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Abstract—Electro-optical modulators are critical elements in
the rapidly developing data communication, optical interconnects,
silicon-based photonic systems and terahertz technologies. The
limited optoelectronic properties and complicated material growth
in traditional semiconductors hinder the rapidly surging demand
for modulator performance, energy efficiency, cost, etc. The emer-
gence of two-dimensional materials and one-dimensional carbon
nanotubes in recent decades has brought new opportunities with
their tremendous selection degree of freedom for exceptional opto-
electronic properties. In this article, we present ultra-broadband
and electro-optical tunable absorption modulators by employing
double-walled carbon nanotube films in a capacitor geometry,
spanning the visible to terahertz spectra. The formation of super-
capacitors around the ionic gel electrolyte and carbon nanotube
film interfaces accounts for the large carrier transition and optical
conductivity change, which behaves a thickness dependent elec-
troabsorption dynamics. Our findings not only broaden the under-
standing of low-dimensional material applications in electro-optics
but also pave the way for future developments in high-performance
broadband modulators.

Index Terms—One-dimensional materials, double-walled
carbon nanotube, electro-optical modulator.
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I. INTRODUCTION

O PTICAL modulators, a critical component to manipulate
the physical parameters of light, are indispensable in pho-

tonic and optoelectronic systems. The most developed optical
modulators adopt electro-optical approach to convert electrical
signal to optical signal, which thus can be used in telecommuni-
cation, optical computing, optical signal processing [1], [2], [3],
etc. These technologies are based on traditional semiconductors
owning advanced optoelectronic behaviors. Representatives are
III-V group compounds (e.g., GaAs, InP), lithium niobate, and
silicon-based photonic platforms [4], [5], [6]. The increasing
demand for high-efficiency, fast speed, low energy consumption
and miniaturized modulators has directed huge research efforts
in silicon-based photonic platforms because of their merits for
wafer-scale integration and compatibility to the mature comple-
mentary metal-oxide semiconductor technology [7]. According
to the parameters being affected by the electrical potential,
one can modulate intensity (amplitude), phase or polarization
of the light passing through the active material in the device
[8]. Intensity modulation, a fundamental regime usually ac-
complished by changing the light absorption of a component
in photonic system, has been an essential need for many ap-
plications. The realization of absorption modulation relies on
modifying the charge carrier density of the sensitive material,
which is often utilized as electrodes in the modulator. Although
were drastically developed, the electro-optical absorption mod-
ulation with traditional bulk semiconductors are still restricted
in operation bandwidth, and need large driving voltage, which
is attributed to the large bandgap and low doping efficiency. The
emergence of a number of two-dimensional (2D) nanomaterials,
graphene [9], [10], [11] and its analogue (e.g., transition metal
dichalcogenides of MoS2, WS2, MoSe2, WSe2) [12], [13], [14],
[15] finds alternative option for improved performance. The
combination of gapless graphene and gap tunable transition
metal dichalcogenides greatly extends the absorption range, but
the insufficiency of density of states around the Fermi level
confines their gate dependent doping concentration, and gives
weak absorption effect along ultrathin atomic layer. Effective
strategies (e.g., waveguide integration, heterostructures, plas-
mon oscillator) [16], [17], [18] have been proposed to enhance
the interaction intensity, but in the cost of limited bandwidth and
complicated fabrication process.
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In quasi one-dimensional carbon nanotube, optoelectronic
properties and band structures change dramatically as a result
of quantum confinement and curvature, in comparison to 2D
nanomaterials. The valence or conduction bands are composed
of discrete levels called subbands, and have different azimuthal
quantum members. Carrier transition of external excitation can
be interband or intersubband. In addition, the absorption spec-
trum variation under electrical field is significantly enhanced by
excitonic effects [19]. Compared to bulk semiconductors and
graphene, the typical absorption spectrum of single walled car-
bon nanotubes (SWCNTs) behaves multiple characteristic peaks
corresponding to the transition between van Hove singularities
in the density of states [20]. Benefit from the development in ma-
terial synthesis, SWCNTs have been widely studied as an active
medium to acquire optical modulation from the near infrared
to mid-infrared region [21], [22]. Investigations also reveal the
existence of plasmon conductivity peaks in metallic and doped
semiconducting carbon nanotubes at the THz frequency range
[23], indicating that carbon nanotube is a promising building
block for THz devices. In comparison with the massive research
attention attracted by SWCNTs, the investigation about structure
and properties of double walled carbon nanotubes (DWCNTs) is
a relatively less touched area until the synthesis and separation
of its high purity sample [24], [25]. In a simplified model, the
optical absorption spectrum of DWCNTs can be described as a
superposition of the spectra of its inner and outer tubes, and
a small shift of absorption peaks caused by van der Waals
interaction between the two adjacent walls [26], [27], [28],
[29]. Experimental observation in our previous work shows that
the absorption peaks contributed by SWCNTs are significantly
suppressed if the catalyst concentration during the synthesis can
be controlled appropriately [30]. Notably that the outer walls of
DWCNTs are quite large in diameter and have wide distribution,
while the inner walls are in a comparable size of small individual
SWCNTs. As a result, bandgaps of DWCNTs are much smaller
than their single walled counterparts and the optical absorption
spectrum of DWCNTs can be drastically broadened.

In this work, we present our recent demonstration of ultra-
broadband and electro-optical tunable absorption in DWCNTs.
A pair of DWCNT films are utilized as active electrodes, and
isolated by a thin layer of ionic gel electrolyte to form a capacitor
device. Electrical gating introduced carrier concentration recon-
figuration on the nanotube film contributes to the absorption vari-
ation from the visible to mid-infrared. Drude-like conductivity
change of the DWCNT films is in charge of the THz wave mod-
ulation. In particular, our result shows a thickness-dependent
electro-optical absorption change over the entire spectrum
range, giving alternative solution for modified efficiency in
modulation strength.

II. ELECTRO-OPTICAL ABSORPTION MODULATOR WITH

CARBON NANOTUBE

A. Material Synthesis and Characterization

The synthesis of DWCNTs was carried out with the float-
ing catalyst chemical vapor deposition (FC-CVD) method. A

Fig. 1. (a) Schematic setup of the FC-CVD method for DWCNT synthesis and
film deposition. (b) A large-scale DWCNT thin film collected on a membrane
filter. (c) Raman spectroscopy of the synthesized DWCNTs film (excited by
a 633 nm laser). (d) SEM and (e) HR-TEM images of the DWCNT film.
(f) Transmittance of DWCNT films at 550 nm as a function of their sheet
resistance.

schematic experimental setup is illustrated in Fig. 1(a). Gas-
phase precursors, including ferrocene (FeCp2), sulfur, CH4 and
carrier gases of N2 and H2 were introduced to generate DWCNTs
in the reactor at 1100 °C. Aerosol-like DWCNTs were covalently
constructed in gas-phase, and collected as large area continuous
network by dry filtration from the outlet of the reactor with a
membrane filter at room temperature, as shown in Fig. 1(b). The
deposited film thickness can be flexibly tailored by setting the
collection time. During the reaction process, it is possible to con-
trol the ratio between SWCNTs and DWCNTs by adjusting the
concentration of the catalyst (FeCp2). As the increase of catalyst
concentration, the produced nanotubes change from SWCNTs
in large bundles to DWCNTs in small bundles. In experiment,
the concentration of catalyst was determined by controlling its
evaporation temperature. When the temperature is over 35 °C
(selected in this work), the Van Hove transition peaks in the
absorption spectrum of the nanotubes disappear completely,
indicating high-concentration DWCNTs are synthesized. Sta-
tistical analysis result in our previous report [30] shows that
only ∼5% are SWCNTs, and the others are DWCNTs and their
bundles. For the DWCNTs, most of the tube length is from ∼1
µm to∼40µm, giving a mean length of∼20(±11)µm. The iden-
tification of DWCNTs was carried out by Raman spectroscopy
(Horiba LabRAM HR 800) under the excitation of a 633-nm
continuous-wave laser. Fig. 1(c) shows the Raman spectrum
with radial breathing mode (RBM) at ∼221.8 cm−1, disordered
carbons caused vibration mode (D band) at ∼1325 cm−1 and
tangential oscillation mode (G band) at∼1588 cm−1. The single
Raman peak of the G band with a Lorentzian line-shape indi-
cates that the excitation is from semiconducting nanotubes [31].
A further nanoscale investigation was conducted by scanning
electron microscope (SEM, ZEISS Sigma VP, 1.0 kV) and
high-resolution transmission electron microscope (HR-TEM,
JEOL JEM-2200FS, 200 kV). Experimental results are shown in
Fig. 1(d) and (e), respectively. The SEM morphology manifests
homogenous nanotube networks, which is a result of random
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Fig. 2. (a) Schematic of the capacitive modulator. A pair of DWCNT films
are employed as parallel board electrodes and spaced by ionic gel electrolyte.
Supercapacitive fields were formed by electron-cation and anion-hole concen-
tration around the DWCNT films when gate is applied. (b) Optical absorption
spectra of the pristine DWCNT films in different thicknesses corresponding to
∼80% (black curve) and 50% (red curve) transmittances at 550 nm wavelength.
(c), (d). Pictures of the prepared devices without ionic gel electrolyte (c) and
with ionic gel electrolyte (d).

orientation during the collection process. In Fig. 1(e), the HR-
TEM image verifies the formation of two embedded nanotubes.
The black particles on the nanotubes are from the residual cata-
lyst of ferrocene. We measured the pristine film transmittance at
550 nm laser and corresponding sheet resistance with different
samples; experimental data are plotted in Fig. 1(f). The fitted
curve shows that the film transmittance increases exponentially
against the sheet resistance. This is attributed to the increased
carrier concentration when the film becomes thicker (and vice
versa). Note that the sheet resistance can be less than 100 Ω/sq
when the transmittance is approximately below 83%, which
proves the high quality of the DWCNT films.

B. Modulator Fabrication

The modulator device was configured in a capacitor ge-
ometry by placing two DWCNT thin films in parallel and
isolated by ionic gel electrolyte (1-Ethyl-3-methylimidazolium
bis(trifluoromethyl sulfonyl)imide, i.e., EMIM-TFSI). A
schematic diagram of the device is shown in Fig. 2(a). Two
DWCNT films (2 × 2 cm2) were transferred to transparent poly-
carbonate boards. A pair of copper foil stripes were connected to
the edge of each DWCNT thin film on the substrates for voltage
application. Two polycarbonate substrates with the DWCNT
film side were put together to form a 125µm spacer. A completed
device was acquired after injecting the ionic gel solution. For
comparison, two devices utilizing 80% and 50% transmittance
DWCNT films at 550 nm wavelength were prepared. The film
thicknesses were evaluated as ∼29 nm for the 80% transmit-
tance and ∼80 nm for the 50% transmittance with atomic force
microscopy. Fig. 2(b) shows the optical absorption spectra of the
selected DWCNT films (carried by Perkin-Elmer Lambda 950,
UV-VIS-NIR spectrometer) in the wavelength range from 280
nm to 2100 nm. The absorption spectra exhibit smooth intensity
distribution, which is a comprehensive result of two factors. One

is the wide outer tube diameter distribution ranging from ∼2 nm
to ∼6 nm in our DWCNT films, as shown in the Supporting In-
formation of our previous work [30]. The large outer walls of the
DWCNTs form very small bandgaps. The other one comes from
the excitonic transition energies of both the inner and outer walls
when the outer tube is semiconducting type (i.e., the inner tube
can be semiconducting or metallic). The combination of differ-
ent charge transfer behaviors between the tubes also contributes
to the broadband optical absorption of the DWCNTs. Fig. 2(c)
presents the two modulators utilizing DWCNT films with 80%
(left) and 50% (right) transmittance at 550 nm wavelength before
the injection of ionic gel electrolyte. The grey and dark grey areas
are the DWCNT electrodes with different transparencies. The
white membrane under the nanotube film is an isolation layer to
prevent short-circuit, which turns transparent after injecting the
ionic gel, as shown in Fig. 2(d).

C. Electro-Optical Modulation From the Visible to Infrared
Light

In silicon-based modulators, electrical field is generated be-
tween electrodes spaced by dielectric, this limits the formation of
large concentration carrier doping in the active material because
of the dielectric breakdown issue [32]. It is therefore challenging
to realize modulation at high frequency range around near in-
frared and visible light. In comparison, ionic gel electrolyte with
large electrochemical window has been demonstrated viable,
alternative to extend the electroabsorption modulation range
[33]. Cations and anions in the electrolyte offer a regime to form
supercapacitor at the DWCNT film surfaces, which is confined to
nanometer thickness. Together with the huge surface to volume
ratio of DWCNT film, the strong localized field built by the
supercapacitor enables storing drastically large density carrier
at the film interfaces. This mechanism ensures the electro-optical
modulation broadening to visible wavelengths under gate of only
several volts. On the other hand, the interband absorption in the
mid-infrared range can be Pauli blocked by natural doping to
the nanotube films. This influence was suppressed by baking
the device at 150 °C for 30 minutes before injecting the ionic
gel, and the remaining fabrication was completed in a glove
box filled with nitrogen gas to prevent ionic gel oxidation and
device degradation. Fig. 3 presents the change of transmission
as a function of gate voltage between −2.1 and 2.1 V. The
transmission spectra were normalized with the spectrum mea-
sured at open circuit voltage. All these transmission spectra have
subtracted the interference from the substrate materials (i.e., a
reference device without DWCNT electrodes), ensuring that the
gate dependent transmission variation is solely contributed by
the DWCNT films. Fig. 3(a) shows a symmetric mapping of
transmission change against voltage from the thinner sample
(i.e., DWCNT film of 80% transmittance at 550 nm), but with
the symmetry center slightly shifted to 0.3 V, due to charge impu-
rities in the ionic gel and substrates. The maximum change in the
transmission is about 6.6% at 2.1 V gate voltage, which presents
a blue-shift as the increase of electrical gating, see Fig. 3(b).
This phenomenon is attributed to the large interband transition
around the Fermi energy when the gate voltage is increased.
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Fig. 3. (a) Normalized transmission change of the device (with 80% transmit-
tance of DWCNT films) plotted as functions of wavelength and gate voltage.
(b) The variation of normalized transmission as a function of wavelength and
positive voltage (with 80% transmittance of DWCNT films). (c) Normalized
transmission change of the device (with 50% transmittance of DWCNT films)
plotted as functions of wavelength and gate voltage. (d) The variation of
normalized transmission as a function of wavelength and positive voltage (with
50% transmittance of DWCNT films).

Nevertheless, the transmission change in longer wavelengths
starts to saturate from 1.2 V, and the transmission comes to a
reverse change tendency at 2.1 V, which is probably a behavior
caused by the quantum confined Stark effect in the semiconduc-
tor nanotubes. A further extension to the gate voltage intensity
will induce irreversible degradation of the electrolyte. Thus, the
amplitude modulation is also limited. Note that further increase
in modulation intensity is not constrained by the nanotube mate-
rial, whereas the film thickness might be an additional degree of
freedom for more efficient modulation at the same gate voltage.

A comparison experiment was carried out in another device
by replacing the DWCNT electrodes with thicker films (i.e.,
DWCNT film of 50% transmittance at 550 nm). The mapping
graph and transmission change against gate voltage are illus-
trated in Fig. 3(c) and (d). The transmission change as a function
of the gate turns asymmetric, which can be attributed to a mem-
ory effect caused by multiple measurements. In experiment, we
first carried out the positive gate voltage dependent transmission
spectra for several times to identify its reproductivity. These
multiple measurements introduced residual electrical doping to
the DWCNT films when the gate is unapplied. The followed
transmission spectra measurement in negative gate voltage drops
in efficiency because part of the potential was used to remove the
residual doping in reverse gate. This memory effect looks more
pronounced in thicker DWCNT films compared to the mapping
in Fig. 3(a). In contrast to the spectrum distribution in Fig. 3(b),
the result in Fig. 3(d) gives an absorption modulation increase
to ∼24.4% at maximum, identifying that the modulation is
thickness-dependent in our devices. For clarification, the tiny
spikes of the spectra in Fig. 3(b) are from the random background
noise of the white light source in the UV-VIS-NIR spectrometer
rather than the device.

Fig. 4. Schematic representation of the THz time domain spectroscopy and
detection system. M, reflection mirror; L1, L2, L3, L4, collimation and focus
lenses. HWP1, HWP2, half-wave plates; P1, P2, polarizers.

D. Electro-Optical Modulation at Terahertz Wave

Electro-optical response of the DWCNT modulator was also
characterized with a THz time-domain spectroscopy and de-
tection system in the frequency range of ∼0.2–1.05 THz. We
measured the time-domain spectrum variation as a function of
the gate voltages within−2.1 to 2.1 V. The experimental setup is
drawn in Fig. 4. THz wave was acquired from a GaAs photocon-
ductive emitter under the nonlinear excitation of femtosecond
pulses (800 nm, 150 fs, 78 MHz) generated in a mode-locked
Ti: sapphire laser. The incident laser pulses are guided to a
compressing/expanding telescope (L1, L2) to get ∼3 mm beam
size in diameter. Half-wave plate HWP1 and polarizer P1 are
utilized to split the laser beam for pumping of the THz emitter.
The power can be adjusted by tuning the angle of HWP1. The
split beam is then guided to an optical delay line and a fast delay
line, both are based on hollow retro-reflector. The retro-reflector
of the fast delay line is mounted on a fast translation voice coil
stage, which enables 10 times moving per second. The beam is
then focused by lens L3 to the THz emitter as pump excitation.
On the other hand, the half-wave plate HWP2 and polarizer P2
are used to adjust the beam power pumped to the THz detector.
Lens L4 focuses the beam to the THz detector (photoconductive
antenna). The time-domain spectrum test can be obtained by
placing the sample between the THz emitter and detector. In
addition, a Teflon lens is used after the THz emitter to get a
focused beam at the sample position. The entire setup shown in
Fig. 4 was placed in a closed chamber pumped with nitrogen gas
to eliminate the influence of ambient humidity.

Time-domain electrical field variation of the transmitted THz
signal as a function of gate voltage is shown in Fig. 5(a). Here,
the measurement is from the modulator with 80% transmittance
DWCNT films. These spectra were then converted to trans-
mission change through the Fourier transform and normalized
to the spectrum under the 0 V gate, which are illustrated in
Fig. 5(b). It is seen that the maximum change of transmission
spectrum does not appear at 0 V. We attribute this to the memory
effect introduced from the previous measurements in the visible
and infrared range. The peaks with ∼0.5 THz separation in
the change of transmission spectrum come from a Fabry-Perot
resonance, which is formed by the polycarbonate surfaces.
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Fig. 5. (a) Time-domain electrical field variation of the THz wave as a
function of gate voltage, measured with the 80% transmittance of DWCNT films.
(b) Normalized transmission change as a function of THz frequency converted
from time-domain spectra (in (a)) by Fourier transform. (c) Time-domain elec-
trical field variation of the THz wave as a function of gate voltage, measured with
the 50% transmittance of DWCNT films. (d) Normalized transmission change
as a function of THz frequency converted from time-domain spectra (in (c)) by
Fourier transform.

Over the entire spectrum range, the maximum difference in the
gate-dependent transmission change is approximately 32% at
0.75 THz. In comparison, we also characterized the THz time-
domain spectrum variation as a function of gate voltage with
the device employing 50% transmittance at 550 nm, the result is
shown in Fig. 5(c). Again, it is shown that the largest electrical
field appears at 0.6 V, which means the nanotube films return to
their minimum conductivity. The Fourier transform spectra in
Fig. 5(d) shows similar behavior against the result in Fig. 5(b).
But, the maximum difference of the transmission change is only
7% at 0.75 THz. Note that the change of transmission spectrum
corresponding to gate voltage in Fig. 5(d) is much smaller than
that in Fig. 5(b) corresponding to the same voltage. This obser-
vation also demonstrates a thickness-dependent modulation in
terms of intensity in our supercapacitive modulators. Compared
to the infrared and visible spectral results, due to the different
mechanisms of optical absorption (film conductivity) in THz
range, we observed higher modulation efficiency in the device
with thinner DWCNT films rather than the device with thicker
film. This can be attributed to the larger conductivity change in a
less conductive (thinner) film against a more conductive (thicker)
one. Apart from the intensity modulation, time response also
matters the performance of the device. The charging time of
the carbon nanotube capacitor, defined as RC time constant,
is used to evaluate the response frequency. It has been known
that ion diffusion imposing a limit to the response time of
carbon nanotube capacitors in the range from microsecond to
millisecond range [34]. Combine the experimentally measured
RC time constant in an analogue graphene-ion liquid capacitor
[33], the response frequency of our device can be estimated in
several to a few tens Hz range.

In this section, we demonstrate an electro-optical absorption
modulator by employing DWCNT nanofilms as electrodes in
a capacitive device geometry. Aerosol-like DWCNTs were
synthesized in an FC-CVD stove and deposited as nanofilms
with controllable thicknesses. Ionic gel electrolyte with
large electrochemical window was utilized as spacer in the
capacitor for gate-induced supercapacitor at the nanotube
interfaces, which was demonstrated as an effective way for
large concentration carrier doping under low gate voltages. Our
modulators perform gate-dependent transmission modulation
from the visible to infrared wavelengths (500–2100 nm) through
interband transition and optical conductivity modulation at
THz wave (∼0.2–1.05 THz) by intraband transition. The
gate-controlled transmission change in our DWCNT films
shows thickness-dependent behavior, which increases as a
function of thickness in the visible to infrared range while
decreases in THz wave. Our results identify that DWCNT is
a promising active electro-optical medium for ultra-broadband
light manipulation with the combination of controllable
intensity, low gate voltage, cost efficiency and easy fabrication.

III. SUMMARY AND PERSPECTIVES

In summary, we have demonstrated an ultra-broadband
electro-optical absorption modulator by using FC-CVD synthe-
sized DWCNTs as active material. The comparison experiment
reveals that the intensity modulation of the DWCNT films is
thickness-dependent over all the measured spectrum range. In
particular, the ultra-broadband absorption modulation is mainly
attributed to the formation of electrical double layers at the ionic
gel and DWCNT film interfaces. The exponential potential drop
cross ultrathin Helmholtz layers (<1nm) allows high-density
charge accumulation [35] near the DWCNT films, which dom-
inates the absorption extension toward the visible range. It is
notable that the electrical double layer is almost independent
to the thickness of the ionic gel layer [36]. Nevertheless, in
contrast to the fast carrier mobility in DWCNTs, the slow ion
diffusion in ionic gel limits the time response of the device.
Alternatively, if the ionic gel is replaced by solid dielectric
(e.g., Al2O3, SiO2), the device will function as an electrostatic
capacitor. In this model, the charge density scales linearly against
the applied voltage and the dielectric constant, and it is inversely
proportional against the thickness of the spacer between the
DWCNT electrodes [37]. In order to obtain broader absorption
modulation, three approaches can be used, i.e., select the di-
electric material with higher permittivity, reduce the thickness
of the spacer, and increase the gate voltage. However, the im-
provement is limited because of breakdown issue. Therefore,
one can hardly achieve absorption modulation in the visible
spectrum or even near infrared range with these modulators.
Considering that the optical conductivity of DWCNTs is also
determined by the charge density, the modulation efficiency
in THz wave will decrease. On the other hand, electro-optical
modulators with solid dielectric are competitive in applications
where high speed response is critical (e.g., ultrafast signal pro-
cessing). But complicated device design and nanofabrication
process bring huge challenges to overcome the RC time constant
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bottleneck for high speed operation. Here, we emphasize the
ultra-broadband electro-optical absorption modulation (from
visible to THz wave) in semiconducting DWCNTs by using
ionic gel as dielectric material. Our findings open new avenues
in the field of electro-optical modulators, highlighting potential
alternatives of using one-dimensional carbon nanotubes, and
broadening the spectrum of materials available for advanced
photonic applications.
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