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and Short-Term Forecasts
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Abstract—Fuel cell electric vehicles are usually hybrid vehicles
requiring an energy management strategy (EMS) to determine
the power split between the fuel cell system and a battery.
The performance of an EMS can be improved by taking into
account forecasts of the vehicle velocity. Simple estimates derived
from static route information, e.g., speed limits, can already
provide a significant performance increase because of being
available before departure and for the entire driving mission.
However, such long-term predictions can deviate considerably
from the actual velocity because of dynamic influences, such
as traffic, roadworks, or weather. Here, short-term predictions
from vehicular communication systems provide more accurate
real-time information and allow the EMS to react better to
the actual driving conditions. This article proposes a predictive
EMS that efficiently combines the information of long-term and
short-term forecasts. Before departure, a dynamic programming
algorithm optimizes the energy management based on a-priori
available route data yielding a distance-based map describing the
optimal cost-to-go. While driving, a model predictive controller
(MPC) optimizes the energy management online considering
the information of the short-term prediction and including the
optimal cost-to-go as terminal cost. A computationally efficient
linear MPC implementation is proposed, and the significant
performance benefit over an MPC that tracks an optimized
battery state-of-charge reference is demonstrated in a numerical
study.

Index Terms—Cost-to-go, dynamic programming, energy man-
agement, fuel cell vehicle, fuel optimal control, model predictive
control, velocity prediction.

I. INTRODUCTION

FUEL fuel cell electric vehicles (FCEVs) are commonly

designed as hybrid vehicles, i.e., their powertrain includes

a battery as an auxiliary power source besides the fuel cell sys-

tem (FCS). The battery allows for recuperating kinetic energy

and avoiding low-efficient operation ranges of the FCS [1].

In this way, the hybrid configuration of the powertrain offers

benefits in terms of fuel economy, which, however, strongly

rely on the energy management, i.e., the power split between
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FCS and battery. Besides fuel economy, other aspects are

associated with the energy management, such as battery charge

control and the lifetimes of the power sources: Extremely

charging or discharging the battery provokes degradation and

might even cause infeasible operation, particularly in the

case of heavy-duty vehicles. Therefore, the battery’s state of

charge (SoC) should remain within a predefined range during

operation. To mitigate the degradation of the FCS, dynamic

transients and high peaks in the FCS power demand should be

avoided [2], [3]. The globally optimal power split considering

the aforementioned criteria could only be realized if the power

demand of the entire driving mission would be known a-priori,

which is noncausal [4]. Here, predictive energy management

strategies (EMSs) come into play. With an appropriate vehicle

model, the future power demand can be estimated based on

the altitude and velocity profiles of the upcoming part of a

driving mission. Whereas the altitude can directly be derived

from topographical data if the route is planned in advance, the

velocity must be predicted.

Vehicle velocity prediction is a challenging task due to

numerous stochastic influences such as driver behavior, traffic

flow, traffic signals, and environmental influences [5], [6],

[7]. The uncertainty grows with the length of the prediction

horizon, which is why it is impossible to predict the velocity

of a human-driven vehicle for an entire driving mission

with a high accuracy. An estimate of the velocity along a

planned route can be based on a-priori available static route

information such as speed limits [8], [9], [10]. Even though

such a prediction is not very accurate, it can considerably

improve the performance because it is available for the entire

driving mission in advance. In contrast, more accurate velocity

forecasts can be provided by onboard, short-term prediction

methods based on intelligent transportation systems (ITSs). In

addition to static route information, these methods are pro-

vided with real-time information regarding the actual driving

conditions, such as traffic, roadworks, or weather, through

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communication [11], [12], [13].

In the literature, two-stage EMS approaches are often found

to consider long-term predictions of the entire driving mission.

Commonly, a reference trajectory for the battery’s state of

charge (SoC) is optimized based on the long-term prediction

in the first stage. This offline optimization is often performed

with dynamic programming (DP) [14], [15], which is a numer-

ical method for dynamic optimization problems. The strengths

of DP are the capabilities to deal with nonlinear problems and
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consider constraints on inputs and states. In the second stage,

an online strategy determines the power split between the pri-

mary power source and the battery while driving such that the

SoC reference profile is tracked. To improve the performance

and react to the actual driving conditions, online strategies can

additionally take into account the more accurate short-term

predictions, e.g., based on model predictive control (MPC),

an optimal control framework allowing to consider constraints

and predictions within a certain prediction horizon [14], [16],

[17].

However, using SoC reference trajectories to consider feed-

forward information has a drawback. Optimized long-term

information of the remaining trip is only available along the

SoC reference trajectory. If the actual power demand deviates

from the underlying long-term forecast, which is likely be-

cause the forecast is only based on static route information, the

actual SoC is expected to deviate from its reference. Tracking

the SoC reference trajectory, i.e., forcing the SoC back to

the reference, is a suboptimal behavior [18]. Of course, the

reference trajectory could be re-optimized, but this requires

additional computational resources.

An effective alternative to consider optimized long-term

information is the optimal cost-to-go [19], which can be

computed with DP [20], [18], [21]. The optimal cost-to-go

describes the minimum amount of fuel needed to reach the

intended destination as a function of the position along the

trip and the SoC. This means that long-term information is

available for the entire SoC range in contrast to an SoC refer-

ence trajectory. Again, MPC is a suitable basis for additionally

considering short-term predictions to react to the actual driving

conditions. Here, the optimal cost-to-go can be included as

terminal cost in the objective function [20], [22], [23].

Even though cost-to-go-based MPC methods are available

in the literature, they focus on hybrid electric vehicles powered

by internal combustion engines but not FCEVs. Moreover, the

majority of the cost-to-go-based MPCs are based on nonlinear

formulations, which might complicate their real-time onboard

implementation [24].

The main contribution of this work is a predictive EMS

for FCEVs using DP to compute the optimal cost-to-go

based on a-priori available static route information before

departure and a linear, cost-to-go-based MPC taking into

account short-term predictions in order to react to actual

driving conditions. The distinctive feature of the proposed

EMS is that optimized long-term information is considered

in the form of the optimal cost-to-go, which, unlike an SoC

reference trajectory, provides information within the entire

SoC range. Consequently, optimized information is available

even if the actual SoC completely deviates from the originally

optimal path. The DP algorithm used to conduct the offline

optimization allows to consider state and input constraints and

can handle nonlinearities. The computational complexity of

the DP, which is often reported to be a limiting factor [21],

[23], is kept low because only one state is involved and a

rather rough discretization is sufficient for the optimization

based on the long-term prediction derived from static route

information. The offline DP yields the optimal cost-to-go in

the form of a 2-D map depending on the position along the

MFCS
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Fig. 1: Hybrid vehicle configuration consisting of FCS, bat-

tery, traction motor, and auxiliary systems (AS). The arrows

indicate the possible directions of the power flows.

trip and the SoC. Here, a distance-based rather than a time-

based description of the cost-to-go is chosen to be independent

of the actual velocity, which is initially unknown. The online

energy management is conducted with an MPC considering

real-time, short-term predictions within the prediction horizon

and an approximation of the optimal cost-to-go as terminal

cost. In this way, the MPC efficiently combines the short-

term prediction with the optimized long-term information and

minimizes the amount of fuel for the trip remainder in each

instant. The proposed MPC is based on a computationally

efficient, linear formulation, which is highly beneficial for the

onboard implementation.

The remainder of this article is structured as follows. First, a

control-oriented model of the FCEV is presented in Section II.

Then, the proposed EMS is described in Section III, followed

by the linear formulation of the MPC in Section IV. In

Section V, the proposed MPC is compared to an MPC that

tracks an optimized SoC reference trajectory. The comparison

is based on the simulation of a real-world driving cycle. A

conclusion finalizes this article.

II. SYSTEM MODELING

Optimizing the energy management requires knowledge of

the future vehicle power demand and the powertrain dynamics.

A prediction of the power demand is not directly available

but can be derived from a forecast of the vehicle velocity

considering longitudinal vehicle dynamics. In the following,

control-oriented models of the vehicle and the hybrid power-

train dynamics are described.

A. Vehicle Dynamics

The longitudinal model of the vehicle considers the traction,

aerodynamic drag, rolling resistance, and gravitational force

and is expressed by

δm
dv

dt
=

Ptr

v
−

ρAfcd

2
v2 − crmg cos θ −mg sin θ (1)

where v denotes the vehicle velocity, t the time, m the vehicle

mass, δ the correction coefficient of rotating mass, ρ the air

density, Af the vehicle frontal area, cd the drag coefficient,

cr the rolling resistance coefficient, g the gravitational accel-

eration, and θ the inclination angle of the road. The traction
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power Ptr is provided by an electric motor. The input power

of the motor

Pm = Ptr η
−sgn Ptr
m (2)

includes power losses in the inverter and the motor approxi-

mated by the efficiency ηm. The overall electric power demand

Pel of the vehicle is the sum of the motor input power and the

power consumption of the auxiliary systems Paux:

Pel = Pm + Paux. (3)

With that, a prediction of the electric power demand can

be derived from predictions of the vehicle velocity and the

inclination angle of the road.

B. Hybrid Powertrain

The vehicle is equipped with a hybrid powertrain with two

power sources, the FCS and a battery (see Fig. 1). Whereas the

FCS can only provide power, the battery can also store energy

coming from the FCS or the electric motor during regenerative

braking. The sum of the FCS power PFCS and the battery

power Pb satisfies the overall electric load:

Pel = PFCS + Pb. (4)

The hybrid configuration of the powertrain implies one de-

gree of freedom, i.e., the power split between the FCS and

the battery. The EMS determines the FCS power, which is

assumed to be provided within reasonable time. The residual

of the power demand is provided by the battery, subject to the

corresponding constraints.

The FCS is considered in the form of a simplified, qua-

sistatic model determined by measurements, where the fuel

consumption rate ṁH2
of the FCS is a monotonically increas-

ing function of the FCS power. The FCS model implicitly

considers the losses in the converter and the power demand of

the corresponding auxiliaries, such as the compressor.

The battery is modeled in the form of an equivalent circuit

model with three parameters: the open-circuit voltage VOC,

the internal battery resistance Rint, and the nominal battery

capacity Q0 [25]. The dynamics of the battery SoC ξ is

described by a nonlinear function depending on the battery

power:

dξ

dt
= f(Pb) = −

VOC −
√

V 2
OC − 4PbRint

2Q0Rint

. (5)

With this control-oriented description, the dynamic model of

the powertrain has only one state, which is the battery SoC.

III. PREDICTIVE ENERGY MANAGEMENT

The proposed predictive EMS comprises two stages. Before

departure, the energy management of the hybrid powertrain

is optimized based on a long-term prediction of the power

demand, which is available for the entire driving mission. This

offline optimization is conducted by DP and yields a 2-D map

describing the optimal cost-to-go, i.e., the minimum amount

of fuel required to reach the intended destination, as a function

of the position along the trip and the SoC.
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Fig. 2: The MPC optimizes the power split such that the total

fuel amount (T), which is the sum of the fuel consumed within

the prediction horizon (H) and the optimal cost-to-go (G), is

minimized. The optimal cost-to-go represents the fuel amount

of optimal paths for the trip remainder.

While driving, the online MPC successively optimizes the

power split considering a more accurate short-term prediction

and the optimal cost-to-go at the end of the prediction horizon.

Here, the cost-to-go provides optimized long-term information

for the entire SoC range. As illustrated in Fig. 2, the cost-to-go

decreases with an increasing SoC at the end of the prediction

horizon since more energy is available from the battery for

the remaining trip. However, a higher SoC at the end of the

prediction horizon implies a higher fuel consumption within

the horizon because the battery needs to be charged. The

optimal power split minimizes the sum of the fuel consumed

within the prediction horizon and the cost-to-go.

In the following, the two EMS stages and the corresponding

predictions are described in detail.

A. Offline Optimization With Dynamic Programming

The offline optimization of the energy management requires

a long-term prediction of the power demand. Planning the

route before departure gives access to static route information

such as the elevation profile and speed limits. Based on the

speed limits, an estimate of the vehicle velocity can be derived

considering simplified vehicle dynamics during transients and

maximum cornering speeds. With the known elevation profile

and the estimated velocity profile, an estimate of the vehicle

power demand for the entire driving mission can be derived

based on the vehicle model (1) - (3).

The optimization aims at minimizing the fuel consumption

for the planned trip under the consideration of the battery

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3424422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

dynamics and constraints

min J =

∫ t1

t0

ṁH2
(PFCS(t))dt (6a)

s.t. PFCS(t) ∈ U (6b)

Pb(t) ∈ B (6c)

ξ(t) ∈ X (6d)

ξ(t0) = ξ0 (6e)

ξ(t1) ∈ X1 (6f)

where the sets U , B, X , and X1 cover the feasible values

according to the specified constraints on the FCS power, the

battery power, the SoC, and the terminal SoC, respectively,

and ξ0 denotes the initial SoC. The set X1 is commonly

specified by a minimum boundary for the final SoC. Based on

Bellman’s principle of optimality, the discrete counterpart of

the dynamic optimization problem can be solved by a recursive

backward algorithm known as dynamic programming [26]. For

this purpose, the battery model (5) is discretized assuming a

zero-order hold for the power demand and the FCS power

giving

ξl+1 = ξl −
VOC −

√

V 2
OC − 4(Pel,l − PFCS,l)Rint

2Q0Rint

∆tl (7)

where ∆tl = tl+1 − tl. The problem is solved in the distance

domain meaning that the trip is divided into N − 1 distance

segments. Consequently, ∆tl varies depending on the velocity

and the length of the segment, and sections where the vehicle

velocity is zero are ignored. The mean power demand of the

l-th segment is derived from the prediction with

Pel,l =

∫ tl+1

tl
Pel dt

∆tl
. (8)

The DP algorithm optimizes a sequence of subproblems

starting at the position N − 1 and successively stepping

backwards until the beginning of the trip:

J∗

l (ξl) =min
PFCS,l

[

ṁH2
(PFCS,l)∆tl + J∗

l+1(ξl+1)
]

(9a)

s.t. PFCS,l ∈ Uq (9b)

Pb,l ∈ B (9c)

ξl+1 ∈ Xl+1 (9d)

∀ξl ∈ X q

∀l ∈ {1, . . . , N − 1}.

The finite sets Uq and X q result from the quantization of U and

X , respectively. The set Xl+1 ⊆ X covers the feasible states

at the position l + 1 subject to the constraints. The resulting

optimal cost-to-go function J∗

l (ξl) describes the minimum

amount of fuel needed to reach the intended destination from

the position l as a function of the SoC. The optimal cost-to-go

is stored as a discrete map for each position of the distance

grid. Moreover, the boundaries ξmin
l and ξmax

l of Xl are stored

for all positions.

The computational complexity of the DP algorithm grows

linearly with the number of segments and, thus, linearly

with the length of the long-term prediction if an equidistant

segmentation is chosen. However, the complexity can be kept

low because a rather rough segmentation is sufficient for the

offline optimization due to the limited accuracy of the long-

term prediction. To save further computational time, the step

size can also be determined adaptively depending on the power

demand signal [27].

B. Online Model Predictive Control

Since the long-term prediction is only based on static

route information, a deviation from the actual power demand

because of dynamic influences, such as traffic, roadworks,

or weather, is inevitable. To improve the performance and

better react to the actual driving conditions, the online MPC

additionally considers short-term predictions. Such predictions

can be provided by forecasting systems considering V2V and

V2I communication [11] and are expected to be more accurate

than the long-term prediction because, in addition to static

route data, they include real-time information.

The objective function of the MPC consists of two terms, the

fuel consumption within the prediction horizon and a terminal

cost

Jk =

k+Np−1
∑

j=k

ṁH2
(PFCS,j)Ts + J∗

k+Np
(ξk+Np

(P FCS,k)) (10)

where Ts denotes the constant sampling time and P FCS,k =
[PFCS,k, . . . , PFCS,k+Np−1]

T denotes the sequence of the FCS

power within the prediction horizon of Np samples. The index

k denotes quantities at the current instant. Note that the

indexing based on k is independent of the indexing based

on l used in the DP. The terminal cost represents the cost-

to-go at the end of the prediction horizon, which is obtained

by distance-based interpolation in the cost-to-go map resulting

from the offline optimization. It is a function of the terminal

SoC and, therefore, the sequence of control inputs.

The optimal sequence of control inputs at the instant k is

determined by minimizing the objective function

P ∗

FCS,k =arg min
P FCS,k

Jk (11a)

s.t. PFCS,k+n ∈ U , ∀n ∈ {0, . . . , Np − 1} (11b)

∆PFCS,k+n ∈ R, ∀n ∈ {0, . . . , Np − 1} (11c)

Pb,k+n ∈ B, ∀n ∈ {0, . . . , Np − 1} (11d)

ξk+n ∈ X , ∀n ∈ {1, . . . , Np − 1} (11e)

ξk+Np
∈ Xk+Np

(11f)

with

∆PFCS,k = PFCS,k − PFCS,k−1 (12)

whereby the short-term power demand prediction is consid-

ered as disturbance. The set R describes constraints on the

increments of the FCS power, which are necessary to avoid re-

questing infeasible transients from the FCS. The consideration

of these constraints is only relevant in the MPC because the

offline DP is based on a considerably rougher discretization,

where the FCS dynamics are negligible. The boundaries ξmin
k+Np

and ξmax
k+Np

defining the set of feasible states Xk+Np
at the end

of the prediction horizon are determined by distance-based

linear interpolation. The battery constraints (11d) as well as
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the state constraints (11e) and (11f) are implemented as soft

constraints to prevent infeasibility. According to the receding

horizon principle, only the first step P ∗

FCS,k is actually applied

to the system. In the next sampling instant, the measurements

and the short-term prediction are updated, and the procedure

is repeated [28].

The two terms of the objective function have counteracting

effects on the optimization. The minimization of the fuel

consumption within the prediction horizon is favored by a low

FCS power. However, a lower FCS power implies a lower SoC

at the end of the prediction horizon and, consequently, a higher

cost-to-go because less energy is stored in the battery. The

optimal power split is a trade-off and minimizes the amount

of fuel needed to reach the intended destination based on

the available information, which consists of the short-term

prediction and the optimized long-term information.

IV. LINEAR MPC FORMULATION

The optimal control problem of the online MPC (11) must

be solved onboard and in real time. Therefore, reducing the

computational complexity for solving the problem is highly

beneficial for the implementation. In this section, a compu-

tationally efficient linear MPC formulation is derived. First,

the powertrain model is linearized. Then, a local quadratic

approximation of the cost-to-go is formulated, and a physically

motivated objective function taking into account ohmic battery

losses is derived. The formulation allows to constrain incre-

ments of the FCS power to prevent the FCS from infeasible

power rates.

A. Model Linearization

The battery model (5) is linearized at the operating point

Pb,op = 0W yielding

dξ

dt
= −

Pb

Q0VOC

+R(Pb) (13)

where R denotes the remainder. The linearized model is then

discretized with Ts assuming a zero-order hold for the battery

power. An incremental formulation of the control input, i.e.,

the FCS power, is chosen to allow constraining the control

moves. Therefore, the state vector includes two states, the SoC

and the FCS power: xk = [ξk , PFCS,k−1]
T. Considering (4),

the linear discrete-time state-space model can be written as

xk+1 =

[

1 −c
0 1

]

xk +

[

−c
1

]

∆uk +

[

c
0

]

wk (14a)

yk = xk (14b)

where

∆uk = PFCS,k − PFCS,k−1, wk = Pel,k, c = −
Ts

Q0VOC

.

Based on the linear model, the future trajectories of the SoC,

the FCS power, and the battery power within the prediction

horizon can be expressed as

Sk = F S xk +ΦS ∆Uk +ΘSW k (15)

P FCS,k = F F xk +ΦF ∆Uk (16)

P b,k = −F F xk −ΦF ∆Uk +W k (17)

Pb/Eb (1/h)

R
re

l This work
[18]
[30] (30 ◦C)

Fig. 3: Relative linearization error of the battery model as a

function of the normalized battery power with respect to the

nominal battery energy Eb.

and the SoC at the end of the prediction horizon can be

expressed as

ξk+Np
= F̄ Sxk + Φ̄S∆Uk + Θ̄SW k (18)

where

Sk =
[

ξk+1 . . . ξk+Np

]T

P FCS,k =
[

PFCS,k . . . PFCS,k+Np−1

]T

P b,k =
[

Pb,k . . . Pb,k+Np−1

]T

∆Uk =
[

∆uk . . . ∆uk+Np−1

]T

W k =
[

wk . . . wk+Np−1

]T
.

The time-invariant matrices F S, ΦS, ΘS, etc. are derived from

the discrete-time model as described in [29].

The linearization of the battery model implies a linearization

error, which is linked to the neglected ohmic losses and,

therefore, depends on the battery parameters. The relative

linearization error can be computed with

Rrel(Pb) =
R(Pb)

f(Pb)
=

VOC −
√

V 2
OC − 4RintPb

2VOC

(19)

and is shown for some batteries from the literature in Fig. 3.

The approximation is good, in particular, if the battery is oper-

ated with low absolute values of the battery power. Moreover,

the impact of the linearization on the SoC prediction is limited

because the prediction horizon wherein an accurate short-term

prediction is feasible is relatively short.

B. Approximation of the Cost-To-Go

The optimal cost-to-go resulting from the offline optimiza-

tion is available as a discrete map J∗

l (ξl) at each position of

the distance grid and can be approximated for any position by

distance-based linear interpolation. The upper plots in Fig. 4

show typical cost-to-go profiles at two different positions of

a driving cycle. The cost-to-go generally decreases with an

increasing SoC because more energy is stored in the battery.

Under certain conditions, however, the cost-to-go remains

constant if a certain threshold ξth
l is exceeded. This behavior

is illustrated in the plots of position 2, which is almost at the

end of the cycle, and can be explained as follows: Suppose

that the minimum final SoC specified by X1 can be reached

from the l-th position running the FCS only with the minimum

feasible power according to U if ξl = ξth
l . Then, the minimum
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ξξ

J
∗ l
(k
g
)

∂
J
∗ l
/
∂
ξ
(k
g
)

Position 1 Position 2

Local modelData ξmin
l , ξmax

l

ξth
l

Fig. 4: The optimal cost-to-go resulting from the offline

optimization and the partial derivative of the cost-to-go with

respect to the SoC at two different position of a driving cycle.

The shaded areas in the lower plots indicate exemplary ranges

where local linear models are fitted to. Note the differently

scaled ordinates.

final SoC is exceeded if ξl > ξth
l likewise operating the FCS

with the minimum feasible power. The amount of fuel to reach

the destination, i.e., the cost-to-go, is the same in either case

because the fuel consumption rate is only a function of the FCS

power. Consequently, the cost-to-go profile remains constant

for all ξl ≥ ξth
l .

The absolute value of the cost-to-go is irrelevant for the on-

line optimization by the MPC; relevant is the partial derivative

of the cost-to-go with respect to the SoC, which can be derived

by numerical differentiation. Therefore, the approximation of

the cost-to-go is based on a model of the derivative of the cost-

to-go. Describing the derivative of the cost-to-go by a uniform

function of the SoC is not possible because of the sharp

changes in its slope, as the lower plots of Fig. 4 indicate. More

details regarding this behavior of the derivative of the cost-to-

go are given in Section V-C. Consequently, the derivative of

the cost-to-go at the end of the prediction horizon is modeled

with a local linear model

∂Ĵ∗

k+Np

∂ξ

∣

∣

∣

ξk

=β0 + β1ξk+Np
(20)

where the two parameters β0 and β1 are estimated by the least-

squares method within a predefined range around ξk (note that

ξk+Np
is unknown). The range the local linear model is fitted

to lies within [ξmin
l ; ξth

l ] if the threshold is relevant, otherwise

within [ξmin
l ; ξmax

l ].

The cost-to-go at the end of the prediction horizon can then

be approximated with a truncated Taylor series, where ξk is

chosen as operating point

J∗

k+Np
=J∗

k+Np

∣

∣

∣

ξk

+
∂Ĵ∗

k+Np

∂ξ

∣

∣

∣

ξk

(

ξk+Np
− ξk

)

. (21)

The first term in (21) is irrelevant for the optimization as

it does not depend on the decision variable and, therefore,

omitted. Inserting (20) gives the local quadratic approximation

of the optimal cost-to-go

Ĵ∗

k+Np
=(β0 − β1ξk) ξk+Np

+ β1ξ
2
k+Np

(22)

where another constant term has been omitted likewise.

C. Quadratic Objective Function

The objective function for the linear MPC considers the fuel

consumption within the prediction horizon and the cost-go-to

at the end of the prediction horizon as in (10). The components

of the objective function are elaborated in the following.

1) Online cost: The quasistatic FCS model is approximated

with a second-order polynomial model:

ˆ̇mH2
=γ0 + γ1 · PFCS + γ2 · P

2
FCS. (23)

This allows to express the first term of the objective function

in (10) with a quadratic formulation based on the future FCS

power sequence (16)

mH2,k = γ0 + qT
1P FCS,k + P T

FCS,kQ2P FCS,k (24)

with

q1 =γ1Ts

[

1 1 . . . 1
]T

, q1 ∈ R
Np×1 (25)

Q2 =γ2Ts I, Q2 ∈ R
Np×Np (26)

where I denotes the identity matrix.

The battery model is linearized at Pb,op = 0W in (13), i.e.,

ohmic battery losses

PΩ = RintI
2
b (27)

are not considered in the linear model the MPC is based on.

Therefore, a physically motivated equivalent fuel consumption

representing the ohmic battery losses is included in the objec-

tive function, which is based on a quadratic approximation.

With Ib = −Q0ξ̇ and the nonlinear battery model (5) follows

I2b =

(

VOC −
√

V 2
OC − 4PbRint

2Rint

)2

. (28)

Truncating the Taylor series of (28) at Pb,op = 0W after the

quadratic term yields

I2b =
P 2

b

V 2
OC

. (29)

An approximation of the equivalent fuel consumption rate can

then be written after inserting (29) into (27) and assuming a

mean FCS efficiency η̄FCS

ṁeq =
Rint

V 2
OC η̄FCS Hi

P 2
b (30)

where Hi denotes the lower heating value of hydrogen. With

that, the equivalent fuel consumption within the prediction

horizon can be formulated as

meq,k =P T
b,kQΩP b,k (31)

where the weighting matrix QΩ is determined by

QΩ =
Rint Ts

V 2
OC η̄FCS Hi

I, QΩ ∈ R
Np×Np . (32)
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Fig. 5: Fuel consumption rate of the FCS as a function of the

FCS power: steady-state measurements vs. polynomial model.

2) Cost-to-go: The cost-to-go is considered in the form of

the quadratic approximation in (22).

3) Overall objective function: The overall quadratic objec-

tive function is the sum of (22), (24), and (31)

Ĵk =mH2,k +meq,k + Ĵ∗

k+Np
(33)

and represents the amount of fuel required to go from the

current position to the intended destination.

In each instant, the linear MPC solves the optimal control

problem specified in (11) whereby Jk is replaced by Ĵk, which

turns the problem into a quadratic programming problem and

reduces the computational complexity. Quadratic program-

ming can be solved in polynomial time, i.e., the computational

time is polynomial in the length of the prediction horizon [31].

In the application, the prediction horizon is relatively short be-

cause it is limited by the accuracy of the short-term prediction,

which worsens with a growing horizon.

V. NUMERICAL STUDY

In this section, the performance of the proposed EMS is

analyzed and compared with an SoC reference tracking MPC

based on the simulation of a real-world driving cycle. The

study considers a passenger vehicle equipped with a FCS with

a nominal power of 55 kW and a battery with a capacity of

9.9 kWh. The steady-state measurement data of the FCS’s fuel

consumption rate and the approximation with the polynomial

model according to (23) are shown in Fig. 5. The actual

fuel consumption for the driving mission is computed by

interpolating in the map of measurements, whereas the offline

optimization and the online MPC operate with the polynomial

model. The battery parameters were identified based on mea-

surement data resulting in VOC = 350V, Rint = 0.15Ω, and

Q0 = 28.28Ah. The vehicle mass is 1950 kg.

The control-relevant system constraints are 5 kW ≤ PFCS ≤
55 kW, −30 kW ≤ Pb ≤ 50 kW, 0.3 ≤ ξ ≤ 0.9, and the FCS

power rate is constrained with ±25 kW/s. The initial SoC

is 0.7 and the final SoC ≥ 0.7. The MPCs operate with a

sampling time of 1 s and a prediction horizon of 30 s.
The remainder of this section is structured as follows: First,

the SoC reference tracking MPC is introduced in Section V-A,

followed by the description of the driving cycle and the pre-

dictions in Section V-B. The optimization based on the long-

term prediction and the corresponding results are discussed

in Section V-C. Finally, the performances of the MPCs are

compared and evaluated in Section V-D, and the effect of the

prediction horizon length is discussed in Section V-E.

A. SoC Reference Tracking MPC

The proposed cost-to-go MPC is compared with an MPC

that tracks an SoC reference trajectory at the end of the pre-

diction horizon. The linear formulation of the SoC reference

tracking MPC is analogous to the formulation of the cost-to-go

MPC presented in Section IV, but instead of considering the

cost-to-go, the deviation from the SoC reference is penalized

at the end of the prediction horizon:

pξ,k+Np
= qtrack

(

ξref
k+Np

− ξk+Np

)2

. (34)

Thus, the overall objective function to be minimized according

to (11) is

J track
k =mH2,k +meq,k + pξ,k+Np

. (35)

The tracking weighting qtrack is 106 g in this study, which

ensures that the SoC reference at the end of the prediction

horizon is tracked sufficiently close. The remaining parameters

are chosen identically as for the cost-to-go MPC.

The SoC reference is the optimal trajectory according to the

long-term prediction of the driving mission. The optimization

is conducted by the DP algorithm (9), whereby the optimal

control inputs P ∗

FCS,l(ξl) are stored for each position of the

distance grid. After the optimization, the optimal SoC trajec-

tory can be computed in forward direction starting at ξ0 and

linearly interpolating in the map of optimal control inputs.

B. Driving Cycle and Predictions

The velocity and altitude data of the driving cycle were

recorded on a real-world drive covering 210 km, and the

electric power demand was derived based on the vehicle model

(1) – (3) assuming a constant auxiliary power of 2 kW (see

upper two plots of Fig. 6). The driving cycle starts and ends

in urban areas and includes rural road and highway sections.

The first half of the cycle goes uphill overcoming an altitude

gain of approximately 730m. Therefore, the highway section

between kilometers 30 and 100 shows a comparably high

power demand.

In this study, the long-term prediction of the velocity (see

Fig. 6) was retrieved from legal speed limits using AVL

Route Studio, which is a test cycle preparation tool. The tool

considers vehicle dynamics during acceleration phases and

limits the cornering speed depending on the road curvature.

The comparison with the actual velocity profile shows that

the long-term prediction provides a good estimate of the actual

velocity for a significant fraction of the driving cycle. In some

sections, however, the long-term prediction deviates consider-

ably from the actual velocity. The most obvious deviation is

between kilometers 126 and 141 and was caused by roadworks

on the highway.

The focus of this study is to analyze the potential of the

proposed EMS and to what extent an accurate online velocity

prediction can be beneficial for the energy management. For

this purpose, the short-term prediction is assumed to be ideal,

i.e., coinciding with the actual velocity.
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Fig. 6: Upper plots: Actual data and long-term predictions for the investigated real-world driving cycle. Lower plots: SoC and

FCS power resulting under the control of the two MPCs.

Distance (km)

ξ
ξ

Optimal (long-term prediction)

J
∗
(k
g
)

∂
J
∗
/
∂
ξ
(k
g
)

Fig. 7: Optimal cost-to-go (upper plot) and partial derivative of

the optimal cost-to-go with respect to the SoC (lower plot) as

a function of the position and the SoC. Both plots include the

optimal SoC trajectory according to the long-term prediction.

Note that extreme values are excluded in the lower plot for a

better visualization.

C. Offline Optimization

For the offline optimization, the feasible ranges of the SoC

and the FCS power are quantized with 120 and 40 grid

segments, respectively, and the step size of the distance grid

is chosen to be 1 km. The resulting 2-D optimal cost-to-go

map depending on the position and the SoC is depicted in the

upper plot of Fig. 7. It can be seen that the cost-to-go decreases

with the covered distance and with an increasing SoC. White

areas indicate infeasible ranges according to the long-term

prediction and the specified constraints. The plot includes the

globally optimal SoC trajectory according to the long-term

prediction, which is used as reference trajectory in the SoC

reference tracking MPC. The optimal SoC trajectory uses the

whole feasible SoC range, which indicates the importance of

considering state constraints in the DP.

The lower plot of Fig. 7 depicts the partial derivative of

the cost-to-go with respect to the SoC. It can be shown that

the derivative of the cost-to-go corresponds to the SoC-related

costate in Pontryagin’s minimum principle (PMP) [23]. The

Hamiltonian of PMP is independent of the SoC with the

chosen battery model. Consequently, the costate is constant

along optimal paths within sections where no constraints are

active [32]. This means that the level lines in the lower plot

of Fig. 7 illustrate optimal paths for reaching the destination

from any position and feasible SoC. A subset of the optimal

paths meet at points where the SoC constraints are active, i.e.,

at the kilometers 28 and 106, causing a discontinuous change

of the costate. The behavior due to active SoC constraints also

causes the sharp changes in the slope of the ∂J∗/∂ξ profile

(see lower plots of Fig. 4).

D. Performance Evaluation

The SoC and FCS power trajectories resulting under the

control of the two MPCs are depicted in the lower two plots

of Fig. 6. Besides analyzing their behavior, the two MPCs are

compared quantitatively based on two performance measures:

the specific fuel consumption and an equivalent number of

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3424422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

TABLE I: Comparison of specific fuel consumption and equiv-

alent number of FCS load cycles regarding the investigated

driving cycle

EMS mfuel Rel. diff. N eq Rel. diff.

Optimal 11.25 g/km −0.3% 14.2 +15%

Cost-to-go MPC 11.28 g/km 0.0% 12.4 0%

SoC ref. track. MPC 11.32 g/km +0.4% 17.1 +38%

FCS load cycles [33], which is defined by

Neq =
1

2Pmax
FCS

∫ t1

t0

∣

∣

∣

∣

dPFCS

dt

∣

∣

∣

∣

dt (36)

and can be interpreted as a measure for degradation [34].

The SoC reference tracking MPC tracks the SoC reference

at the end of the prediction horizon but can deviate from

the reference within the horizon to adapt the power split

according to the short-term prediction. However, the 30 s
prediction horizon does not provide much freedom, and the

MPC tracks the SoC reference, which is based on the long-

term prediction, rather strictly. Consequently, the FCS power

signal shows fluctuations depending on the deviation of the

predicted power demand from the actual power demand. The

fluctuating behavior stresses the FCS and affects the fuel

efficiency.

Unlike the SoC tracking MPC, the proposed cost-to-go MPC

is provided with optimized long-term information available for

the entire SoC range and does not rely on a single reference

trajectory. Thus, the MPC has more freedom to compensate

for deviations of the long-term power demand prediction. The

resulting FCS power trajectory is smoother, which improves

the fuel performance and mitigates FCS degradation.

Tab. I compares the specific fuel consumption and the

equivalent number of load cycles of the two MPCs and

the overall optimal energy management minimizing the fuel

consumption. For the investigated driving cycle, the cost-to-

go MPC achieves a 0.4% lower fuel consumption than the

SoC tracking MPC, even though the predictions are identical

for both MPCs. This improvement is remarkable considering

that the theoretical optimum is only 0.3% better than the

result of the cost-to-go MPC. The performance advantage

of the cost-to-go MPC over the SoC tracking MPC is even

more impressive regarding the equivalent number of FCS

load cycles, where an improvement of 38% is achieved. To

sum up, the cost-to-go MPC does not only improve the fuel

efficiency but also stresses the FCS considerably less, which

potentially mitigates degradation. Both methods satisfy all

specified constraints.

The operation of the two MPCs is compared in more detail

during the roadworks section between kilometers 126 and 141,

where the power demand prediction based on static route

data deviates considerably from the actual power demand.

The comparison is shown in Fig. 8, whereby the SoC at

the beginning of the section is set identical in both cases

for a better illustration. The long-term prediction estimated a

high power demand for the section. Therefore, the optimized

SoC reference decreases meaning that the battery is expected
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Fig. 8: Study of the two MPCs during the roadworks section,

where the initial SoC is set identical in both cases. The bar

chart compares the corresponding optimal costs-to-go at the

end of the section (lower, dark parts), costs within the section

(upper, light parts), and total costs.

to support the FCS. However, the actual power demand is

significantly lower. The SoC tracking MPC drastically reduces

the FCS power to follow the reference trajectory hitting the

lower boundary on the FCS power. On the contrary, the cost-

to-go MPC maintains the FCS power at a high level and even

charges the battery. As the SoC rises, the cost-to-go MPC only

gradually lowers the FCS power according to the optimum

with the cost-to-go. Operating the FCS with a higher power

implies a higher amount of fuel consumed within the section

compared to the SoC tracking MPC (see upper parts of bar

chart in Fig. 8). However, the cost-to-go MPC achieves a lower

cost-to-go at the end of the section, which overcompensates

for the higher cost within the section. Consequently, the total

cost mfuel, i.e., the sum of the fuel consumed within the section

and the cost-to-go at the end of the section, is 7 g lower than

for the SoC tracking MPC. Note that this improvement only

refers to the investigated section with a length of 15 km.

E. Effect of the Prediction Horizon Length

Fig. 9 shows the comparison of the two MPCs regarding

the fuel consumption and the equivalent number of FCS load

cycles as a function of the prediction horizon length. The

cost-to-go MPC significantly outperforms the SoC tracking

MPC regarding both measures, in particular if the prediction

horizon is short. For an 1-step prediction horizon, the tracking

MPC leads to a 2.3% higher fuel consumption and the

equivalent number of load cycles is even 12-fold. The tracking

MPC approaches the performance of the cost-to-go MPC with
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an increasing prediction horizon and achieves a comparable

performance only for rather long prediction horizons, where

short-term predictions are expected to be less accurate.

The fuel performance under the cost-to-go MPC is already

decent with an 1-step prediction horizon and improves further

with growing prediction horizon. Also, the equivalent number

of load cycles decreases; a 30 s prediction horizon reduces the

number of load cycles by approximately 6%.

The investigation suggests that the cost-to-go MPC also

performs well if the prediction horizon varies throughout the

driving mission, e.g., a short horizon in urban areas and a

longer horizon on the highway.

VI. CONCLUSION

A predictive EMS was proposed that efficiently combines

a long-term prediction derived from a-priori available static

route information and real-time short-term predictions from

vehicular communication systems. Before departure, a DP

algorithm optimizes the power split between the FCS and the

battery based on the long-term prediction yielding the optimal

cost-to-go as a function of the position and the SoC. The

online energy management is determined by an MPC that

minimizes the fuel consumption considering the short-term

predictions within the prediction horizon and the optimal cost-

to-go as terminal cost. A linear formulation of the MPC with a

physically motivated objective function was developed, which

is highly beneficial for the real-time, onboard execution of the

EMS.

The proposed EMS was compared with an SoC reference

tracking MPC in simulation. Tracking the optimized SoC ref-

erence trajectory showed to be too restrictive to actually benefit

from the short-term predictions. On the contrary, the cost-to-

go MPC optimized the power split independently from the

SoC based on the optimum according to the combined long-

term and short-term information. The cost-to-go MPC clearly

outperformed the SoC reference tracking MPC regarding the

fuel efficiency and the equivalent number of load cycles, which

can be interpreted as degradation measure, in particular if the

short-term prediction horizon is short.
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