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FFCI: A Camera and IMU Sensors Based
Multi-modal Neural Network for Activity

Recognition in Smart Factory
Yujue Wang, Xin Niu, Xianwei Lv, and Chen Yu Member, IEEE

Abstract—Worker activity recognition is an important aspect
of the construction of smart factory. The development of deep
neural networks and the widespread distribution of sensors in
the smart factory have brought opportunities for the recognition
of workers’ activities. The existing methods based on camera
and IMU sensors respectively have problems of visual occlusion
and difficulty in recognition of similar activities, which result in
the reduction of recognition accuracy. Therefore, we propose a
feature-level fusion based on camera and IMU sensor (FFCI)
for activity recognition in smart factory. The FFCI employs an
optimized multi-modal fusion strategy to integrate the visual
information and the action information of workers’ activities.
In order to verify the effectiveness of FFCI, we define a simple
yet fine-grained assembly task and collect six common operations.
Furthermore, we add visual occlusion and similar activity data
to get closer to the smart factory. Finally, we evaluate the FFCI
on the collected dataset and achieve a recognition accuracy of
98.17%, demonstrating its effectiveness in accurately classifying
workers’ activities.

Index Terms—Camera sensor, IMU sensor, multi-modal fusion,
feature-level fusion

I. INTRODUCTION

W ITH the advent of the fourth industrial revolution [1],
the smart factory has been transformed into automa-

tion. In the smart factory, the worker is indispensable. The
main reason is that for small-batch personalized production
orders, the cost of automated production lines is much higher
than that of manual assembly [2]. In the manual assembly
line, workers’ negligence and unconscious operation may
result in errors that seriously affect worker safety and factory
productivity. Thanks to the development of deep learning [3],
[4] and the widespread distribution of sensors in various fields,
such as the smart factory [5], [6], smart healthcare [7], [8],
smart manufacturing [9], [10], and smart transportation [11].
Especially in smart factory, it is possible to recognize and issue
warnings for workers’ activities that may cause errors in the
smart factory.

At present, research on worker activity recognition typically
uses only a single sensor, such as camera sensor [12] or IMU
sensor [13]. While knowledge distillation effectively uses large
models to guide the deployment of smaller models on sensor
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devices with limited computing capacity [14]–[16], enhancing
recognition accuracy, relying on a single sensor often presents
limitations [17]–[21]. For example, in the case of operational
occlusion during production, the recognition method based on
the camera sensor often fails to identify or misidentify. In
addition, due to the different operating habits of workers, some
similar operating actions hinder the accurate recognition of
workers’ activities by IMU sensors. Fortunately, the camera
sensor and the IMU sensor are complementary [22], so we
use multi-modal fusion technology to fuse the data of camera
sensor and IMU sensor to improve the recognition accuracy
of workers’ activities.

The existing methods of multi-modal fusion can be classi-
fied into three categories [23]: signal-level fusion, decision-
level fusion, and feature-level fusion. Signal-level fusion has
high accuracy [24], however, it can only integrate the same
type of data. Decision-level fusion inputs the extracted features
into pre-trained models, then fuses the results of these mod-
els and outputs the final result [25]. Nevertheless, decision-
level fusion cannot correlate information between multiple
modalities. Feature-level fusion can extract the features of
different modalities, and then use the correlation between
different modalities to identify the target [26]. Considering
the correlation between the visual data and motion data
respectively collected by camera sensor and IMU sensor, we
decide to use the feature-level fusion to recognize the workers’
activities. When fusing the visual data and action data, the
following issues need to be solved. First of all, the visual
data also contains spatiotemporal features. In addition, there
is a temporal correlation among the action data. Therefore,
how to extract the features of visual data and motion data is
the primary challenge need to be solved. Furthermore, how to
establish the correlation between the visual data and the action
data cannot be ignored.

To conquer the above challenges, we propose a feature-
level fusion based on camera and IMU sensor (FFCI) for
activity recognition in smart factory. FFCI mainly consists of
three parts: visual feature extraction, action feature extraction,
and multi-modal feature fusion. In order to extract the visual
features of workers’ activities, we use the C3D convolutional
neural network (CNN) [27], which adds the temporal dimen-
sion analysis on the basis of the 2D convolutional neural
network, so that the obtained visual features are more accurate.
In addition, since the workers’ activities change over time,
the long short-term memory (LSTM) network can learn and
store the characteristics of long-term dependencies [28], so we
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(a) Signal-level fusion unit
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(b) Decision-level fusion unit
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(c) Feature-level fusion unit

Fig. 1. Comparison of three multi-modal fusion strategies based on sensor systems.

use LSTM to extract the action features of workers’ activities.
After obtaining the above features, we optimize the feature-
level multi-modal fusion strategy to fuse the visual feature and
the action feature. Specially, we first perform channel stacking
in the fusion layer to concatenate different features, and then
use the convolutional kernel to learn the correlation between
different activities. The main contributions of this paper are
as follows:

• We propose a camera and IMU sensors based multi-
modal neural network for activity recognition in smart
factory.

• We design a feature-level fusion neural network, which
fuses and optimizes the visual features and action features
of workers’ activities.

• We collect the data of six activities of numerous volun-
teers. On the collected data, we evaluate FFCI with an
accuracy of 98.17%.

The remain of the paper is as follows. Section II reviews the
previous research on multi-modal fusion. In the section III, we
first describe the multi-modal data set we have built in detail.
Then, we respectively use C3D and LSTM to extract the visual
features and action features of workers’ activities. Finally, we
introduce the four feature fusion strategies. In the Section IV,
we introduce the FFCI in detail. Section IV evaluates FFCI, in-
cluding experimental evaluation, evaluation of different fusion
strategies, and evaluation of different recognition methods.
In the section V, we deploy FFCI to the monitoring system
in smart factory and then test its accuracy and real-time of
identifying workers’ activities. The last section summarizes
this work.

II. RELATED WORK

Multi-modal fusion is a type of machine learning technique
[29], and it has achieved widespread application in various
fields, such as audio-visual recognition [30], multi-modal
sentiment analysis [31], pose estimation [32] and so on. All in
all, most of the work of multi-modal fusion is based on the data
collected by sensors. And the multi-modal fusion strategies can
be divided into three [23]: signal-level fusion, decision-level
fusion, and feature-level fusion.

Signal-level fusion. As shown in Fig. 1(a), it is also called
data-level fusion, which is a low-information level fusion.
The raw data is processed into the specified signal and then
directly fused. Memmesheimer et al. [33] used reduction and
enhancement techniques on signals, which improves accuracy
on three datasets and achieves 96.11% accuracy on Simitate

motion. Furthermore, Prabhakar [34] proposed a neural net-
work architecture integrating phase and amplitude spectrum
features, addressing phase ambiguity and the limited use of
phase information in traditional speech emotion recognition,
thereby improving accuracy. The signal-level fusion requires
the data be the same type, and it is difficult to handle complex
multi-modal data. To accurately identify users’ exercise move-
ments and provide guidance, Sun et al. [35] installed sensors
on the equipment, classified and evaluated the movements
using a neural network, achieving 89% recognition accuracy
for distinguishing standard and non-standard movements, and
generated personalized exercise recommendations.

Decision-level fusion. The Fig. 1(b) illustrates the process
of decision-level fusion. the decision-level fusion is the highest
level fusion. It uses averaging, weighting, voting schemes,
and other mechanisms to fuse multiple classification results
generated by single modality. Some decision-level fusion work
[36]–[40] inputted the information of each modality into
the CNN, they then fused the classification results for each
modality to obtain the final decision. Among them, Zhang et
al. [36] used the image and speed information of the vehicle,
integrated the classification results of them, which could filter
the low-information of the image and realized fast tracking
of vehicles. Tao et al. [37] extracted information from the
wearable sensor in both spatial and frequency domains, and
video and image information from the camera sensor. Ren et
al. [38] extracted three modalities of RGB, optical flow, and
gray images from camera sensors. Al-Amin et al. [39] col-
lected IMU, electromyography signals, and skeleton data from
wearable sensors and camera sensors. Both Ren et al. [38] and
Al-Amin et al. [39] fuse the resulting multi-modal inference
results and then output the final result. Furthermore, Sharma et
al. [40] proposed a decision-level fusion strategy that integrates
three distinct emotional modalities (voice, facial expressions,
and physiological signals), and developed a human-computer
interaction system, achieving an 82.4% recognition accuracy
for human emotions.

Feature-level fusion. The process of feature-level fusion is
shown in Fig. 1(c). The main task of feature-level fusion is to
connect feature vectors from multiple modalities and obtain a
combined feature vector. Gao et al. [30] fused the high-level
abstract features of single frame or audio. The fused features
can assist the video-clip network to extract effective frames in
the video and reduce the computing cost. Liu et al. [41] used
the two stream CNNs to establish the connection between the
spatial and temporal information, which efficiently exploits the
attended spatial and temporal features. Experimental results
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Fig. 2. A camera and IMU sensors based multi-modal neural network for activity recognition in smart factory.

proves that the fusion of spatial and temporal information
can help to improve recognition accuracy. Zhao et al. [42]
first obtained the shallow and deep modality of the image,
and used deep belief networks to obtain the deep features of
each modality. Then, they explored the correlation between
the high-level features of the two modalities and achieved the
improvement of recognition accuracy. Moreover, Ning et al.
[43] integrated EEG and speech signals at the feature level
and trained a classifier, the highest recognition accuracy of
87.44% was achieved on the healthy controls.

In the Fig. 1, we compare three multi-modal fusion strate-
gies. The signal-level fusion first fuses the data and then clas-
sifies features from fusion data to complete the classification
tasks, which requires the data to be consistent in format and di-
mension. And it is not easy to fuse different types of data. The
decision-level fusion fuses the results of each classifier, which
requires training multiple classifiers and is unable to obtain
the association information between multiple modalities. The
feature-level fusion can fuse features of different modalities,
which can obtain the correlation between multiple modalities
and only a single classifier needs to be trained [29].

III. PROPOSED SYSTEM

In this paper, we propose the FFCI for activity recognition
in smart factory. As shown in Fig. 2, we first input video
streams and IMU signals into the FFCI. Then, we respectively
use the C3D and the LSTM to process the video streams and
IMU signals. Next, we use the multi-modal fusion strategy to
fuse visual features and action features. The architecture of the
multi-modal fusion model proposed in this paper is illustrated
in Fig. 3. Finally, the FFCI outputs the recognition results of
workers’ activities. The meanings of the main symbols in the
this paper are listed in Table I.
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Fig. 3. Multi-modal fusion model. The visual features are obtained by C3D
and temporal motion features are obtained by LSTM.

A. Data collection and preprocessing

We divide the assembly operation into fine-grained steps
to make it easier for managers to get detailed information
about each step. Specifically, we define a set of continuous
assembly operations of workers as a dataset. In this paper, we
mainly collect the following six operations of workers: Use a
Screwdriver (US), Use a Wrench (UW), Use a Measuring tool
(UM), Assembly Accessories (AA), Press Switch(PS), and Use
a Power-screwdriver(UP). Table II details the six activities.

We deploy cameras above the assembly line and collect
video of works’ activities. Then, we use the C3D network
to extract the visual feature of workers’ activities [27]. The
IMU data is collected using a wearable device worn on the
upper body of the volunteer. The device is Noitom Perception
Neuron 2.0 [44], using upper body (all fingers) mode is shown
in Fig. 4, sensors required both sides-upper arm, lower arm
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TABLE I
IMPORTANT SYMBOLS INVOLVED

Symbols Meaning

Dm Worker activity data set collected by sensor equipment.
Dn Worker activity data set after pre-processing.
Vn,T The nth video sample under T window length.
Sn,T The nth IMU sample under T window length.
axn,t Acceleration contained in Sn,T .
wx

n,t Angular velocity contained in Sn,T .
y The ground truth of worker activity.
ŷ Labels predicted by the model.
Ci The ith 3D convolutional layer feature.
fi,j The ith 3D convolutional feature after flatten.
Ct The cell state of LSTM at t time step.
ht The hidden state of LSTM at t time step.
ft The feature of the tth time step.
U,W, b The parameters in different gates of LSTM.
Py The parameter that LSTM trained.
favg Use average fused features.
fmax Use maximum fused features.
fcat Use concatenation fused features.
fconv Use convolution fused features.

TABLE II
TASKS FOR COLLECTING WORKER ACTIVITY

No. Tasks Activities

1 Tighten/loosen 3 screws using a screwdriver US
2 Tighten/loosen 3 screws using a wrench UW
3 Measure accessories using the measurement tool UM
4 Assembly 3 accessories AA
5 Press switch using a single finger PS
6 Tighten 5 screws using a power-screwdriver UP

!"#$%&'()*

Fig. 4. Upper body mode of the Noitom Perception Neuron 2.0. There are
25 neurons in total.

and spine. We select 20 neurons (Table III) to collect data on
arm and finger movements. Each neuron node obtains three-
axis acceleration and three-axis angular velocity. Furthermore,
the device returns data at a sampling rate of 60Hz. The video
frame rate is 30fps. While collecting IMU data from the
workers, the camera above the worker records his activities.
Fig. 5 shows an example of capturing 6 activities.

The format of collected dataset is D =
{D1, . . . , Dm, . . . , DM} , where Dm is defined as follows:

Dm = {[vm, sm] , ym} ,m ∈ [1,M ]. (1)

where vm is the video clip sample corresponding to the IMU
data, sm is the sample set of the IMU data, and ym is the
ground truth of the activity class.

TABLE III
20 NODES SELECTED FROM WEARABLE SENSORS

Node no. Node description Node no. Node description

1 LeftArm 11 RightArm
2 LeftForeArm 12 RightForeArm
3 LeftHand 13 RightHand
4 LeftHandThumb1 14 RightHandThumb1
5 LeftHandThumb2 15 RightHandThumb2
6 LeftHandIndex1 16 RightHandIndex1
7 LeftHandIndex2 17 RightHandIndex2
8 LeftHandMiddle2 18 RightHandMiddle2
9 LeftHandRing2 19 RightHandRing2
10 LeftHandPinky2 20 RightHandPinky2

!"# $ "%&#'(&)*#& !"# $ '&#+%, !"# $ -#$".&#-#+/ /001

2""#-314 $%%#""0&)#" 5&#"" "')/%, !"# $ 60'#&7"%&#'(&)*#&

Fig. 5. The sample of 6 activities captured by the camera.

In general, the duration of assembly operations varies from
seconds to minutes. Therefore, we use the sliding window
mechanism to obtain fixed-length data. The sliding window
mechanism is shown in Fig. 6, the window length is set to
T = 2s, and there is 50% overlap between two adjacent
windows. The IMU data has three acceleration channels and
three angular velocity channels from 20 nodes. In addition, the
timestamp of IMU data is synchronized with the video data.

In order to facilitate data processing, we normalize and
standardize the collected data. Then, we will get N samples
{X1, . . . , XN}, and each sample contains two different inputs:

Xn = {Vn,T , Sn,T } , n ∈ [1, N ]. (2)

where T is the length of the window, Vn,T and Sn,T respec-
tively are visual data and IMU data within T time period. More
specifically, Sn,T = {Sn,1, . . . , Sn,t, . . . , Sn,T }, as follows:

Sn,t = [axn,t, a
y
n,t, a

z
n,t︸ ︷︷ ︸

an,t: acceleration

, wx
n,t, w

y
n,t, w

z
n,t︸ ︷︷ ︸

wn,t: angular velocity

],

t ∈ [1, T ].

(3)

where t is timestamp, ax, ay , and az are the three-axis
acceleration data. Moreover, wx, wy , and wz are the three-axis
angular velocity data. At the 60Hz sampling rate, the IMU data
has 120 time steps. In the corresponding window, 16 frames
are captured. There are a total of 9 volunteers complete each
operation at different times, so each volunteer has a different
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Fig. 6. Sliding window mechanism. Align the visual and IMU data, the
window length is set to T = 2s, the time step is 1s, the window overlap is
50%.

Fig. 7. The frequency of each action in the dataset.
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Fig. 8. The idea of extracting deep feature vector from C3D as visual
features.

number of data samples. After sampling, we divide the test set
with a ratio of 0.2, and the frequency of each action is listed
in Fig. 7.

B. Visual feature extraction

The idea of extracting visual features from the video is
shown in Fig. 8. For the input Vn,T ∈ RL×C×H×W, where
L = 16 is the length of the video frame sequence, C is the
image channel (3 channels), H and W respectively are the
width and height of the video frame (112 × 112). Here, we
use the pre-trained C3D [27] model to extract visual features.

The output feature fi,j of the j-th feature map after being
convolved by the i-th 3D convolutional layer is expressed by
the following formula:

f
(x,y,z)i,j
i,j =σ(

Pi,j−1∑
Pi,j=0

Qi,j−1∑
qi,j=0

Ri,j−1∑
ri,j=0

w
(p,q,r)
i,j f

(x+p)(y+q)(z+r)
(i−1)

+ bi,j).
(4)

where σ(·) denotes the ReLu activation function, and bi,j is the
bias term. Pi,j , Qi,j , and Ri,j are the three dimensions of the
3D kernel, where Ri,j is the size of the temporal dimension.
(x, y, z)i,j is the bit value of any pixel of the j-th feature
map on the i-th convolutional layer, w(p,q,r)

i,j is the (p, q, r)-th
value of the 3D kernel, which connected to the j-th feature
map in the previous layer. After five layers of 3D convolutional
layers, we extract feature vectors from the full connected layer
as visual features:

fi,j = σ(

K(i−1)−1∑
k=0

w(i,j)kf(i−1,j)k + bi,j). (5)

where k is the index of the connection between the current
feature map and the set of neurons in the (i − 1)-th layer.
w(i,j)k is the weight value that connects the j-th neuron in
the i-th layer to the k-th neuron in the previous layer. And the
bi,j is the bias term for this feature map.

C. Temporal action feature extraction

LSTM is a special recurrent neural network (RNN) that can
learn and store long-term dependencies [28]. LSTM is suitable
for processing data that changes with time, space, and other
factors, such as IMU data. Furthermore, it is more in line with
the process of human cognition in terms of representation.
Compared with the traditional RNN, the LSTM introduces
a gating mechanism. The definition of the LSTM gate is as
follows:

gatef,i,o (ht−1, xt) = σ (Uht−1 +Wxt + b) . (6)

where f, i, o represent forget gate, input gate, output gate,
U,W, b correspond to different parameters for different gates.

The LSTM brings in cell state Ct and hidden state ht,
corresponding to long-term and short-term information, where
Ct changes slowly and ht changes quickly. The transition of
the two states is as follows:

Ct = σ (Uiht−1 +Wixt + bi)� tanh (Uxht−1 +Wxxt + bx)
+σ (Ufht−1 +Wfxt + bf )� Ct−1.

(7)

ht = tanh (Ct)� σ (Uoht−1 +Woxt + bo) . (8)

where tanh(·) is the hyperbolic tangent function, � is the
element-wise product. The current cell state Ct is that the
previous cell state being filtered by the forget gate and then
superimposed with the information of the input gate. In the
hidden state ht, the output gate selectively retains and removes
some data in the previous steps.

In the forward propagation, the feature of IMU data ft that
extracted by the LTSM can be defined as:

ft = σ (Pyht + by) . (9)

where σ(·) denotes the activation function, Py is the parameter
that the network needs to learn, and by is the bias of this feature
map. We use two LSTMs to deal with acceleration and angular
velocity, respectively. The LSTM module is illustrated in the
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bottom left of Fig. 3, due to the application requirements of
classification, we define LSTM as many to one, that is, output
the ht of the last time step.

D. Feature fusion strategies

The multi-modal fusion fuses the features of multiple
modalities to provide supplementary information among d-
ifferent modalities. Mathematically, each model can extract
useful features from the data of workers’ activities, and we can
use different strategies to fuse features from different models:

Average Fusion. In this method, we use the average value
to fuse the features of multiple modalities and calculate the
sum of the two feature maps in the feature dimension d:

fdavg =
1

2

(
fd1 + fd2

)
. (10)

where 1 ≤ d ≤ D and f1, f2, favg ∈ RD.
Maximum Fusion. This method compares the two feature

maps bit by bit, and selects the larger one as the feature value
of the corresponding position:

fdmax = max
{
fd1 , f

d
2

}
. (11)

where fdmax is the maximum value at position d in the two
feature maps, and fmax ∈ RD.

Concatenation Fusion. fcat = concat([f1, f2]) stack two
feature maps in the same dimension:

fdcat = fd1 , f
D+d
cat = fd2 , 1 ≤ d ≤ D. (12)

where fcat ∈ R2D. Concatenation fusion is the use of row or
column lengthening for two features with the same dimension-
s. In this paper, we select the row lengthening method.

Convolution Fusion. This method first concatenates the two
features using Eq.(12) and then convolves the concatenated
features with the convolution kernel:

fconv = fcat ∗ filter + b. (13)

where filter ∈ R1×D, b ∈ RD, and the dimension of the
output is D. Here, the convolution kernel is used to reduce
the dimension by half. It can model the weighted combination
of f1 and f2 at the corresponding position.

IV. FEATURE-LEVEL FUSION BASED ON CAMERA AND
IMU SENSORS

In this section, we have a detailed introduction to FFCI.
The pseudo-code of the FFCI is shown in the Algorithm 1.
Before introducing algorithm 1, we need to make the following
preparations.

After preprocessing, the video and IMU data collected from
workers’ activities are described in section III. There are N
data samples {X1, . . . , XN}, each sample contains two inputs,
as shown in the Eq.(2).
Vn,T is video-level input, the dimension of the data is 16×

3×112×112, that is, the image pixels from the 3 channels are
112×112, and 16 frames of images are input as a video stream.
For video stream data, we use the C3D network to extract
vision features. C3D module includes five 3D convolutional
layers, and the kernel size of each layer is 3 × 3 × 3 (the

Algorithm 1 Feature-level fusion based on camera and IMU
sensors (FFCI).
Input: Training set D = {[Vn,T , Sn,T ] , y}, learning rate η,

number of classes M .
Output: The predicted label vector ŷ and parameters θ.
1: for each epoch = 1 to N do
2: for all [Vn,T , Sn,T ], y ∈ D do
3: // Obtain the Visual Features
4: // Calculate the i-th 3D convolutional layer
5: Ci(Vn,T )← Eq.(4) for i = 1 to 5;
6: fi,j ← flatten the outputs of ith 3D convolution ;
7: fvisual ← FC(fi,j) via Eq.(5) for i = 1, 2;
8: // Obtain the Motion Features
9: // Calculate the Ct, ht and ft of LSTM

10: Ct ← Eq.(7) for t = 1 to T ;
11: ht ← Eq.(8) for t = 1 to T ;
12: ft ← Eq.(9) for t = 1 to T ;
13: fmotion ← fT ;
14: // Obtain the Fusion Features
15: fFusion ← Fusion(fvisual, fmotion);
16: ŷ ← Softmax(fFusion);
17: Loss← 1

N

∑
i−
∑M

c=1 y
i
c log

(
ŷic
)
;

18: Update θ with the η to minimize Loss;
19: end for
20: end for
21: return The ŷ and θ after n epochs.

first two 3× 3 are in the spatial dimension and the last 3× 3
is in the temporal dimension). The first 3D max-pooling layer
connected to the convolutional layer uses a 2×2×1 filter, and
the remaining four layers use a 2×2×2 filter. Finally, features
are extracted in the fully connected layer. The dimensions of
the features extracted by the two networks are 512.
Sn,T is IMU data, including acceleration and angular veloc-

ity (see Eq.(3)). There are three channels for each type of data,
a total of 20 nodes, and 120 columns of data are generated
each time. Here, we respectively set the window length and
the acquisition frequency to T = 2s and 60 Hz, each window
has 120 rows of data. Therefore, the input dimension of IMU
data is 120 × 120. In this paper, we select LSTM to process
time-series data, and each LSTM contains 256 hidden neurons,
and a temporal motion feature is the output of the LSTM at
the last time step.

The purpose of training a deep learning model is to optimize
the weight of the network, minimize the value of the loss
function, that is, minimize the gap between the predicted value
and actual value. We select the cross-entropy loss function to
calculate loss during training. In order to obtain the smallest
loss value, we choose to use the stochastic gradient descent
(SGD) algorithm. Compared with non-random algorithms,
SGD performs better in the initial stage, making the model
converge faster. Aiming at overfitting, the dropout method is
a better way to solve it. And the dropout rate is set to 0.5.
We use L2 regularization to control the model complexity and
improve the overfitting. Dropout and L2 regularization can
reduce the dependence of the model on local features and
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Fig. 9. Performance comparison of the four fusion strategies.

improve the generalization ability of the model.
Then, we will introduce Algorithm 1 in detail. We perfor-

m N rounds of training on the collected data. Firstly, we
extracts the deep features of the video data through C3D.
For i convolution layer in 3D, we use Eq.(4) to complete
the corresponding computing task. Then, obtain the motion
features by LSTM. Specially, input IMU data into the LSTM
and calculate the C(t), h(t), and f(t) to obtain the features of
the last time step respectively according to Eq.(7), Eq.(8), and
Eq.(9). Next, we fuse the two extracted features and classify
the fusion features. Finally, we update the network parameters.

V. PERFORMANCE ANALYSIS

A. Experimental evaluation

In this section, we examine the accuracy and precision
of FFCI, and we use the following metrics to evaluate the
classification results:

• Accuracy: It is the ratio of the number of correct
predictions to the total number of input samples.

Accuracy =

∑N
n 1 (ŷn = yn)

N
. (14)

• Precision: It is the ratio of positive cases that were
correctly identified.

Precision =
TP

TP + FP
. (15)

where 1(·) is an indicator function, ŷn is the predicted value,
yn is the ground truth. For yi, true positive (TP) is defined as
the class yi is correctly classified as yi, false positive (FP) is
defined as the non-yi class is incorrectly classified as yi.

B. Evaluation of different fusion strategies

Here, we compare the performance of four fusion strategies:
1) Average fusion, 2) Maximum fusion, 3) Concatenation
fusion, 4) Convolution fusion.

Firstly, we test the convergence speed of the above four
strategies. The convergence of different fusion strategies at
50 epoch is shown in Fig. 9, which shows that convolution
fusion has the fastest convergence speed, concatenation fusion
is slightly slower. And the convergence speeds of average
fusion and maximum fusion are relatively slow.

TABLE IV
COMPARISON OF DIFFERENT FUSION STRATEGIES

Fusion Strategies Accuracy(%) Precision(%)

Average fusion 96.88 97.30
Maximum fusion 96.69 97.47
Concatenation fusion 97.27 97.79
Convolution fusion 98.17 98.39

In terms of accuracy and precision, the performance of the
four fusion strategies is shown in Table IV. The accuracy
and precision of concatenation fusion are higher than that
of average fusion and maximum fusion, but lower than that
of convolution fusion. In the experiment, convolution fusion
has the fastest convergence speed, the highest accuracy and
precision. Therefore, we choose convolution fusion strategy
to fuse the extracted visual features and action features in the
following experiments.

C. Evaluation of different recognition methods

In order to verify the effectiveness of FFCI, we compare
FFCI to several popular recognition methods.

For the video recognition, we compare FFCI to the LRCN
(CNN&LSTM) [45] and the C3D model. The LRCN combines
a 2D convolutional neural network with LSTM, extracts image
features through convolution and time relationship between
images through LSTM. It is a typical video recognition
model. The FFCI uses 3D convolution, which increases the
convolution of time dimension, and extracts the spatial and
temporal features of the video.

For the IMU data, we choose the LSTM to predict and
classify. In addition, we compare FFCI to random forests
(RF) and supported vector machine (SVMs). The traditional
machine learning method uses feature engineering to extract
18 features(mean, variance, kurtosis, etc.) from the time and
frequency domains. Therefore, we use the SVM and RF classi-
fiers on the scikit-learn platform to complete the classification
task. Since LSTM does not require feature engineering, we can
directly input the raw data into the LSTM. Furthermore, we
normalize and standardize the raw data to make the network
convergence better.

The accuracy and precision of various methods are listed
in Table V. For the recognition method using video data, the
accuracy and precision of the C3D are higher than those of
LRCN. Therefore, we use C3D to extract visual features of
workers’ activities. For the recognition method based on the
IMU data, the accuracy and precision of LSTM are higher than
those of RF and SVM, which indicates that LSTM learning
the temporal motion features of workers’ activities can help
improve the recognition accuracy and precision. The accuracy
and precision of FFCI are higher than those of other methods
that use video data or IMU data separately. The experimental
results show that the multi-modal method are effective in
workers’ activities recognition.

VI. SMART FACTORY APPLICATION

The working process of FFCI in smart factory is shown
in Fig.10. The sensors in the monitoring system collect data
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TABLE V
PERFORMANCE COMPARISON OF EXISTING POPULAR METHODS

Methods Accuracy(%) Precision(%)

RF 87.34 88.21
SVM 85.89 86.93
LSTM [28] 90.81 91.48
LRCN [45] 86.67 87.17
C3D [27] 91.34 92.93
FFCI 98.17 98.39
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Fig. 10. Worker monitoring system using FFCI in smart factory.

Visual occlusion.

(a)

Similar actions.

(b)

Subtle and irregular movements.

(c)

Fig. 11. Three situations that affect activity recognition in smart factory.

and transmit it to the server. The FFCI will automatically
analyze and make decisions. Then, the decisions will be sent
to the workers and managers. In this paper, we evaluate the
performance of the FFCI in terms of accuracy and real-time.

A. Accuracy analysis

In the data collection stage, we consider some of the
following possible scenarios for smart factory.

• Visual occlusion. As shown in Fig. 11(a), we collect a
lot of visual occlusion data in the UM class, followed by
PS and UP classes, and less in the rest.

• Similar actions. Using different tools to complete the
task of tightening/loosening screws may have similar
actions. As shown in Fig. 11(b), from left to right are
the actions of using the screwdriver, using large wrench,
and using small wrench. The similarity of these actions
is high, it is difficult for the IMU sensor to distinguish.

• Subtle and irregular movements. The camera sensor
has low accuracy in recognizing subtle movements, and
it is difficult for the IMU sensor to recognize irregular
movements. The operation in Fig. 11(c) is the use of
measurement tool. The action is relatively subtle and
varies with the operating habits of workers, it is difficult
to identify these movements using camera or IMU sensor
alone.

These situations are unfavorable to single sensor, and our
proposed FFCI solves the problem of single sensor in smart
factory. In Fig. 12, the accuracy of video recognition in the
PS and UP class is low due to the UM data having the
most occlusion among the UM, PS, and UP classes, the C3D
network may classify the occluded data as the UM class,
resulting in a significant decrease in the accuracy of PS and
UP classes. In contrast, the UM class is less affected. Besides,
the tasks of US, UW, and AA are all tightening/loosening
screws. Although the tools are different, the action has a
certain similarity, so the classification error of these three
classes is relatively large. For example, based on the IMU
method in Fig. 12(b), part of the US class is classified into
the AA class, and part of the AA class is classified into the
UW class, resulting in lower accuracy of these two classes.
In addition, because the actions of UM class are subtle and
irregular, the recognition accuracy is also low. As shown in
Fig. 12(c), the method of fusing two sensors maintains a higher
recognition accuracy in each class, while the method using
single sensor has lower accuracy in some classes.

Table VI intuitively shows the classification accuracy of
each activity class under different methods. The performance
of the first five methods under different classes is not stable.
For example, the first three methods based on IMU data have
the low classification accuracy of the US, UW, UM, and AA
classes. Besides, the classification accuracy of the PS and UP
classes is also low in the video-based recognition method.
However, multi-modal fusion can complement the two modal
information and stably maintain high recognition accuracy for
each class. In the smart factory, fusing the advantages of the
two sensors can improve the recognition accuracy of workers’
activities.

B. Real-time analysis

When worker activity recognition is applied to the moni-
toring system of smart factory, in addition to the accuracy,
response speed is also not negligible. As mentioned above,
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Fig. 12. Classification accuracy of different mechanisms.

TABLE VI
CLASSIFICATION ACCURACY(%) OF EACH CLASS

Methods
Accuracy (%)

US UW UM AA PS UP

RF 85.63 91.10 82.11 84.58 83.18 97.76
SVM 83.90 84.67 75.88 80.62 95.69 94.84
LSTM [28] 78.87 95.74 80.42 84.39 94.62 93.38
LRCN [45] 91.61 89.46 86.63 90.19 75.45 77.81
C3D [27] 96.98 95.78 92.17 94.12 76.23 80.57
FFCI 98.24 98.60 97.39 99.63 96.31 98.47

Fig. 13. The real-time comparison of 1 step between the two methods under
different batch sizes.

video recognition is easily affected by visual occlusion. The
solution of improving recognition accuracy is to add at least
one other angle of video. Due to the low network complexity
of the IMU sensor recognition method, although the model
responds quickly, the accuracy is low. Therefore, we mainly
compare the performance of real-time of the dual video
streams recognition model and the FFCI. As shown in Fig.
14, train the model on the GPU, we compare the training time
for 1 step of the two models under the different batch sizes.
It turns out that the time cost of the proposed multi-modal
fusion method increases slowly. Moreover, the larger the data
scale, the more apparent the time advantage.

In general, our proposed FFCI maintains a high level of
accuracy in each activity and has the advantage of real-time
in smart factory.

VII. CONCLUSION

The activities of workers affect the safety and efficiency
of factory production. With the development of smart factory,
worker activity monitoring has become more automated and
effective. However, the existing methods based on camera and
IMU sensors respectively have problems of visual occlusion
and similar operation recognition difficulties, which result in
reduced recognition accuracy. Therefore, we propose a camera
and IMU sensors based multi-modal neural network called
FFCI for activity recognition in smart factory. To verify the
effectiveness of FFCI, we establish a multi-modal dataset of
worker activities, including six frequent operations generated
by nine subjects. Simulation experiments and FFCI deployed
on the smart factory prove that FFCI can significantly improve
the accuracy of worker activities recognition.
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