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Abstract—In this work, we consider a typical scenario in
a harsh urban propagation environment which is typical for
a smart city scenario where multiple reconfigurable intelligent
surfaces (RISs) are deployed in different hotspot areas to over-
come signal blockage between the base station and users. Our
goal is to ensure uninterrupted service availability to users in
different hotspot areas regardless of their location. Consistent
service availability can be achieved by guaranteeing that each RIS
deployed in a hotspot area can support a certain number of users.
This plays a critical role in smart city applications in the context
of emergency communications and ubiquitous connectivity since
the design ensures service availability to as many users as possible
in all relevant locations. Taking into consideration the challenges
in obtaining channel state information (CSI) given the passive
nature of RIS and dynamic environments, we formulate a robust
fairness problem to maximize the minimum expected number
of served users in proximity to each RIS while considering
the available transmit power and the worst-case quality of
service (QoS) constraints within the bounded CSI error model
framework. The resulting problem is a mixed integer non-convex
program which is highly coupled and challenging to solve in
polynomial time. Thus, we resort to binary variable relaxation,
convex approximation techniques, and alternating optimization to
tackle the problem. Additionally, we handle the semi-infinite un-
certainty constraints by employing the S-procedure and general
sign-definiteness. Simulation results demonstrate the effectiveness
of the proposed design in obtaining consistent and reliable service
in different hotspot areas compared to the relevant benchmark
schemes. In addition, the proposed design shows flexibility in
serving users with their target QoS given different channel
uncertainty levels.

Index Terms—Reconfigurable intelligent surfaces, Resource
allocation, User association, Smart cities, Quality of service, Pre-
coding, Geographical fairness, Successive convex approximation,
Robust optimization, S-procedure.

I. INTRODUCTION

A. Background
Future generations of wireless networks are envisioned

to provide seamless connectivity and to support the ever-
increasing number of connected devices [2], [3]. The provision
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of seamless connectivity will be highly instrumental in smart
cities for supporting a wide range of services and effectively
satisfying user demands. Note that smart city applications
involve an exchange of critical and sensitive information under
system constraints [4]. Essential services, such as govern-
ment, emergency services, and healthcare, may require prompt
service availability. Consequently, telecom operators bear the
responsibility of ensuring consistent service availability across
the majority of locations within the city. Additionally, these
urban areas should leverage cutting-edge technologies to
streamline resource utilization, promote sustainability, and
enhance the overall well-being of residents [5]. In recent
years, there has been a growing interest in the study of
reconfigurable intelligent surfaces (RISs) and their deployment
in smart cities to enhance public service accessibility, promote
the digitization of urban spaces, and monitor various societal
processes and city assets [4]. A RIS refers to a software-
defined meta surface equipped with the capability to enhance
wireless network performance by adjusting the reflection of
the impinging electromagnetic signals towards the intended
destination [6]–[9]. The deployment of RIS is quite promising
for future generations of wireless networks due to its potential
to reduce power consumption as compared to traditional relay
networks (e.g. amplify and forward and decode and forward
relays) [10]–[12]. Additionally, RIS deployment extends cov-
erage to areas where there is no line of sight (LOS) path or
where the direct connection between the base station (BS)
and users is obstructed [13]. In this context, the deployment
of multiple RISs is primarily envisioned in urban areas (e.g.,
smart cities) for coverage extension to blindspots caused by
blockages from city infrastructure [4]. This is expected to
advance the realization of smart radio environments which will
be highly beneficial in smart cities for seamless connectivity
and enhancement of energy and spectral efficiencies [14]–[16].
Moreover, RIS deployment may result in reduced exposure to
electromagnetic waves to citizens which supports the idea of
sustainable, green environments in smart cities [4].

Current research on RIS-assisted networks focused on the
joint optimization of active and passive beamforming (BF) for
various system configurations [17]–[19]. The work in [20],
studied the performance of joint symbol level precoding and
RIS phase shift design for power minimization. In [21], the
authors demonstrated the advantages of RIS-based commu-
nications in maximizing energy efficiency in comparison to
deploying regular multi-antenna amplify-and-forward relaying.
RIS-assisted communications have shown to be highly instru-
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Fig. 1: Smart city scenario with hotspot areas supported by distributed RISs.

mental in sum-rate maximization as demonstrated in [22]–[25].
Further, the application of RIS has been shown to significantly
improve the number of served users [26], [27]. This is mainly
because, in certain scenarios, most signals go through the RIS.
However, the works outlined above considered the availability
of perfect instantaneous channel state information (CSI) in
their design.

Practically, due to the passive nature of the RIS and the
dynamic environments, perfect CSI is highly challenging to
obtain [28]–[31]. In this context, the study in [32] developed
robust BF techniques aimed at minimizing power consump-
tion, taking into account imperfect CSI for the RIS-user link.
The authors argued that the BS-user link can be obtained with
high accuracy via conventional channel estimation techniques
e.g. the least square algorithm. Additionally, the indirect link
from the BS-RIS can be derived by computing the angles
of arrival and departure which exhibit minimal variation due
to the fixed positions of both the RIS and the BS. Further,
the study in [33] investigated a robust transceiver design
for a multi-RIS network taking into consideration channel
estimation errors on each hop of the RIS links. However, im-
plementing this approach in practice is challenging due to the
limited signal processing capability of passive RISs or standard
reflective-only RISs. This approach requires active elements to
be installed at the RIS to estimate the individual channels [34],
potentially increasing hardware costs and power consumption.
Further, this may also result in higher information exchange
overhead since the estimated channel information at the RIS
must be fed back to the BS. In response to these challenges,
authors in [35] designed a framework for robust optimization
design in RIS-assisted networks. Practically, it is more feasible
to consider the cascaded channel uncertainty in RIS-assisted
wireless communication systems 1.

Note that most of the aforementioned works primarily fo-
cused on designs involving a single RIS. However, in practice,
the BS may be assisted by multiple RISs. Specifically, the de-
ployment of multiple RISs will, in general, be required in harsh

1Note that channel estimation for the cascaded channel has been intensively
studied in RIS-aided multiple-input multiple-output (MIMO) systems [36].

propagation environments as is expected in urban areas. In
this context, several authors studied the benefits of deploying
distributed RISs for sum rate maximization, energy efficiency
maximization, signal-to-leakage-and-noise ratio (SLNR) max-
imization, and max-min signal-to-interference plus noise ratio
(SINR) [37]–[41]. Specifically, in [42] and [43], a typical
weighted sum-rate maximization problem was examined for a
multiple-RIS-assisted system, considering both ideal and non-
ideal hardware scenarios. Further, the authors in [44] and [45]
focused on the statistical characterization and performance
analysis of systems supported by multiple RISs, theoretically
deriving the ergodic achievable rate for cooperative RISs under
Rician fading and Nakagami-m fading, respectively. In [46], a
weighted sum-rate maximization problem for a multi-hop RIS-
aided system was studied. Simulation results demonstrated
the performance gain improvements obtained through the
deployment of multiple RISs in the network. Beyond these
studies, the potential of RISs to enhance energy efficiency has
also been explored in [37]. The authors aimed to maximize the
energy efficiency of a wireless network utilizing multiple RISs
by optimizing the RIS reflection coefficients and dynamically
managing the on-off status of each RIS.

B. Motivation and contribution

1) Motivation: According to the literature mentioned in the
previous section, several works focused on sum rate maximiza-
tion, power minimization and energy efficiency maximization
in RIS-assisted networks [37]–[39], [41]–[47]. Additionally,
to ensure fairness, previous studies focused on maximizing
the minimum achievable data rate or the SINR of the user
[39], [40]. Although these formulations are quite useful from
a system design perspective, none of them can guarantee
a fair and consistent service to users in various hotspot
areas supported by distributed RISs. Further, these commonly
considered objective functions do not guarantee that users are
served with their desired quality of service (QoS) which is
a more service-oriented approach and is highly beneficial in
the concept of smart cities. Specifically, serving users with
their desired QoS is favorable in smart cities where various
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Works Objective Function Number of RIS Robust Optimization Design Geographical Fairness User Admission Control User QoS Assurance
[41], [46] Sum-rate maximization Multiple ✗ ✗ ✗ ✗
[32], [35] Power minimization Single ✓ ✗ ✗ ✗

[37] Energy efficiency maximization Multiple ✗ ✗ ✗ ✗
[39], [40] Max-min SINR/Rate Multiple ✗ ✗ ✗ ✗
[26], [27] User admission maximization Single ✗ ✗ ✓ ✓
This work Max-min number of served users per RIS Multiple ✓ ✓ ✓ ✓

TABLE I: Comparison of our work with existing related works

applications function with different QoS requirements. It is
also important to note that ensuring the desired QoS is strongly
justified for voice, streaming media, and other interactive
applications, and it remains the dominant design strategy in
cellular wireless networks today [48].

Next, ensuring fair resource utilization and load balancing
in multi-RIS-assisted networks is highly challenging. This is
crucial to ensure that there is no load imbalance where some
RIS elements are overloaded while the others are underloaded
especially when the RIS panels are identical [49].

Besides, it is important to highlight that previous work
in conventional networks without RIS highlighted the im-
portance of supporting as many users as possible at their
desired QoS [50]. Further, the authors in [51] studied the
max-min fair resource allocation problem to ensure fairness
among several groups of vehicle to everything (V2X) users.
In addition, studies in [27] demonstrated the advantages of
RIS for user admission maximization in a single RIS-assisted
network. Nevertheless, we note that maximizing the total
number of served users in a multi-RIS-assisted network may
lead to inconsistent service in different locations or hotspot
areas. Note that the findings of investigations from previous
studies demonstrated that RISs are usually deployed close to
the users for better performance [52]. Accordingly, RISs are
practically useful for creating ”signal hotspots” and serving
users in their vicinity. In this context, RISs can be deployed
separately in different geographical locations to provide robust
data transmission. This approach stands out as a practical
and effective solution for enhancing service coverage and
optimizing wireless communication networks. However, the
dense deployment of RISs necessitates advanced resource
allocation techniques for improved network resource effi-
ciency. Specifically, advanced resource allocation techniques
are required to address the unique challenges posed by multi-
RIS-aided networks [53]. For instance, in scenarios where the
RISs are deployed in a distributed manner, the BS may have
preferred channels or RISs to serve a group of users due to
different channel conditions. Thus, the users close to the RIS
with unfavorable channel conditions will be out of coverage
resulting in coverage holes/ blind spots. This is unfair because
certain locations will be preferred to serve more users over
other locations. Additionally, in case of unfair geographical
locations, the service can become unavailable in some hotspot
areas. Specifically, depending on the link quality only the users
in one hotspot (close to one RIS) may be supported while
the users in other locations may be neglected. Consequently,
the service provider can lose customers in some locations
if users always experience a drop in performance. This is
not aligned with the future of modern telecommunications

which is to provide seamless connectivity or uninterrupted
service irrespective of the geographical location of users. In
this case, ensuring service availability in hotspot areas like
parks, shops, outdoor event grounds, city streets, and bus
stops, without being hindered by location constraints becomes
an important design criterion. Specifically, it is important to
ensure reliable connectivity to as many users as possible in all
relevant locations, which is crucial in the context of emergency
communication and ubiquitous connectivity.

On the other hand, we note that with imperfect CSI, it is
highly challenging to serve users with their desired QoS [26].
The performance of RIS-assisted communication systems is
heavily reliant on the presence of accurate CSI. However, the
assumption of accurate CSI in multi-RIS-assisted networks
may not always be practical. Specifically, the BS might only
have access to incomplete or outdated CSI in situations with
high mobility and rapidly changing channel conditions. This
can result in signal misalignment. Consequently, exploring
robust BF design that considers imperfect CSI in optimization
problems is required.

2) Contribution: Due to the aforementioned limitations of
the current literature, in this work, we consider a typical
scenario in a smart city where multiple RISs are deployed
on billboards to extend coverage to different hotspot areas,
as depicted in Fig. 1. This represents real-world scenarios in
urban environments, e.g. smart cities, where RISs are deployed
to improve the performance of the communication system
by customizing the propagation of the radio waves imping-
ing upon them, thereby enabling cost-and energy-efficient
signal transmission [14]. The scenario depicted in Fig. 1
draws inspiration from advancements in smart city initiatives
highlighted in prior studies, aiming to enhance connectivity
and optimize the overall functionality of smart cities [4],
[54]–[57]. Furthermore, the scenario supports the vision of
future generations of wireless networks to enable a seamless
and ubiquitous experience, and service continuity, considering
efficiency and affordability [58] [59]. In addition, it aligns
with the envisioned sustainable development goals, where the
adoption of green technologies is a key design criterion in
future wireless networks [58].

In smart cities, ubiquitous connectivity and immediate ser-
vice availability are vital for the seamless operation of applica-
tions like traffic management, public safety, and environmental
monitoring. Telecom operators must ensure reliable coverage
across all areas, prioritizing fairness among user groups in
various zones to guarantee equitable access to services. This
is essential for real-time data processing, consistent quality,
and public safety during emergencies. As smart cities grow,
networks must be scalable, resilient, and capable of delivering
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fair, consistent service across all regions to support future
innovations [60], [61].

Our main goal in this work is to provide geographically fair
access service to users in smart cities, a critical aspect in the
context of emergency communication and ubiquitous connec-
tivity. Additionally, we aim to jointly optimize the precoding
at the BS and BF at RISs to ensure stable system performance,
focusing on maintaining fairness among different user groups
across various geographic zones within the city. Specifically,
we propose a robust optimization framework to maximize
the minimum number of users served at their target QoS
near each RIS. The proposed design ensures that every RIS
in the network supports a designated number of users. This
approach is essential for enabling a broad range of emergency
services to operate effectively and deliver assistance across
diverse geographical areas. Enhanced service availability and
reliability across diverse locations are vital for maintaining
uninterrupted service delivery for critical applications such
as online banking and business communications. In modern
telecommunication systems, user satisfaction relies heavily
on consistent QoS, where service continuity is prioritized
over peak performance. Therefore, the primary goal of future
mobile networks should not solely focus on increasing peak
rates but rather on ensuring consistent rates for the vast
majority of locations within their coverage area [62], [63].
Furthermore, this design enables users to be served according
to their specific QoS requirements, accommodating varying
QoS needs. The contributions and novelty of this work, in
comparison to the existing literature, are detailed in TABLE I.

Introducing a robust and geographically fair access design
for smart cities, ensuring stable service delivery across various
zones, the key contributions of this work are summarized in
the following.

• For a smart city scenario where the BS supports multiple
hotspots through distributed RISs, we formulate and
provide a solution to the resource allocation problem to
guarantee geographical fairness in terms of the number
of users served by each RIS in different locations. It is
important to note that the users’ geographical location is
closely tied to the RIS, meaning that users are served
by their closest RIS. In particular, we aim to provide
fair coverage and load balancing between the distributed
RISs. To achieve geographical fairness, we formulate
two optimization problems: the first under a perfect CSI
assumption (non-robust design) and the second under an
imperfect CSI assumption (robust design), corresponding
to the serving of users in indoor and outdoor scenarios,
respectively. The objective is to maximize the minimum
expected number of users achieving their target QoS in
proximity to each RIS while considering the available
total transmit power at the BS and the worst-case QoS
constraints2. This approach ensures efficient operation
of a wide range of emergency services and service
availability for users in high-traffic areas, such as shops,

2We note that the consideration of the imperfect CSI case and the robust
proposed design constitutes an extension of the non-robust design under
perfect CSI that is considered in [1].

smart city streets, and bus stops. To the best of our
knowledge, this is the first attempt to design robust
optimization for geographical fairness in RIS-assisted
wireless networks. The robust max-min fairness design
is essential since obtaining perfect instantaneous CSI in
RIS-assisted networks is highly challenging. The design
ensures stable system performance, even under the most
challenging conditions.

• The problem outlined above is a mixed integer non-linear
program (MINLP), known to be NP-hard [64]. Thus,
computing its globally optimal solution is highly chal-
lenging and computationally expensive. The constraints in
the problem are highly coupled, which makes it difficult
to address using conventional convex optimization tech-
niques. In addition, due to the CSI uncertainty continu-
ity, the QoS constraint involves semi-infinite non-convex
inequality constraints. To address the complex robust
optimization problem, we propose a simple yet effective
iterative algorithm. The proposed algorithm integrates
alternating optimization (AO), convex approximations,
mathematical transformations, the S-procedure, and gen-
eral sign-definiteness to ensure convergence to at least
a locally optimal solution. Firstly, we relax the binary
constraint to a box constraint and then penalize the ob-
jective function to ensure binary solutions at convergence.
Next, we resort to AO to decouple the problem into two
manageable sub-problems. Lastly, the non-convexity of
these sub-problems is tackled through the use of con-
vex approximations, mathematical transformations, the S-
procedure, and general sign-definiteness techniques.

• Simulation results demonstrate the performance gain of
the proposed design against relevant benchmark schemes.
Further, we provide insights on the performance of the
proposed design compared to the max-sum design where
the total number of served users is maximized without
considering fairness. In this case, we demonstrate the
significance of having consistent and reliable service
availability across various hotspot areas supported by
distributed RISs. In addition, we show the flexibility
provided by the proposed design in serving users with
their desired QoS given different channel uncertainty
levels.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III we formulate
two optimization problems for a multi-RIS-assisted wireless
network considering the case of perfect and imperfect CSI. We
first formulate the non-robust max-min fairness design where
perfect instantaneous CSI is considered available at the BS.
Next, we extend the non-robust design to a robust max-min
fairness design in the presence of imperfect CSI within the
framework of the bounded CSI error model. In Section IV,
we propose an AO algorithm based on successive convex
approximation (SCA), the S-procedure, and general sign-
definiteness to solve the formulated robust max-min fairness
problem. Additionally, we provide a detailed derivation of the
proposed solution. Section V presents the numerical results to
evaluate the performance of the proposed design. Finally, we
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Fig. 2: Multi-RIS-aided multi-user MISO system.

conclude the paper in Section VI.
Notations: Scalars are denoted by italic letters, vectors and

matrices are denoted by bold-face lower-case and upper-case
letters, respectively. Cx×y denotes the space of x×y complex-
valued matrices. Tr{·}, | · |, || · ||, (·)∗, (·)H , (·)T ,Re{·} and
arg(·) denote the trace of a complex number, absolute value,
Euclidean norm, conjugate, Hermitian transpose, transpose,
real part and the phase, respectively. diag(.) produces a square
matrix with the elements of its argument on the main diagonal
and zeros otherwise. A ⊗ B denotes the Kronecker product
between matrix A and B. A ⪰ B denotes that the difference
between matrix A and matrix B is a positive semidefinite.

II. SYSTEM MODEL

We consider a multi-RIS-assisted multi-user multiple-input
single-output (MISO) system, depicted in Fig. 2. In this setup,
a BS, equipped with M antennas, communicates with K
single-antenna users in various hotspots via L distributed RISs,
each equipped with N reflective elements3. Hereafter, one
denotes K and L as the sets of all K users and L RISs,
respectively. Let θℓ ∈ CN×1 be the phase shift vector induced
by the RIS ℓ where Θℓ=diag([ejθ1,ℓ . . . ejθn,ℓ . . . ejθN,ℓ ]) is the
diagonal matrix that captures the reflective properties of the
RIS4. We consider a linear precoding design at the BS, where
the k-th user is assigned a dedicated BF vector wk ∈ CM×1.
The complex baseband signal at the BS can be expressed as
x =

∑
k∈K wksk, where sk denotes the data symbol intended

to user k, which is assumed to have zero mean and unit
variance.

In this case, sk is assumed independent and identically dis-
tributed (i.i.d) across K users. Accordingly, the total transmit
power at the BS is

P total =
∑
k∈K

||wk||2. (1)

3We highlight that RISs can be implemented in diverse ways including
simultaneously transmitting and reflecting RIS (STAR-RISs) [65]. However,
the study of STAR-RIS deployment and its benefits to the considered design
is beyond the scope of this work.

4We assume a centralized controller (e.g., at the base station) that coordi-
nates the phase shifts of each RIS based on CSI [15].

In this work, double-RIS reflections are assumed to be negli-
gible due to the pathloss scaling associated with the product
of distances between the RISs, given significant separation
distances in realistic settings, as well as their geometrical
orientation [37]. Moreover, we assume that signal reflections
from other RISs deployed in separate hotspot areas are negligi-
ble, owing to the specific orientation of the proposed scenario
in Fig. 1. Additionally, in harsh urban environments, signal
reflections from distant RISs are more likely to be obstructed
by city infrastructure. In this context, the localized coverage
of passive RISs proves highly effective in simplifying inter-
RIS interference management, as the RISs are appropriately
spaced apart. It is important to note that we assume a targeted
deployment of RISs in specific, high-impact areas, where the
distances between RISs are sufficiently large. This deployment
strategy is both practical and cost-effective in the near term,
allowing network operators to maximize the advantages of
RIS technology while managing costs and system complexity.
Note that an alternative approach would involve joint trans-
mission, which, however, introduces significant channel esti-
mation overhead due to the need to estimate cross-interference
channels for all RISs and users in different hotspot areas.
This would require more resources for channel estimation,
leading to increased system complexity, reduced performance,
and longer processing times.

The BS-RIS ℓ, BS-user k, and RIS ℓ-user k channels
are denoted as HBS−RIS

ℓ ∈ CN×M , hk ∈ CM×1, and
gℓ,k ∈ CN×1, respectively. To achieve geographical fairness,
the RIS-user association is obtained prior to optimization. In
this case, geographical fairness is directly linked to serving
users in close proximity to the RIS since the RISs are deployed
to serve users in hotspot areas. Correspondingly, to achieve
geographical fairness in terms of RIS-user association, user k
associated to RIS ℓ is selected based on the minimum distance
criteria as follows

{k, ℓ} = argmin(dℓ,k),∀ℓ ∈ L,∀k ∈ K, (2)

where dℓ,k is the distance between RIS ℓ and user k. In this
context, we denote the RIS ℓ to user k association with the
variable ψk,ℓ. This can be represented as follows

ψk,ℓ =

{
1, if user k is associated to RIS ℓ;
0, otherwise.

(3)

Here, ψℓ ≜ [ψk,ℓ]k∈K is a vector denoting the association state
of RIS ℓ to all the users, where ψ ≜ [ψℓ]ℓ∈L is the RIS-user
association matrix.

Next, the received signal at user k is given by

yk =
[
hHk +

∑
ℓ∈L

ψk,ℓ(g
H
ℓ,kΘℓH

BS−RIS
ℓ )

]∑
i∈K

wisi + vk, (4)

where vk is the additive white Gaussian noise (AWGN) at user
k with zero mean and variance σ2

k, i.e. nk[ℓ] ∼ CN (0, σ2
k).

The instantaneous received SINR at user k is denoted by

γk(W,Θ) =
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∣∣∣[hHk +
∑
ℓ∈L ψk,ℓ(g

H
ℓ,kΘℓH

BS−RIS
ℓ )

]
wk

∣∣∣2∑
i∈K/{k}

∣∣∣[hHk +
∑
ℓ∈L

ψk,ℓ(gHℓ,kΘℓH
BS−RIS
ℓ )

]
wi

∣∣∣2 + σ2
k

,

(5)

where W ≜ [wk]k∈K is a matrix that contains all the
precoding vectors for all users. Additionally, θ ≜ [θℓ]ℓ∈L is
a matrix that contains all the phase shift vectors for all RISs
and Θ = [Θℓ]ℓ∈L contains the diagonal matrices with the
reflective properties of all the RISs.

III. PROBLEM FORMULATION

To formulate the optimization problem under consideration,
we introduce a binary variable ak to determine the set of
served users, i.e., the users that can achieve their target QoS,

ak =

{
1, if user k is served with γk ≥ Γth

k ;
0, otherwise.

(6)

where Γth
k is the required SINR for user k to satisfy the

QoS requirements. Let a ≜ [ak]k∈K be a user-satisfactory
stage vector. Specifically, a user is considered well-served
if it satisfies the required QoS. This can be represented as
γk ≥ akΓ

th
k , where ak ∈ {0, 1}. If ak = 1, it is equivalent to

γk ≥ Γth
k , i.e., the user is well-served and receives its desired

SINR. Otherwise, akΓk reduces to zero and the constraint
is disabled. Note that being associated with RIS ℓ does not
guarantee that the user is well-served.

Remark 1. Note that ak is a binary indicator to determine
the state of each user i.e., whether the user is well-served
or not. Similarly, ψk,ℓ is another binary variable indicating
the association of user k to RIS ℓ. Here, ψℓ ≜ [ψk,ℓ]k∈K
is a vector denoting the association state of RIS ℓ to all
the users, where ψ ≜ [ψℓ]ℓ∈L is the RIS-user association
matrix. In this work, geographical fairness refers to ensuring
equitable access to services by prioritizing users located near
the RIS, while also maintaining service balancing across
different geographical zones within the network. To do so,
we aim to optimize a product of the RIS-user association
matrix ψ and the user satisfactory vector a to maximize
the minimum expected number of well-served users in each
hotspot area. Here, the association between the RISs and the
users is predetermined according to the geographical location.
Accordingly, the objective function can be represented as
maxmin

ℓ∈L
(ψTℓ a). In this case, ψTℓ a represents the number of

well-served users by the ℓ-th RIS or in a specific hotspot area.
This guarantees that no hot spot area is disproportionately
underserved, promoting fairness across geographical areas
supported by the distributed RISs5.

5It is important to note that consistent service availability is widely
characterized by minimizing the outage probability [66]. However, in this
work, we consider a user-centric approach that mitigates the risk of service
unavailability in certain hotspot areas, allowing the scheduling of as many
users as possible independently of their locations under the maximum avail-
able transmit power and the worst-case QoS constraints.

A. Perfect Instantaneous CSI

Firstly, we formulate the non-robust optimization problem
to maximize the minimum number of well-served users in
proximity to each RIS subject to total available power at the
BS and the QoS constraints as follows,

max
Θ,W,a

min
ℓ∈L

ψTℓ a (7a)

s. t. γk(W,Θ) ≥ akΓ
th
k ,∀k ∈ K, (7b)∑

k∈K

∥wk∥2 ≤ Pmax, (7c)

∥wk∥2 ≤ akP
max,∀k ∈ K, (7d)

0 ≤ θn,ℓ ≤ 2π, ∀n ∈ N ,∀ℓ ∈ L, (7e)
ak ∈ {0, 1}, ∀k ∈ K, (7f)

where N = {1, ..., N} and Γ ≜ [Γth
k ]k∈K is a vector that

contains the QoS requirements of each user. The constraints
in problem (7) are explained in detail as follows:

• Constraint (7b) ensures that every well-served user in a
geographical area satisfies its required minimum QoS.

• Constraint (7c) implies the transmission power budget
limitation at the BS.

• For efficient resource utilization, constraint (7d) ensures
that power is only allocated to well-served users. In this
case, the precoding vector wk is equal to zero for a user
k that is not well-served.

• Constraint (7e) ensures that the phase shifts of all RIS
elements are between 0 and 2π.

• Constraint (7f) remarks the user satisfactory stage in (6).
Problem (7) can be solved via SCA-based AO algorithm [1].
This design corresponds to scenarios where the CSI can be
assumed to be perfect e.g. the outdoor-to-indoor scenarios. The
availability of perfect CSI in these scenarios can be justified
by the slow mobility of users inside the target buildings [1].
However, for outdoor scenarios, the CSI may be imperfect or
outdated due to user mobility. As a result, we focus on the
robust resource allocation design in the presence of imperfect
CSI in the next subsection.

B. Robust Design with Imperfect CSI

1) Imperfect Estimated CSI Model: Towards formulating
the robust max-min fairness design, we denote the cascaded
channel matrix from the BS to user k through RIS ℓ as
Hℓ,k = diag(gHℓ,k)H

BS−RIS
ℓ , where Hℓ,k ∈ CN×M . In this

scenario, the estimated cascaded channel matrix is considered
imperfect due to the mobility of users in outdoor environments.
However, we assume that the direct link, if available, can
be accurately estimated using conventional channel estima-
tion methods, such as the least squares algorithm [32]. The
cascaded channel Hℓ,k is considered imperfect, therefore, we
present it as Hℓ,k = Ĥℓ,k + Ψℓ,k, where Ĥℓ,k ∈ CN×M is
the estimated cascaded channel matrix which is known at the
BS, and Ψℓ,k ∈ CN×M represents the unknown estimation
error matrix. For simplicity we let, Ĥk =

∑
ℓ∈L ψℓ,kĤℓ,k and

Ψk =
∑
ℓ∈L ψℓ,kΨℓ,k which denote the estimated channel and

estimation error matrices corresponding to user k, respectively.
One may need to recall that each user is assisted by the RIS
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closest to it. In this context, every user can be associated
with, i.e., be assisted by, only one pre-determined RIS. Note
that a norm-bounded error model studied in [67] is employed
in this work. This can be motivated for outdoor scenarios,
where the users have a maximum velocity they can drive or
walk with. Specifically, this is reasonable inside urban areas
where there are speed limits or in cases of pedestrians walking
on the city streets. In such scenarios, the mobility of users
or objects is predictable (e.g., vehicles on a highway with
known speeds and directions), and channel variations can be
anticipated. Hence, a bounded user velocity would translate to
a bounded channel error model in such a case. Predictable or
known mobility patterns in smart cities allow estimation errors
to be bounded. Accordingly, the bounded error is denoted as6

∥Ψk∥ ≤ ζk,∀k ∈ K, (8)

where ∥ ∗ ∥ stands for the norm-2 operation of a matrix, and
ζk denotes the radii of the uncertainty region which can be
estimated at the BS based on the stochastic analysis [35].

2) Imperfect-CSI Robust Problem Formulation: Regarding
RIS ℓ’s phases (∀ℓ ∈ L), let ϕℓ be the diagonal elements of the
matrix Θ for RIS ℓ where ϕℓ = [ϕ1,ℓ, · · · ,ϕn,ℓ, · · · ,ϕN,ℓ] ∈
CN×1 and ϕn,ℓ = ejθn,ℓ . Then, one further denotes ϕ =
[ϕℓ]ℓ∈L ∈ CN×L as the passive BF matrix with the phases
for all distributed RISs. Accordingly, we formulate a robust
design to maximize the minimum number of well-served users
in proximity to each RIS subject to total available power at
the BS and the worst-case SINR constraints under the norm-
bounded CSI error model as follows

max
ϕ,W,a

min
ℓ∈L

ψTℓ a (9a)

s. t. γk(W,ϕ) ≥ akΓ
th
k ,∀∥Ψk∥ ≤ ζk,∀k ∈ K, (9b)∑

k∈K

∥wk∥2 ≤ Pmax, (9c)

∥wk∥2 ≤ akP
max,∀k ∈ K, (9d)

|ϕn,l| = 1, ∀n ∈ N ,∀ℓ ∈ L, (9e)
ak ∈ {0, 1}, ∀k ∈ K, (9f)

where

γk(W,ϕ) =

∣∣∣(hH
k +

∑
ℓ∈L ψℓ,kϕ

H
ℓ Hℓ,k

)
wk

∣∣∣2∑
i∈K/{k}

∣∣∣(hH
k +
∑
ℓ∈L ψℓ,kϕ

H
ℓ Hℓ,k

)
wi

∣∣∣2+ σ2
k

.

(10)

Herein, constraints (9c), (9d), and (9f) are formulated similarly
to (7c), (7d), and(7f), respectively. Below we explain in detail
the remaining constraints

• Constraint (9b) is designed such that the well-served users
in different hotspot areas can achieve their target SINRs
for all channel error realizations.

• Constraint (9e) is the unit modulus constraint for the RIS
phase-shift design.

6It is important to note that the norm bounded channel error model in
this work is used as a design parameter to robustify the optimization design
solution. In this scenario, the model aims to ensure system performance
remains stable even in the most adverse conditions.

3) Nature of the Formulated Problem: As can be seen,
problem (9) is a mixed integer non-convex problem known
to be NP-hard. Specifically, the problem is classified as a
MINLP due to the coupling of the optimization variables ϕ,
and W in constraint (9b), the unit modulus constraint in (9e)
and the binary variable in constraint (9f). Additionally, due to
the CSI uncertainty continuity, the SINR (QoS) constraint (9b)
has semi-infinite non-convex inequality constraints. Further, it
is important to note that the objective function in (9a) is non-
smooth. These factors make problem (9) highly challenging
to solve using standard convex optimization methods. As a
result, solving this problem via combinatorial programming
or convex optimization techniques is extremely difficult, and
finding a globally optimal solution within polynomial time
may not be feasible.

4) Solution Approach: To address the challenging robust
optimization problem (9), we propose a simple yet effi-
cient iterative AO algorithm, convex approximations, math-
ematical transformations, the S-procedure, and general sign-
definiteness. The algorithm guarantees convergence to at least
a locally optimal solution. Specifically, we first relax the binary
constraint in (9f) to a box constraint and introduce a penalty
function to ensure convergence to a binary solution. We then
employ AO to decouple the problem into two sub-problems.
The non-convexity of the two sub-problems is addressed using
convex approximations, mathematical transformations, the S-
procedure, and general sign-definiteness. In the following,
we present Lemma 1 and Lemma 2 which will be highly
instrumental in solving the formulated problem.

Lemma 1. (The S-Lemma [68], [69]): Considering the fol-
lowing quadratic function of variable x

ft(x) = xHAtx+ 2Re
{
aHt x

}
+ ct. (11)

Here At ∈ CN×N is a Hermitian matrix, at ∈ CN×1 and
ct ∈ R. The implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and
only if there exists a δ ≥ 0 such that

δ

[
A1 a1
aH1 c1

]
−
[

A2 a2
aH2 c2

]
⪰ 0, (12)

Note that S-Lemma is also referred to as the S-procedure in
this work.

Lemma 2. (The Sign-Definiteness Lemma [32], [70]): Given
a set of Hermitian matrices A, {Qt,Ft}Zt=1, the linear matrix
inequality (LMI) shown below satisfies

A ⪰
Z∑
t=1

(
QH
i XtFt + FH

t X
H
t Qt

)
,∀t, ∥Xt∥F ≤ ζt, (13)

if and only if there exist real numbers ∀t, µt ≥ 0 such that
A−

∑Z
t=1 µtF

H
t Ft −ζ1QH

1 · · · −ζZQH
Z

−ζ1Q1 µ1I · · · 0
...

...
. . .

...
−ζZQZ 0 · · · µZI

 ⪰ 0.

(14)

In the next section, we detail the steps to solving the
formulated problem.
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IV. PROPOSED SOLUTION

A. Problem Reformulation and Binary Variable Relaxation

In this section, we detail the proposed solution to solve the
formulated problem in (9). Firstly, we introduce an auxiliary
variable to handle the non-smooth objective function into a
smooth one as follows:

z = min
ℓ∈L

ψTℓ a. (15)

Accordingly, problem (9) can be reformulated as follows:

maximize
ϕ,W,a,z

z (16a)

s. t. γk(W,ϕ) ≥ akΓ
th
k ,∀∥Ψk∥ ≤ ζk,∀k ∈ K, (16b)∑

k∈K

∥wk∥2 ≤ Pmax, (16c)

∥wk∥2 ≤ akP
max,∀k ∈ K, (16d)

|ϕn,ℓ| = 1, ∀n ∈ N ,∀ℓ ∈ L, (16e)
ak ∈ {0, 1}, ∀k ∈ K, (16f)
ψTℓ a ≥ z, ∀ℓ ∈ L. (16g)

The first step in tackling problem (16) is to relax the binary
variables in constraint (16f) to a continuous variable. Follow-
ing this step, we obtain the following relaxed problem,

maximize
ϕ,W,a,z

z (17a)

s. t. 0 ≤ ak ≤ 1,∀k ∈ K, (17b)
ak − a2k ≤ 0,∀k ∈ K, (17c)
(16b), (16c), (16d), (16e), (16g).

It is important to note that constraint (16f) has been substituted
by (17b) and (17c). Here, (17b) is a box constraint and
(17c) is an additional constraint to ensure that ak is binary
at convergence. To convexify the additional constraint (17c),
we approximate the non-convex parts to obtain a lower-bound
approximation using the first-order Taylor approximation. In
addition, following [71, Preposition 2], we solve the problem
by choosing a penalty parameter µ > 0. Accordingly, we
present a penalty function as follows: Q(a) = µ

(∑
k∈K a

2
k−∑

k∈K ak

)
. Note that the effect of this penalty function is

modeled in the objective function. Next, after approximating∑
k∈K a

2
k, by applying the first order Taylor approximation of

Q(a) for ak around a feasible point aιk, we obtain Qt(a) =

µ
[∑

k∈K
(
2aιkak−(aιk)

2
)
−
∑
k∈K ak

]
. Now, by choosing an

appropriate penalty parameter, problem (17) can be tackled by
solving the following problem with updating Qt(a) iteratively.
Accordingly, we reformulate the overall problem as follows:

minimize
ϕ,W,a,z

− z −Qt(a) (18a)

s. t. γk(W,ϕ) ≥ akΓ
th
k ,∀∥Ψk∥ ≤ ζk,∀k ∈ K, (18b)∑

k∈K

∥wk∥2 ≤ Pmax, (18c)

∥wk∥2 ≤ akP
max,∀k ∈ K, (18d)

|ϕn,ℓ| = 1, ∀n ∈ N , ∀ℓ ∈ L, (18e)
0 ≤ ak ≤ 1, ∀k ∈ K, (18f)

ψℓa ≥ z, ∀ℓ ∈ L. (18g)

Even after relaxing the binary variable, problem (18) remains
non-convex due to the coupled variables in constraint (18b).
Additionally, the channel estimation error in (18b) further
complicates the direct solution of the problem. To address
this complexity, we employ an AO approach to decouple the
BS precoding and RIS phase shift variables, solving them
alternately. Convex approximations are employed to manage
the non-convexity, while the S-procedure and general sign-
definiteness techniques, as detailed in Lemma 1 and Lemma 2,
are utilized to handle channel uncertainty. The following
sections outline the steps to solve the two sub-problems.

B. Base-Station Precoding Design

For a given ϕ, we optimize the precoding design to maxi-
mize the minimum number of well-served users in proximity
to each RIS subject to the total available power at the BS
and the worst-case SINR constraints. The resulting problem is
formulated as follows

minimize
W,a,z

− z −Qt(a) (19a)

s. t. γk(W,ϕ) ≥ akΓ
th
k ,∀∥Ψk∥ ≤ ζk,∀k ∈ K, (19b)∑

k∈K

∥wk∥2 ≤ Pmax, (19c)

∥wk∥2 ≤ akP
max,∀k ∈ K, (19d)

0 ≤ ak ≤ 1, ∀k ∈ K, (19e)
ψℓa ≥ z, ∀ℓ ∈ L. (19f)

The main challenge in solving problem (19) is the non-
convexity of the semi-infinite constraints in (19b). Addition-
ally, the solution should be feasible ∀∥Ψk∥ ≤ ζk. To address
these challenges, consequently, we focus on convexifying
the non-convex parts of the problem by employing convex
approximation techniques studied in [35].

In particular, following Lemma 1 and Lemma 2, we tackle
the multiple complex valued uncertainties. First, we intro-
duce a new auxiliary variable representing the soft inter-
ference threshold for user k as ηk =

∑
i∈K/{k}

∣∣(hHk +∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wi

∣∣2 + σ2
k, (∀k ∈ K). Accordingly, we

reformulate constraint (19b) as follows∣∣(hHk +
∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wk

∣∣2
ηk

≥ akΓ
th
k ,

∀∥Ψk∥ ≤ ζk,∀k ∈ K,∀ℓ ∈ L, (20)

and∑
i∈K/{k}

∣∣(hHk +
∑
ℓ∈L

ψk,ℓϕ
H
ℓ Hℓ,k)wi

∣∣2 + σ2
k ≤ ηk,

∀∥Ψk∥ ≤ ζk,∀k ∈ K,∀ℓ ∈ L. (21)

Herein, (20) is termed the worst-case useful signal
power constraint and (21) is the worst-case interfer-
ence power constraint, respectively. Note that the function∣∣(hH

k +
∑

ℓ∈L ψk,ℓϕ
H
ℓ Hℓ,k)wk

∣∣2
ηk

in (20) is in quadratic-over-linear
form which can be easily approximated by obtaining its lower

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3525568

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

bound using first-order Taylor series approximation. Based on
this approximation, an iterative approach is proposed to solve
problem (19). Specifically, we analyze the lower bound of the
left-hand side (L.H.S) of (20) in the following proposition.

Proposition 1. For any feasible w
(ι)
k and η(ι)k , one can define

an effective lower bound for the L.H.S of (20) as follows,∣∣∣(hHk +
∑
ℓ∈L

ψk,ℓϕ
H
ℓ Hℓ,k

)
wk

∣∣∣2
ηk

≥ vHk T kvk+2ℜ
{
tTk vk

}
+tk,

(22)
where vk = vec

(∑
ℓ∈L ψℓ,kΨ

∗
ℓ,k

)
while T k, tk, and tk are

given as

tk = 2ℜ
{
qHk w

(ι)
k wH

k qk
}
(ηιk)

−1−qHk w(ι)w
(ι),H
k qkηk(η

ι
k)

−2,
(23)

tk =vec
(
Qkw

(ι)
k wH

k

)
(ηιk)

−1 + vec
(
Qkwkw

(ι),H
k

)
(ηιk)

−1

− vec
(
Qkw

(ι)
k w

(ι),H
k

)
ηk(η

ι
k)

−2, (24)

T k =
(
wkw

(ι),H
k ⊗Φk

)
(ηιk)

−1 +
(
w

(ι)
k wH

k ⊗Φk

)
(ηιk)

−1

−
(
w(ι)w

(ι),H
k ⊗Φk

)
ηk(η

ι
k)

−2, (25)

in which qk = hk +
∑
ℓ∈L ψℓ,kĤ

H
ℓ,kϕℓ, Qk =∑

ℓ∈L ψℓ,kϕℓq
H
k , and Φk =

∑
ℓ∈L ψℓ,kϕ

∗
ℓϕ

T
ℓ .

Proof: The proof can be obtained by following the
procedure given in [35] which is summarized in the Appendix.

Thanks to Proposition 1, by substituting the corresponding
lower bound into (20), we obtain the following expression

vHk T kvk + 2ℜ
{
tTk vk

}
+ tk ≥ akΓ

th
k ,∀∥Ψk∥ ≤ ζk,∀k, ∀ℓ.

(26)
To tackle the channel uncertainty in (26), we resort to the
S-procedure in Lemma 1. First, we define a slack variable
δ = [δk, · · · , δk]T ≥ 0. Then, by applying the S-Lemma in
Lemma 1, we transform (26) into the following equivalent
linear matrix inequalities (LMIs)[

δINxM + T k tHk
tk tk − akΓ

th
k − δkζ

2
k

]
⪰ 0,∀k. (27)

Next, we can apply Schur’s complement to handle the worst-
case interference power constraint in (21). In this case, we
let W−k = [w1, · · · ,wk−1,wk+1, · · · ,wK ] ∈ CM×(K−1).
Accordingly, we recast interference-plus-noises (INs) in (21)
into the following matrix inequalities [72].[
ηk − σ2

k mH
k

mk I(K−1)

]
⪰ −

[
01×M
WH

−k

]∑
ℓ∈L

(
ψℓ,kΨ

H
ℓ,k

[
0N×1

[
ϕℓ
]
1×(K−1)

])
−
∑
ℓ∈L

([[
ϕHℓ
]
(K−1)×1

01×N

]
ψℓ,kΨℓ,k

)[
0M×1 W−k

]
,∀k, (28)

where, mk =
((

hHk +
∑
ℓ∈L ψℓ,kϕ

H
ℓ Ĥℓ,k

)
W−k

)H
∈

C(K−1)×1. Next we define the slack variable υ =

[υ1 · · · υk]T ≥ 0. Then, employing the general sign definite-
ness in Lemma 2 yields the following equivalent LMIsηk − σ2

k − υkN mH
k 01×M

mk IK−1 ζkW
H
−k

0M×1 ζkW−k υkIM

 ⪰ 0,∀k. (29)

Substituting the linearized constraints, accordingly, at iteration
ι+ 1, problem (19) can be re-stated as

P : minimize
W,a,δ,η,z,υ

f
(ι)
W (z) ≜ −z −Qt(a) (30a)

s. t. (27), (29), (19c) − (19f) (30b)
δ ≥ 0,η ≥ 0,υ ≥ 0 (30c)

where η stands for [η1, · · · , ηk]T . Problem (30) is convex and
can be solved using convex optimization tools e.g. CVX [73].

C. Passive RIS-Beamforming Design

For a given precoding matrix W, we aim to optimize the
RIS phase shifts by addressing the following problem,

minimize
ϕ,W,a,z

− z −Qt(a), (31a)

s. t. γk(W,ϕ) ≥ akΓ
th
k ,∀∥Ψk∥ ≤ ζk,∀k ∈ K, (31b)

|ϕn,ℓ| = 1, ∀n ∈ N ,∀ℓ ∈ L, (31c)
0 ≤ ak ≤ 1, ∀k ∈ K, (31d)
ψℓa ≥ z, ∀ℓ ∈ L. (31e)

Following a similar procedure in the previous subsection, we
first tackle the nonconvexity of constraint (31b). Specifically,
we reformulate constraint (31b) as (20) and (21) to facilitate
solving problem (31). To convexify the L.H.S of (20), we
derive its lower bound in the following proposition.

Proposition 2. For any feasible ϕ(ι)
k and η(ι)k , we can define

the L.H.S of (20) as follows∣∣∣(hHk +
∑
ℓ∈L

ψk,ℓϕ
H
ℓ Hℓ,k

)
wk

∣∣∣2
ηk

≥ vHk T̃ kvk+2ℜ
{
t̃
T
k vk

}
+ t̃k,

(32)
where vk = vec

(∑
ℓ∈L ψℓ,kΨ

∗
ℓ,k

)
while T̃ k, t̃k, and t̃k are

given as

t̃k = 2ℜ
{
q̃
(ι),H
k wkw

H
k q̃k

}
(η

(ι)
k )−1−q̃

(ι),H
k wwH

k q̃ιkηk(η
ι
k)

−2,
(33)

t̃k =vec
(
Q̃1,kwwH

k

)
(ηιk)

−1 + vec
(
Q2,kwkwk

)
(ηιk)

−1

− vec
(
Q3,kw

(ι)
k w

(ι),H
k

)
ηk(η

ι
k)

−2, (34)

T̃ k =
(
wkw

(ι),H
k ⊗ Φ̃1,k

)
(ηιk)

−1 +
(
w

(ι)
k wH

k ⊗ Φ̃2,k

)
(ηιk)

−1

−
(
w(ι)w

(ι),H
k ⊗ Φ̃3,k

)
ηk(η

ι
k)

−2, (35)

in which q̃
(ι),H
k = hHk +

∑
ℓ∈L ψℓ,kϕ

(ι),H
ℓ Ĥℓ,k,

q̃k = hk +
∑
ℓ∈L ψℓ,kĤ

H
ℓ,kϕℓ, q̃

(ι)
k = hHk +∑

ℓ∈L ψℓ,kϕ
(ι),H
ℓ Ĥℓ,k, Q̃1,k =

∑
ℓ∈L ψℓ,kϕℓq̃

(ι),H
k ,

Q̃2,k =
∑
ℓ∈L ψℓ,kϕ

(ι)
ℓ q̃k, Q̃3,k =

∑
ℓ∈L ψℓ,kϕ

(ι)
ℓ q̃

(ι),H
k ,
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Algorithm 1 PROPOSED ALTERNATING OPTIMIZATION AL-
GORITHM

Initialization: Set ι = 1 and initialize feasible points for
(W(0),ϕ(0),a(0),η(0)).

1: repeat
2: Solve (30) for given ϕ(ι) to obtain the optimal solutions

(a∗,W∗,η∗) and update (a(ι+1),W(ι+1),η(ι+1)) :=
((a∗,W∗,η∗);

3: Solve (39) for given (W(ι+1)) to obtain the optimal
solutions (ϕ∗,η∗) and update (a∗,ϕ(ι+1),η(ι+1)) :=
(a∗,ϕ∗,η∗);

4: Set ι = ι+ 1;
5: until The fractional decrease in objective value is less than α.
6: Output: (W∗,ϕ∗,a∗).

Φ̃1,k =
∑
ℓ∈L ψℓ,kϕ

∗
ℓϕ

(ι),T
ℓ , Φ̃2,k =

∑
ℓ∈L ψℓ,kϕ

(ι),∗
ℓ ϕTℓ ,

and Φ̃3,k =
∑
ℓ∈L ψℓ,kϕ

(ι),∗
ℓ ϕ

(ι),T
ℓ .

Proof: The proof is summarized in the Appendix, follow-
ing the procedure given in [35].

Substituting (32) into the worst-case useful signal power,
we get the following

vHk T̃ kvk+2ℜ
{
t̃
T
k vk

}
+t̃k≥akΓth

k ,∀∥Ψk∥ ≤ ζk,∀k, ∀ℓ. (36)

Next, we employ the S-procedure (S-Lemma) in Lemma 1
to tackle the channel uncertainty in (36). Let δ̃ =
[δ̃k, · · · , δ̃k]T ≥ 0 be a slack variable and let υ̃ =
[υ̃1 · · · υ̃k]T ≥ 0. Applying the S-Lemma, we transform (36)
into the equivalent LMIs as follows[

δ̃kILNlxM + T̃ k t̃
H
k

t̃k t̃k − akΓ
th
k − δ̃kζ

2
k

]
⪰ 0,∀k, (37)

In addition, we recast INs into matrix inequalities. Removing
the unrelated part to ϕ from the LMIs in (29), one yields[

ηk − σ2
k − υ̃kN mH

k

mk IK−1

]
⪰ 0,∀k. (38)

Accordingly, at iteration ι+1, we optimize the RIS phase shift
design as follows

minimize
ϕ,a,η,z,υ̃,δ̃

f
(ι)
ϕ (z) ≜ −z −Qt(a) (39a)

s. t. (37), (38), (31c), (31d), (31e) (39b)
δ̃ ≥ 0,η ≥ 0, υ̃ ≥ 0. (39c)

Here η stands for [η1, · · · , ηk]T . As can be observed, prob-
lem 39 is non-convex due to the unit modulus constraint
in (31c). To avoid increasing the complexity of problem (39),
we relax the non-convex constraint (31c) to a convex inequal-
ity constraint, followed by normalization to ensure equality
at convergence. The phase shift design problem can also be
solved using the penalty convex-concave procedure (CCP)
method, as detailed in [35]. Consequently, the reformulated
problem becomes convex and can be solved using standard
convex optimization tools such as CVX [73].

D. Joint Robust BS-Precoding and RIS-Beamforming Design
The overall joint robust BS-precoding and RIS-BF design

for solving problem (9) is summarized in Algorithm 1. In par-
ticular, the solution process initializes by selecting a feasible

point for (W(0),ϕ(0),a(0),η(0)). Then, the algorithm tends to
optimize {a,W,η} for given ϕ and {a,ϕ,η} for given W,
alternatively in each following iteration. This can be done by
solving (30) and (39) for given ϕ and W, respectively. The
iterative procedure continues until the fractional decrease in
the value of the objective function for the overall problem is
less than a predefined threshold α = 10−3.

1) Convergence Analysis: The convergence of Algorithm 1
is discussed in the following proposition.

Proposition 3. Algorithm 1 converges to a fixed point after a
finite number of iterations.

Proof: As proved in [74], Algorithm 1 generates a
sequence of {W(∗),ϕ(∗),a(∗),η(∗)}’s which corresponds to
non-decreasing objective values of problem (9) as well as the
cost function. As a result, the stationary point of the original
problem is obtained after a sufficient number of iterations.

Additionally, the simulation results in the following section
numerically verify the convergence analysis.

2) Complexity Analysis: The complexity of implementing
Algorithm 1 mainly depends on solving (30) and (39) in
each iteration. As analyzed in [75, Chapter 6], the worst-case
complexity of solving problem (30) using the interior point
method is given by

X(30) = O
(√

2KL+ 6K + L(MK + 4K + 1)3
)
. (40)

While the worst-case complexity of solving problem (39)
using the interior point method is given by

X(39) = O
(√

2KL+NL+ 4K + L(NL+4K+1)3
)
. (41)

Let J iter be the iteration number required for Algorithm 1
converging. This algorithm’s complexity can be estimated as

Xtotal = J iter (X(30) +X(39)) . (42)

3) Selection of the penalty parameter µ: Selecting an
appropriate penalty parameter is critical to ensure the over-
all system performance of Algorithm 1. It is observed that
choosing a large value for µ may accelerate the convergence
of Algorithm 1 and lead to an exact binary solution. However,
this can also result in significant performance degradation due
to improper convergence. In our simulations, we found that
setting the penalty parameter to a sufficiently small value,
µ = 0.002 guarantees the convergence of Algorithm 1 while
maintaining the best performance [50].

4) Feasible points initialization: The initial feasible points
for the first iteration of the proposed algorithm are generated
as follows. First, we randomly generate a(0) and ϕ(0) to
satisfy constraints (22f) and (22e), respectively. This ensures
that the initial points comply with the respective constraints.
For simplicity, the feasible point of the precoder W(0) is
randomly generated with equal power allocation. Next, we
generate the soft interference threshold η(0) by setting η(0)k =∑
i∈K/k

∣∣(hHk +
∑
ℓ∈L ψk,ℓϕ

(0),H
ℓ Hℓ,k)w

(0)
i

∣∣2 + σ2
k,∀k ∈ K.

V. NUMERICAL RESULTS

This section provides a detailed discussion of the presented
numerical results to evaluate the performance of the proposed
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TABLE II: SIMULATION PARAMETERS

Parameter Value
Carrier frequency (fc) 2.4 GHz
BS transmit power (Pmax) 38 dBm
Noise power −90 dBm
Number of RIS (L) 3
pathloss exponent BS-RIS (αbr) 2.7
pathloss exponent RIS-user (αru) 2.3
Antenna and element spacing 0.5λ
Rician factor (ξ) 3 dB
Penalty parameter (µ) 0.002

robust max-min fairness design for a multi-RIS-aided system.
We consider a 3-D system model, where the BS is deployed
at the origin with the height of 10 m i.e at position (0, 0, 10).
The users are randomly distributed with uniform probability
density as illustrated in Fig. 1 into three different groups or
locations representing the different hotspot areas. In hotspot
1, 2 and 3, users are distributed between 10 and 30 m in
the y-axis, −10 and −30 m in the y-axis and 50 and 70 m
in the x-axis, respectively. Note that the height of the users
is fixed at 1.5 m. It is worth mentioning that the RISs and
the users in their respective hotspot areas are not co-located.
However, the RISs are deployed close to their respective
coverage area (hotspot) for better performance. Accordingly,
an RIS is deployed close to each hotspot area as follows:
(−5, 20, 3), (−5,−20, 3), and (60,−5, 3). In this case, this
follows the user-side RIS deployment. For better performance,
the height of the RIS is set at 3 m which is close to the height
of the users in the hotspot areas [26]. It is important to note
that, for all our simulations, the direct link from the BS to the
users is assumed to be unavailable i.e. hk = 0M×1,∀k ∈ K.
In this case, the RISs are deployed as alternative paths to serve
users in the hotspot areas. Unless otherwise stated, the other
setting parameters can be found in Table II.

Regarding the channel model, we employ a Rician channel
model for all the channels. In particular, the RIS ℓ to user
k channel gℓ,k can be written as gℓ,k =

√
ξ

1+ξg
LOS
ℓ,k +√

1
1+ξg

NLOS
ℓ,k , where gLOS

ℓ,k and gNLOS
ℓ,k denote the LOS and

NLOS components, respectively. In this case, ξ denotes the
considered Rician factor. In addition, the distance-dependent
path loss is modeled as follows PL = −30−10α log10(d) dB
where d is the link distance between two nodes and α is the
path loss exponent [32]. Note that the constant −30 dB is the
path loss at reference distance 1 m. In addition, the error bound
of the CSI for the cascaded BS-RIS-user k channel is defined
as ζk = ϱ∥Ĥk∥. In this case, ϱ ∈ [0, 1] is the measure of the
relative amount of uncertainty. The simulation results in this
work are averaged over 103 channel realizations. To evaluate
the performance of the proposed design, we compare the
proposed scheme with the following three baseline schemes:

• Max-sum: One aims to maximize the total number of
well-served users assisted by all the RISs for all possible
channel error realizations without considering fairness.
This design was considered in [27] assuming the avail-
ability of perfect CSI for a system with a single RIS.
Accordingly, for a fair comparison with the robust max-
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Fig. 3: Minimum number of well-served users by each RIS as a
function of the number of iterations.
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Fig. 4: Maximum number of well-served users as a function of the
number of iterations.

min fairness design in a multi-RIS-aided network, we
designed the robust max-sum as a baseline scheme for
the considered system model.

• Max-sum random phase: One aims to optimize the total
well-served user number assisted by all RISs without
optimizing the RIS phase shifts. In this case, the RISs are
deployed in different hotspot areas as random scatterers.

• Max-min random phase: One considers fairness by maxi-
mizing the minimum number of well-served users by each
RIS without optimizing the phases of the RIS. Similarly,
the RISs in this case represent random scatterers.

Next, we investigate the convergence behavior of the max-
min fairness design and the max-sum design. Here, the con-
vergence of the two designs is demonstrated for different
channel uncertainty levels set at ϱ = 0.00, 0.01, and 0.02.
In this case, ϱ = 0.00 represents the case where the CSI is
considered to be perfect. We set Γth

k with values that vary
between 3 dB to 10 dB. In this investigation K = 12, M = 9,
N = 8, L = 3, and ξ = 3 dB. Note that we demonstrate the
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Fig. 5: The difference between the maximum and the minimum
number of users well-served per RIS

algorithm convergence within 14 iterations. Firstly, we show
the convergence of the proposed design in Fig. 3 where we
plot the minimum number of well-served users per each RIS
versus the number of iterations. In Fig. 4, we demonstrate
the convergence of the max-sum design. Here, we show the
maximum number of well-served users as a function of the
number of iterations. It is important to note that both schemes
converge to a stationary point in about 8 iterations. The cost
function for both the max-min fairness (max-min proposed)
and the max-sum design increases monotonically until con-
vergence, satisfying the inner approximation properties. Thus,
demonstrating that the problems converge to at least a locally
optimal solution [74].

In Fig. 5, we show the difference between the maximum
and minimum numbers of well-served users per each RIS.
Here, the uncertainty level is set at ϱ = 0.01, the number
of users K = 12, the number of RISs L = 3, the number
of RIS elements is set at N = 8 and the number of BS
antennas M = 9. We set Γth

k with values that vary between
3 dB to 10 dB. Note that S is the difference between the
maximum and the minimum number of well-served users per
RIS. The results in Fig. 5 demonstrate that the proposed design
provides a more fair and consistent service as compared to
the max-sum design. We can see that the difference between
the maximum and minimum numbers of well-served users of
each RIS is high in some channel realizations for the max-
sum scheme. This proves that in some cases very less users
are likely to be well-served in certain hotspot areas meaning
the users in those locations will be out of coverage. In this
case, the proposed design demonstrates its ability to provide
fair coverage in different hotspot areas. This is important
since customer studies have shown that users value more
consistent quality of telecommunication services, rather than
burst periods of high and low quality in different hotspot
locations [63].

In Fig. 6, we show the minimum number of well-served
users by each RIS as a function of channel uncertainty level
ϱ. Here K = 18, M = 9, N = 8, Γth

k = 6 dB, ∀k ∈ K and
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Fig. 6: Average minimum number of well-served users by each RIS
as a function of channel error uncertainty level (ϱ)

the Rician factor is set at 3 dB. Based on the results in Fig. 6,
we observe that the max-min fairness proposed design out-
performs all the considered benchmark schemes in providing
fair coverage. Note that when the CSI is imperfect it becomes
highly challenging to serve users with their desired QoS as
studied in the previous work [26]. Accordingly, the results
in Fig. 6 demonstrate that the design of robust optimization
for max-min fairness results in additional flexibility to serve
users with their desired QoS under various channel uncertainty
levels. In this case, the design ensures that the system is
robust to CSI errors. However, note that as the uncertainty
level increases, the average minimum number of well-served
users generally decreases across all considered schemes. This
indicates that higher channel uncertainty negatively impacts
the system’s ability to provide users with their desired QoS.
Additionally, it is worth noting that the schemes with random
phases where RISs are deployed as random scatterers result
in less performance on average. This demonstrates the impor-
tance of RIS phase shift optimization in RIS-assisted networks
for improved BF gain.

In Fig. 7, we investigate the impact of varying the number
of BS antennas on the minimum number of well-served users
of each RIS. Here K = 18, M varies between 6 to 12,
Γth
k = 6 dB, ∀k ∈ K and the Rician factor is set at 3 dB.

We set ϱ = 0.01. We consider two cases (a) with N = 8 and
(b) with N = 16. In this case, the results demonstrate that
increasing the number of antennas increases the number of
well-served users by each RIS. Additionally, we note that by
increasing the number of RIS elements the average minimum
number of well-served users in each hotspot area increases.
In this case, we observed that increasing the number of
passive RIS elements leads to improved performance gain for
a fixed number of active antenna elements at the BS. This
is very important since performance gain can be improved
in an energy and cost-efficient manner without increasing the
number of active elements. In this case, deploying RISs leads
to a reduction in energy consumption for powering wireless
systems. This is crucial in smart cities as it will help address
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(a) Number of elements per RIS N = 8
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(b) Number of elements per RIS N = 16

Fig. 7: Average minimum number of well-served users by each RIS
as a function of the number of BS antennas M

the ecological concerns raised in various countries regarding
the use of fossil fuels [4].

In Fig. 8 we investigate the performance of the considered
schemes as a function of the Rician factor. Here K = 18,
M = 9, N = 8, Γth

k = 6 dB, ∀k ∈ K and we vary the
Rician factor between 0 to 9 dB. We set ϱ = 0.01. We note
that the proposed design results in better performance gain
than the max-sum design and the design with random phase.
However, the performance gain between the proposed max-
min fairness scheme and the max-sum scheme decreases with
the increasing Rician factor. This is because in strong LOS
propagation, the proposed scheme has fewer combinations
than the max-sum scheme, resulting in a more pronounced
decrease in the average minimum number of well-served users.
Additionally, we note that the minimum number of well-served
users per RIS decreases with increasing the Rician factor for
all the considered schemes. This is primarily because in strong
LOS propagation, the available diversity decreases, making
it difficult to generate independent beams with satisfactory
signal quality. To further highlight the concept of geographical
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Fig. 8: Average minimum number of well-served users by each RIS
as a function of the Rician factor (dB)
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Fig. 9: Average minimum number of well-served users by each RIS
as a function of BS transmit power (Pmax)

fairness by comparing the proposed design with the max-
sum design using Jain’s fairness index. Here, Jain’s fairness
index can be mathematically modeled as follows as follows:

Findex =
(
∑L

ℓ=1 xℓ)
2

L·
∑L

ℓ=1 x
2
ℓ

, where xℓ represents the number of well-
served users of each RIS. Note that Jain’s fairness index is
always equal to 1 for the proposed scheme and around 0.94
for the maxsum scheme with varying the Rician factor. This
further demonstrates that the proposed scheme maintains fair
access to service to users in different geographical zones.

In Fig. 9 we investigate the performance of the considered
scheme as a function of the maximum available power at the
BS. Here K = 18, M = 9, N = 8, Γth

k = 6 dB, ∀k ∈ K and
we vary the BS transmit power between 34 dBm to 42 dBm.
The level of channel error uncertainty is set at ϱ = 0.01.
It is important to note that the proposed design (max-min
fairness proposed) provides better performance compared to
the relevant benchmark schemes for all the considered power
levels. Further, we note that the average minimum number of
well-served users by each RIS increases with increasing the
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maximum available power at the BS. In this context, increasing
the available power at the BS allows the BS to transmit
stronger signals thereby providing sufficient resources to meet
the minimum QoS requirements for a large number of users.
However, we note that with increasing BS transmit power,
the performance gap between the max-min fairness proposed
scheme and the max-sum scheme in terms of the average
minimum number of well-served users per RIS increases. In
this case, increasing the available transmit power at the BS
does not necessarily improve geographical fairness. Instead,
the results demonstrate that with increased power levels, the
BS tends to favor or allocate more power to users closer to
the RIS with favorable conditions thereby resulting in less
performance of the max-sum design in certain locations. Thus,
the max-sum design becomes more unfair to users in certain
hotspot areas.
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Fig. 10: Difference in the minimum number of well-served users in
proximity to each RIS between the proposed scheme and the max-
sum scheme as a percentage of channel realizations

In Fig. 10, we present the difference in the minimum
number of well-served users in proximity to each RIS between
the proposed and the max-sum schemes as a percentage over
a number of channel realizations. Here, the results show a
load imbalance in some channel realizations between the two
schemes. Specifically, the max-sum scheme is unfair 58% of
the realizations with around 2% worst-case scenario where
there is a difference of 2 users between the two schemes. In
this work, we consider 9 BS antennas and 3 RISs. Accordingly,
the worst-case scenario highlights that at most 1 user is likely
to be served in one of the hotspot areas with the max-sum
scheme, thus, an increased chance that the hotspot will be left
out of coverage. Note that this performance is likely to vary
depending on the scenario and the system setup.

Overall, it is apparent that the robust max-min fairness
resource allocation design results in more geographically fair
coverage or service to users in different hotspot areas despite
the availability of unfair geographical locations. The gain of
the proposed design varies based on the considered scenario
and several system parameters including the number of anten-
nas, the number of RIS elements, the level of channel error

uncertainty, the total available power at the BS, and the Rician
factor.

VI. CONCLUSIONS

This work solved the robust fairness problem to ensure geo-
graphical fairness in multi-RIS-assisted networks. Specifically,
we formulate an optimization problem to maximize the min-
imum expected number of well-served users in proximity to
each RIS while considering the total available transmit power
at the BS and the worst-case QoS constraints. The resulting
problem is a MINLP which is highly challenging to solve
efficiently. Thus, a practical AO algorithm was proposed to
handle the robust max-min fairness resource allocation design.
To address the semi-infinite channel uncertainty constraints
within the bounded CSI error model framework, we resorted
to the S-procedure (S-Lemma) and general sign-definiteness.
Simulation results demonstrated that the proposed design
outperforms all the considered benchmark schemes in pro-
viding fair coverage for different system settings. Notably, the
proposed design results in a more fair and consistent service
in all hotspot areas supported by distributed RISs compared
to the max-sum scheme and the scheme with random phases.
Specifically, maximizing the sum of well-served users of all
RIS in a multi-RIS-assisted network results in inconsistent
service in some geographical locations. Accordingly, this study
demonstrated the importance of ensuring geographical fairness
through the robust max-min fairness design compared to the
robust max-sum design which focuses on maximizing the
sum of well-served users without considering consistent and
reliable service availability in different geographical locations.
Additionally, results demonstrate the flexibility provided by
the robust optimization design in serving users with their
desired QoS in different hotspot areas under various channel
uncertainty levels.

Due to the complexity of the proposed design, future work
will resort to deep learning techniques for channel estimation
and solving the highly challenging optimization problem,
especially in dynamic environments.

APPENDIX

For a complex scalar variable y and variable t, the first-order
Taylor approximation is given as follows |y|2

t ≥ 2ℜ{y∗,(ι)y}
t(ι)

−
y∗,(ι)y(ι)

(t(ι))2
t(ι). For the Base-Station Precoding Design sub-

problem, by substituting y, y(ι), t and t(ι) with |(hHk +∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wk|2, |(hHk +

∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)w

(ι)
k |2,

ηk and η(ι)k , respectively, we obtain

|(hHk +
∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wk|2

ηk

≥ 2Re

{(
hH
k +

∑
ℓ∈L

ψℓ,kϕ
H
ℓ

(
Ĥℓ,k +Ψℓ,k

))
w

(ι)
k wH

k(
hk +

∑
ℓ∈L

ψℓ,k

(
Ĥℓ,k +Ψℓ,k

)
ϕℓ

)}
(η

(ι)
k )−1

−

(
hH
k +

∑
ℓ∈L

ψℓ,kϕ
H
ℓ

(
Ĥℓ,k +Ψℓ,k

))
w

(ι)
k w

(ι),H
k
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(
hk +

∑
ℓ∈L

ψℓ,k

(
Ĥℓ,k +Ψℓ,k

)
ϕℓ

)
ηk(η

(ι)
k )−2. (43)

For the Passive RIS-BF Design subproblem, by substituting
y, y(ι), t and t(ι) with |(hHk +

∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wk|2,

|(hHk +
∑
ℓ∈L ψk,ℓϕ

(ι),H
ℓ Hℓ,k)wk|2, ηk and η(ι)k , respectively,

we obtain

|(hHk +
∑
ℓ∈L ψk,ℓϕ

H
ℓ Hℓ,k)wk|2

ηk

≥ 2Re

{(
hH
k +

∑
ℓ∈L

ψℓ,kϕ
(ι),H
ℓ

(
Ĥℓ,k +Ψℓ,k

)H)

wkw
H
k

(
hk +

∑
ℓ∈L

ψℓ,k

(
Ĥℓ,k +Ψℓ,k

)H
ϕℓ

)}
(η

(ι)
k )−1

−

(
hH
k +

∑
ℓ∈L

ψℓ,kϕ
(ι),H
ℓ

(
Ĥℓ,k +Ψℓ,k

))
wkw

H
k(

hk +
∑
ℓ∈L

ψℓ,k

(
Ĥℓ,k +Ψℓ,k

)H
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Note that Hℓ,k = Ĥℓ,k + Ψℓ,k. Accordingly, using
mathematical transformations i.e Tr

(
AHB

)
=

vecT(A) vec(B) and Tr(ABCD) =
(
vecT(D)

)T ⊗(
CT ⊗A

)
vec(B) [76], the expression on the right-hand

side of (43) and (44) for the precoding design and the RIS
phase shift design can be expanded to obtain the linear
approximation function for the precoding and RIS phase shift
worst-case useful signal power, respectively. Hence, end of
proof.
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