
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 30, NO. 4, JULY/AUGUST 2024 1000606

Editorial Interview

The Future of Optical Modulation

The PGE Engages With an Interdisciplinary Panel of Industry and Academic Experts

Di Liang1 , Mengyue Xu2, Long Chen3, Haisheng Rong4, and Andreas Bechtolsheim5

1Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109 USA
2Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109 USA
3Cisco, San Jose, CA 95134 USA
4Intel Labs, Hillsboro, OR 97124 USA
5Arista Networks, Santa Clara, CA 95054 USA

1. Could you provide a brief overview of your research
experiences on advanced optical modulators?

Response: The authors possess a broad spectrum of expertise
with commonly strong interest and experience in advanced opti-
cal modulators and integrated photonics. Prof. Di Liang has been
doing research and product development on silicon photonics
(SiPh) and heterogeneous photonic integration for over 17 years
in UC-Santa Barbara, HP Labs, and Alibaba Cloud Computing,
and now with the University of Michigan. Dr. Mengyue Xu is
an established researcher specializing in LiNbO3 devices and
silicon photonics at the University of Michigan. Dr. Long Chen,
currently a Distinguished Engineer at Cisco, and previously
at Acacia, has led the development of SiPh coherent photonic
integrated circuits (PICs) for module products from 100 Gbps
(30 Gbaud) to 1200 Gbps (140 Gbaud). Dr. Haisheng Rong, a
Senior Principal Engineer and R&D Manager at Intel Labs, is
a renowned leader in silicon photonics with over 20 years of
experience in the field. Dr. Andreas Bechtolsheim is a globally
well-respected technical and industrial leader who co-founded
Sun Microsystems and Arista Networks.

2. Silicon photonic modulators have become matured through
decades of extensive research and development, what do you
think is the bottleneck of current technology?

Response: Indeed, SiPh modulator is arguably the mostly
studied pure silicon active photonic device which has achieved
the largest technical progress since Soref et al. studied the
electro-optic effect in silicon [1]. Due to centrosymmetric crystal
structure, silicon lacks strong nonlinear electro-optic effects
seen in many III-V compounds. Based on the plasma dispersion
effect, non-stop innovations in both academia and industry at
a global scale enabled three orders of magnitude improvement
in data rate for the past 25 years. Modulation speed has
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increased from 100 Mb/s level in non-return-to-zero (NRZ)
format, to now 224 Gb/s with 4-Level Pulse Amplitude
Modulation (PAM4), to over 300 Gb/s with 8-Level Pulse
Amplitude Modulation (PAM8) [2], [3], and 1 Tb/s in
coherent dual-polarization (DP)-64 Quadrature amplitude
modulation (QAM) [4]. Among three major modulator
configurations, i.e., p-i-n carrier injection, p-n carrier depletion,
and metal-oxide-semiconductor capacitor (MOSCAP) carrier
accumulation/inversion [5], the dominant one is depletion type
for its fast drift velocity and simple fabrication.

In the meantime, millions of volume produced SiPh mod-
ulators, dominated by MZI configuration, up to 200 Gb/s
(100 Gbaud) have been deployed for Intra-Data Center (IDC) ap-
plications with Intensity-modulation Direct-detection (IMDD)
format, and up to 1.2 Tb/s (coherent) for data center interconnect
(DCI) and long-haul communication with coherent 16QAM
format [6]. Microring-based modulators up to 256 Gb/s in both
NRZ and PAM4 format are being developed towards volume
deployment by Intel, Ayar Labs, Nubis Communications, and
others.

The bottleneck of silicon modulators is that its bandwidth will
be unable to keep up with continued baud rate scaling in optical
transceivers to 200+ Gbaud. Both the p-n depletion modulator
and the MOSCAP modulator rely on charging and discharging of
capacitors with electrical current flowing through doped silicon,
which cannot be too heavily doped to avoid excessive optical
loss and thus access resistance leads to strong attenuation of
the electrical current or RF driving signal. This, unfortunately,
is dictated by the fundamental material properties of silicon.
For MZI modulators, the increasing demand for higher speeds
presents significant challenges in balancing bandwidth, modu-
lation efficiency, footprint, insertion loss, and energy efficiency.
Typical silicon MZI modulators can have a bandwidth of around
40 GHz. The modulation response roll-off at higher frequencies
is relatively gentle since the RF loss scales with the square of
frequency. So, it is adequate for 224 Gb/s PAM4 (112 Gbaud)
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with modest amount of equalization on SiPh chip or from the
driver [7], [8], [9]. Higher modulator bandwidth can be achieved
with a shorter modulator length or other equalization techniques,
however, all at the expense of higher driver power consumption.

Resonator-based modulators, such as microring resonators,
generally do not suffer the bandwidth limitation dictated by
the RF loss. However, to support higher baud rate modula-
tion, the resonance linewidth must increase proportionally, and
the enhancement factor from the resonator becomes smaller,
requiring a stronger driving signal to achieve the same level
of intensity modulation. So, it faces a similar uphill battle for
higher baud rates as the MZI modulator. In addition to that,
another challenge is the operation robustness since modulation
bandwidth, insertion loss, extinction ratio, and TDECQ, espe-
cially in PAM4 formats, are all highly dependent on the precise
alignment between the resonance wavelength of the modulator
and the incoming laser wavelength. Therefore, a well-designed,
agile control algorithm that continuously monitors and locks
the alignment of the laser wavelength and modulator resonance
is crucial for practical commercial applications. An alternative
approach involves cascading multiple microrings, each oper-
ating at a moderate data rate (e.g., 10–64 Gb/s) and using
NRZ formats. By leveraging the intrinsic wavelength division
multiplexing (WDM) capabilities of microrings, it is possible
to achieve an aggregated bandwidth at the Tb/s level [6], [10],
[11]. However, this approach also necessitates precise resonance
control for each microring and between adjacent ones.

3. Do we need new materials and integration techniques other
than the traditional platforms such as bulk Si, InP and regular
LiNbO3? Could you highlight any groundbreaking innovations
or breakthroughs in this emerging field?

Response: Yes. Diversity in materials, fabrication processes,
and device/photonic integrated circuit (PIC) design is an inherent
characteristic of photonics and optoelectronics. This diversity
will continue to drive innovation and serve as a key product
differentiator, provided that a balance between technical perfor-
mance and solution cost can be achieved. Expanding applica-
tions beyond optical interconnects, such as in sensing, metrol-
ogy, quantum and other fields, will further support the adoption
of varied solutions. If the advantages of silicon photonics, such
as high integration density and precise CMOS manufacturing,
can be harnessed to incorporate new materials and integration
techniques, it could lead to a mutually beneficial strategy.

If we confined our definition of “regular LiNbO3 (LN)” as
the bulk LN, then the thin-film LiNbO3 (TFLN) is probably
the most promising high-speed modulator platform. TFLN in-
herits great physical properties from bulk LN, such as a wide
transparency window, a large electro-optic coefficient (r33 =
31 pm/V), and a linear Pockels effect. The rapid development
of TFLN photonics benefits from advances in low-loss etched
TFLN waveguides (dry etching, 0.2 dB/m [12]; 4 dB/m [13];
chemo-mechanical polish lithography, 2.7 dB/m [14]), which
have a much higher refractive-index contrast (Δn ∼ 0.7) com-
pared to proton-exchanged and titanium-diffused waveguides
in traditional LN (Δn ∼ 0.2). The well-confined fundamental
optical mode in TFLN waveguides allows electrodes to be placed
closer without introducing significant metal absorption loss.
As a result, TFLN modulators can achieve higher modulation

efficiency, enabling shorter modulation regions and larger band-
widths.

Recent advances in monolithic and heterogeneous TFLN
modulators have been rapid and groundbreaking. Due to its
simplicity in processing and maturity, various high-performance
intensity modulators [15], [16] and complex coherent optical
modulators [17], [18], up to 260 Gbaud [19] and 1.96 Tb/s
per lane [20], have already demonstrated on the monolithic
TFLN platform. Compared with silicon and III-V modulators,
the most competitive aspect of TFLN modulators is the design
freedom to simultaneously achieve low half-wave voltage, high
electro-optic bandwidth without penalty on optical loss, plus the
potential to operate over a wide range of wavelengths. COMS-
compatible driving voltage and 100 GHz 3-dB bandwidth mod-
ulator in C band [16], [20], O band [21] and near-visible [22]
had been successfully demonstrated.

Heterogeneous TFLN/silicon and TFLN/Si3N4 modulators
were demonstrated using die-to-wafer bonding technology with
both etched [23] and etchless LN [24], [25], or through trans-
fer printing technology, which do not require further process-
ing after printing [26]. The heterogeneous integration showed
competitive performance including a modulation efficiency of
2.2 V·cm, over 110 GHz bandwidth and a modulation rate of up
to 112 Gbit/s [21], [23].

What is particularly exciting from another perspective is
the much faster commercialization pace of thin-film lithium
niobate (TFLN) modulators compared to their silicon and III-V
counterparts. This acceleration is largely due to the simplicity
of the LN material, the overall fabrication process, and the
significantly lower investment and operational costs associated
with production infrastructure. Fujitsu has already commercial-
ized 128 Gbaud coherent TFLN modulators [6]. Additionally,
100 Gb/s and 200 Gb/s PAM4 modulator chips and modules
with linear drive scheme have been showcased at major industry
events like OFC and ECOC over the past two years, highlighting
their suitability for IMDD applications.

The III-V external modulated laser (EML), which integrates
a III-V electro-optic absorption modulator (EAM) with a mono-
lithically integrated laser, has been a major competitor to sili-
con photonics transmitters in the market. The large bandwidth,
compact form factor, and mature fabrication technology of
EAMs make them highly competitive and appealing. Back in
2012, a high-speed heterogeneously integrated EAM on sil-
icon demonstrated over 67 GHz bandwidth [27]. OpenLight
[6] is currently commercializing this technology, along with
other building blocks, at Tower Semiconductor, another CMOS
foundry capable of fabricating heterogeneous III-V-on-silicon
devices at large wafer levels.

Developments of new modulator materials have also been
reported. Polymer modulators operating 200 Gb/s or above
in PAM4 by Lightwave Logic [6] and SilOriX [28] were
demonstrated recently with decent material stability. Compact
200 Gb/s thin-film BTO-based modulators operating at sub-V
drive voltage was developed by Lumiphase [29] last year, which
positions itself a competitive position to TFLN counterparts.
Moreover, a whooping 176 GHz EO bandwidth on plasmonic
modulators supports over 400 Gb/s operation in PAM8 format
by Polariton Technologies [30], which is extremely exciting
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as well. The market is testing the maturity of these technolo-
gies presently. Devices based on MOSCAP structures, either
using high-mobility transparent conductive oxide [31], high-k
dielectrics [32], [33], or a vertical MOSCAP configuration [34]
also embodied impressive design and performance merits in
different aspects.

4. What’s the most critical requirement of these new materials
and integration technologies? Can you name one or two points?

Response: Performance, reliability, and cost are always
closely intertwined factors, requiring solution vendors to care-
fully balance these elements to find the optimal trade-offs for
different applications. Typically, these factors are influenced by
materials, device and chip design, fabrication, packaging, and
testing processes. Additionally, market demand and the feasi-
bility of volume manufacturing, including both chip fabrication
and packaging, play significant roles in determining overall
costs.

For monolithic TFLN modulators and PICs, 150 mm wafer
is the largest size for product presently. Limited wafer size,
large device footprint, relatively high material cost, and thin-
film uniformity contribute a large portion of the chip cost.
Although the chip fabrication is not overly complex, uniform
waveguide formation for ultra-low loss operation is not trivial,
which necessitates optimized photolithography, etching technol-
ogy, and post-fabrication processes. Additionally, long-term DC
drift remains a challenge for TFLN. To make these modulators
commercially viable and reliable, thermally or electrically phase
control is a must.

TFLN modulators heterogeneously integrated with silicon or
Si3N4 are still in the R&D stage. Similar to III-V-on-silicon
heterogeneous integration, TFLN integration occurs towards the
back-end-of-line (BEOL) process and requires specialized pro-
cessing tools along with stringent cross-contamination controls,
especially if large-wafer scale processing is involved. The TFLN
transfer step is critical for achieving high yield and optimal de-
vice performance. In the case of heterogeneous EAMs on silicon,
Intel’s high yield and laser lifetime records have already demon-
strated the feasibility of volume production for heterogeneous
III-V-on-silicon devices. However, the process becomes more
complex when two or more different III-V epitaxial structures
are integrated on the same substrate.

5. How could new modulator materials and configura-
tions impact various emerging applications, such as data
centers, AI, quantum information processing, or LIDAR
systems?

Response: With the unprecedented surge in generative AI
technology, AI compute interconnects have rapidly become a
major driving force in the development and deployment of
next-generation products, such as 800G and 1.6T pluggable
transceivers, with 3.2T systems currently under active R&D.
This sector is poised to become the largest market for high-speed
modulators in the next 3–5 years. Interestingly, as standards
specifically for AI and general high-performance compute inter-
connects lag deployment demands, there has been a shift towards
more innovative designs, with interoperability now considered
a secondary requirement.

Emerging applications like quantum information processing,
neuromorphic computing, frequency-modulated continuous-
wave (FMCW) LIDAR, and microwave photonics certainly will
benefit from high-speed modulation. But modulation speed is
not necessarily the main technical challenge or key technical
specification. For TFLN modulators, they can function as a
photonic processing engine or tensor core for optical com-
puting [35], [36], benefiting from TFLN’s fast and low-power
modulation, which is crucial for accelerating and conserving
power in machine learning, AI, and cloud services. Hybrid
integration of lasers with TFLN electro-optic tuning enables
fast chirp repetition frequency, large chirp bandwidth, and linear
tuning, making it an excellent option for frequency-modulated
continuous-wave FMCW LiDAR [37], [38]. Frequency-angular
resolving LiDAR has been realized through acousto-optic beam
steering, utilizing the strong piezoelectricity of LN [39]. Over
1 THz wide flat-top frequency combs have been demonstrated
based on the electro-optic effect and parametric amplification of
an EO resonator with periodically poled LN [40], indicating
great potential for metrology and spectroscopy applications.
Additionally, TFLN modulators can operate at cryogenic tem-
peratures, making them ideal for quantum-classical interfaces in
superconducting circuits [41].

Heterogeneous III-V-on-silicon modulators, along with this
general integration approach, are applicable to a wide range of
photonic applications mentioned above. For instance, Intel also
leverages their heterogeneous PIC platform for more other ap-
plications, including FMCW Lidar technology. Hewlett Packard
Labs further advanced MOSCAP modulators to demonstrate
non-volatile, sub-nanosecond optical memory effects for pho-
tonic neuromorphic computing [42]. Heterogeneous InP micror-
ing modulators on silicon, exhibiting a 10 mV modulation volt-
age and aJ/bit energy efficiency at 4 K, have also been fabricated
in the lab [43] for cryogenic PIC applications, such as quantum
computing. Additionally, the AlGaAs-on-insulator structure has
proven valuable in quantum technology and nonlinear photonics,
thanks to its highly competitive nonlinear properties in strongly
confined AlGaAs single-mode waveguides [44], [45].

6. What are some of the biggest challenges that researchers
and engineers are currently facing in this field? How do you see
these challenges being addressed, both from a technical and a
market perspective?

Response: Several major technical challenges for silicon
MZI and microring modulators were discussed above. One
of the biggest challenges—and opportunities—for ultra-high-
speed modulator-based optical interconnect solutions is the de-
velopment of a comprehensive co-design capability and plat-
form. This requires seamless collaboration among designers of
photonic and electrical chips, EDA vendors, foundries, pack-
aging, and testing service providers. As we push the material
and fabrication physical limits of both optical modulators and
electronic circuits, even tiny flaws at each stage can significantly
impact device bandwidth, signal integrity, power consumption,
and more.

Fortunately, there is growing academic research focused on
developing co-design methodologies and machine learning so-
lutions for smaller-scale problems. Additionally, multiple large
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government-funded R&D programs are addressing this chal-
lenge. Leading industrial players with in-house expertise are also
working on comprehensive co-design solutions. It is hoped that
future-generation EDA tools will feature more powerful capa-
bilities to simulate complex multiphysics systems, considering
RF, optical, thermal, nanofabrication processing, and packaging
all within a unified framework.

In addition, the progress of SiPh PICs, particularly in their
leading application of optical communication, is heavily depen-
dent on the advancement of silicon modulators. A significant
challenge, both technological and market-related, facing the
entire silicon photonics industry is worth highlighting. The
substantial financial and time investment required for product
development still hampers the fulfillment of silicon photonics’
promise of low cost. While the overall design and processing of
silicon PICs are not as complex as advanced CMOS electronics,
where a 45 nm-node process is more than sufficient, focus
and priorities are fundamentally different. It still takes years
of learning for a CMOS foundry to offer basic silicon photonic
fabrication services and enhance the product/process design kit
(PDK) competitiveness.

Furthermore, the wafer volume dictated by global market
demand for silicon photonics is still much smaller compared
to microelectronics. The freedom to customize processes in
high-volume CMOS foundries is limited, as maintaining process
repeatability and uniformity is necessary to consolidate volume.
However, this standardization often works against the intrinsic
diversity of photonics. Significant efforts are also required to
develop more robust and cost-effective packaging solutions, as
well as efficient automatic static and RF testing at the wafer
scale, especially for edge-coupled chips. Ultimately, every phase
of the silicon photonics ecosystem - from R&D to deployment -
plays a crucial role in the advancement of next-generation silicon
modulators.

To advance TFLN technologies for volume deployment, re-
ducing costs is essential by scaling the state-of-the-art 200 mm
TFLN wafers with good film thickness uniformity for volume
production. Achieving high yield is crucial with necessity of
a foundry-level fabrication with reproducible and high-yield
processes. Standardizing the process design kit (PDK) at the
foundry level is also required to make TFLN more multi-
functional and market-ready. Additionally, we need to reduce
TFLN MZI modulators to few mm or sub-mm in length to be
feasible and competitive for future co-packaged optics (CPO).
Modulators based on ring-assisted designs [16] and slow-light
structures [46], [47] have made LN more efficient, achieving
lengths in the hundreds of micrometers, although this sometimes
requires compromising on operating wavelength or bandwidth.
Therefore, future optimization to find the best balance among
these figures of merit is crucial.

7. How can industry and academia collaborate to overcome
these challenges?

Response: The unprecedented surge in AI and the cur-
rent global geopolitical situation have led to increased invest-
ment in semiconductor technology by governments, industries,
and private sectors across all major economic regions in the
world. This has resulted in more funding opportunities for

collaboration between academia and industry. While differing
interests in IP ownership and publications between these sectors
are a reality, the industry should be more open to sharing specific
challenges they currently face or anticipate in the future. Con-
versely, academia should be more proactive in understanding
and addressing these challenges.

To bridge the gap, more interdisciplinary courses and R&D
programs are needed in academia to spark interest in the
younger generation, enhance student training in state-of-the-
art microelectronics and photonics, and encourage more re-
search in electronics-photonics co-design, integration, and ad-
vanced packaging. Additionally, expanding internship and co-
development programs will facilitate innovation and workforce
development.

Many academic research groups already use EDA tools that
are widely adopted in the industry for device and PIC designs.
Silicon photonics and general CMOS foundries should con-
tinue to develop and upgrade their PDKs and lower the cost
barriers for academic customers, particularly for access to the
most advanced node processes, to encourage greater academic
participation in shuttle runs. Increased collaboration in ultra-
high-speed device testing is also critical due to the prohibitive
cost of high-speed equipment for most academic groups.

We firmly believe that now is the best time to work on pho-
tonic devices and semiconductor technology in both academia
and industry. By overcoming the technical and interest barriers
between these sectors and preparing young minds for the chal-
lenges ahead, we can ensure a continuous flow of innovations to
propel the technology forward.
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