layers of
time-domain 2D-convolution with 256 channels and kernel size
3 was used. In implementation of end-to-end speech recognition,
the joint decoding for the connectionist temporal classification
(CTC) (output of encoder with an additional linear layer) and the
attention output (output of decoder) was performed. Table VII
shows the results of LR, HR and CERs over development and test
data by using listen-attend-spell (LAS) [49], [50], V-T [1], [50],
SMA-T and SDMA-T. In this comparison, SDMA-T achieved
the lowest LR, HR and CERs over development and test data.
Without head disentanglement, the performance of semantic
mask attention is degraded but still significantly better than V-T.
The error rate reduction using SDMA-T relative to V-T reaches
14% with only 0.6% overhead of model parameters. Source
codes are given at https://github.com/NYCU-MLLab.

V. CONCLUSION

This paper has presented a variant of transformer with mask
attention in encoder and decoder where the semantic represen-
tation and head disentanglement were imposed. A Bayesian
semantic mask attention was implemented by introducing the
Gaussian semantic clusters of features and queries with cluster-
ing probabilities where the classification and disentanglement
were jointly optimized with regularization. A semantic and
disentangled transformer was constructed. The experiments on
machine translation and speech recognition illustrated the merit
of this work in reducing the redundancies in attention weights
and improving the accuracies in sequence prediction where a
number of different variants of transformer were compared. The

https://github.com/NYCU-MLLab
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semantic diversities of queries within the same head and between
different heads were both enhanced. The proposed semantic
and disentangled attention was exploited for encoder-decoder
in transformer and will be extended to implement Bayesian
attention in other machines.
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