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Abstract—Integrated Access and Backhaul (IAB) is a cost-
efficient network densification technology for improving the
coverage and capacity of the millimeter-wave (mmWave) cellular
networks. In IAB systems, user traffic is forwarded to/from the
wired base station by one or more relay stations, known as
IAB nodes. Due to the multi-hop relaying, these systems may
be subject to large packet delays and poor performance when
the load is unevenly distributed among nodes. Addressing this
limitation via delay-aware access and backhaul link scheduling
in IAB networks is challenging due to potentially large network
scale, complex topology, half-duplex, and interference constraints.

In this paper, the topical link scheduling problem is formulated
as a Markov decision problem (MDP) for a single-donor IAB
system with a general topology that allows for users with different
delay requirements and traffic dynamics. The proposed link
scheduling strategy jointly optimizes (i) user traffic routing and
(ii) multiplexing of access and backhaul links under half-duplex
constraints and non-negligible interference that may arise in
dense IAB systems even with high beam directionality. To address
the complexity of our formulated MDP, we consider several
approximation methods, namely, Q-learning, Monte Carlo Tree
Search (MCTS), and genetic algorithms (GAs). Then, we propose
a customized version of the GA, which provides the preferred
optimality–complexity trade-off and offers a 15% packet delay
reduction as compared to the state-of-the-art backpressure algo-
rithm.

Index Terms—IAB, millimeter-wave, link scheduling, routing,
half-duplex constraint, interference, user dynamics

I. INTRODUCTION

A. Research Motivation

INTEGRATED ACCESS AND BACKHAUL (IAB) tech-

nology proposed by the Third Generation Partnership

Project (3GPP) in [1] has received substantial attention from

both academia and industry as a cost-efficient solution for

extending the coverage and improving the performance of

future cellular networks operating at mmWave frequencies [2].

Due to offering larger bandwidths than sub-6 GHz systems,

mmWave radio is crucial for the fifth generation and beyond

(5G/B5G) systems to meet the anticipated traffic growth and

more stringent requirements of emerging interactive and im-

mersive applications [3]. However, mmWave links are known

to have significantly higher path and penetration losses and are

more prone to atmospheric absorption as compared to, e.g.,

microwave links [4]. Even though the impact of losses can be

Y. Sadovaya (corresponding author), O. Vikhrova, and S. Andreev are with
Tampere University, Finland. S. Andreev is also with Brno University of
Technology, Brno, Czech Republic. Email: firstname.lastname@tuni.fi

W. Mao, S.-p. Yeh, O. Semiari, H. Nikopour, and S. Talwar are with Intel
Corporation, Santa Clara, CA, USA. Email: firstname.lastname@intel.com

effectively reduced by using advanced signal processing and

multiple-input multiple-output (MIMO) communications to

form highly directional links, the resulting coverage is inferior

to that of sub-6 GHz deployment. Hence, mmWave systems

require ultra-dense base station deployments to alleviate cov-

erage gaps caused by blockage and directional transmissions.

The straightforward densification by increasing the number of

5G New Radio (NR) nodeBs (gNBs) per square meter is costly

and challenging in some locations. Instead, IAB offers rapid

and low-cost on-demand network densification by deploying

multiple IAB nodes where additional coverage or capacity is

needed.

IAB nodes are wireless relays interconnected with each

other and with a donor gNB (DgNB) over wireless backhaul

links. Therefore, any new IAB node can be quickly added to

the existing deployment, while the already deployed nodes

can be moved to a new location. According to the IAB

architecture, which is defined in 3GPP TS 38.401 [5], an IAB

node accommodates both distributed unit (DU) and mobile

termination (MT) functions as shown in Fig. 1. MT function

determines IAB node as a child node that is controlled by

the other IAB nodes or donor, while DU function makes IAB

node behave as a parent for the other IAB nodes and user

equipment (UE). IAB nodes and DgNBs can form directed

acyclic graph (DAG) and spanning tree topologies according

to 3GPP TR 38.874 [1]. Following the principles of the

open radio access network (O-RAN), central unit (CU) and

DU can utilize various intelligent microservices (rApps or

xApps) implemented at the non-real-time and near-real-time

radio access network (RAN) intelligent controllers (RICs) [6]

to, e.g., predict traffic demands, optimize topology, manage

routes, and allocate resources [7], [8] in IAB networks.

While 3GPP specifications consider the possibility of imple-

menting backhauling in out-of-band mode, multiplexing access

and backhaul links at the same frequency provides attractive

cost benefits due to hardware and frequency reuse. This also

makes IAB nodes lower in price than conventional relays due

to the reuse of most of the 5G access interfaces at the backhaul

links [9]. Moreover, IAB systems can significantly improve

network capacity and delay performance due to dynamic time-

division duplexing (TDD) configuration, which is enabled by

the flexible 5G NR frame pattern structure. The performance

of IAB networks is reliant on the frame pattern established by

the CU and announced by the donor at the beginning of every

frame. This pattern indicates the sequence of uplink (UL) and

downlink (DL) slots for the donor in a frame and cannot be

changed until the end of this frame. Frame pattern along with
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user scheduling and routing algorithms provide more detailed

instructions for IAB nodes on how time slots can be used to

prevent half-duplex mismatch and interference [10].

Despite the promising benefits of the IAB technology, IAB

networks are subject to fundamental constraints of wireless

multi-hop networks. First, in-band operation introduces several

challenges for optimizing resource allocation and link schedul-

ing due to the half-duplex constraint. The latter does not allow

IAB nodes to transmit and receive signals simultaneously due

to significant self-interference at the node, the cancellation of

which is challenging and costly. Second, user throughput and

packet delay performance rapidly deteriorates as the number of

hops between the donor and users grows [11], [12]. Moreover,

UE mobility and traffic demand changes lead to imbalanced

traffic across UL and DL transmissions.

Therefore, it is essential to provide efficient delay-aware

traffic routing and user scheduling solutions for mmWave

IAB networks to improve the user-centric performance and

balance the load in the network subject to the half-duplex

and interference constraints and dynamic UL and DL traffic.

Specifically, our work focuses on a joint optimization of the

frame pattern, routing, and user allocation in the form of

efficient link scheduling that considers delay-sensitive and

delay-tolerant user applications. Since the pattern is announced

in advance, we operate with a centralized frame-based link

scheduling solution in IAB networks under predicted traffic

demands.

B. Related Works

Wireless multi-hop networks have been an active area of

research for a few decades [13], [11]. However, due to specific

technology limitations and application use cases, not all ap-

proaches can be applied to the IAB systems. For example, the

complexity of the link scheduling problem in wireless multi-

hop networks largely depends on the underlying topology and

is NP-hard in general due to a large number of possible link

combinations for scheduling. It is worth noting that routing and

link scheduling problems are typically addressed separately in

past works. For instance, state-of-the-art near-optimal delayed

column generation method [14] for solving the link schedul-

ing problem in flow-based wireless multi-hop networks has

inspired several data-driven approaches [15], [16] to reduce

the size of the link search space for faster and more stable

learning of the optimal link scheduling strategy. The work

in [17] offers an elegant semi-centralized framework for traffic

routing in IAB systems that aims at minimizing end-to-end

communication latency. However, it does not optimize user

scheduling at IAB nodes and cannot provide delay guarantees.

To address the scheduling and routing problems jointly,

backpressure routing [18] and the maximum weighted match-

ing (MWM) iterative algorithm for instantaneous link schedul-

ing [19] are widely employed. Even though MWM algorithms

are highly attractive as approximate solutions to the NP-

hard weighted link scheduling problem due to their simple

concept, they require continuous buffer and channel state

information updates in every slot, which produces enormous

overhead if implemented in real-world systems. Moreover,

these algorithms only optimize the throughput performance

of the system without considering delay-aware metrics. In

addition, their complexity is either polynomial in the number

of nodes or, in the best case, linear in the product of the

number of nodes and links, which rapidly grows with the

increasing network size or the number of communication links.

The complexity issues associated with the backpressure

and MWM algorithms in IAB systems are tackled by the

adoption of data-driven methods [17], [20], [21]. Specifically,

reinforcement learning (RL) attracts growing attention due to

its ability to learn efficient policies via interaction with the

environment when the traffic or channel statistics is unknown

[22]. The work in [21] utilizes RL to learn the optimal

scheduling policy in IAB networks. It integrates a frame-based

traffic prediction module to minimize the feedback overhead

for online learning. However, the learned policy is sub-optimal

and outperforms the backpressure alternative only under some

traffic regimes. Several recent works on IAB propose scalable

semi-centralized and distributed link scheduling solutions [23],

[24], [25], which naturally stem from the backpressure concept

and, therefore, focus on the network throughput optimization

rather than on the satisfaction of user demands.

C. Our Contribution

Our work addresses important gaps in the existing research

on scheduling and routing in IAB systems. Specifically, the

majority of past studies consider routing and user scheduling

separately and/or disregard practical system considerations,

e.g., half-duplex constraints. On the other hand, the works

where these constraints are accounted for focus on the network

utility rather than on delay-aware or user-centric metrics. On

top of this, past known solutions such as widely-employed

backpressure and MWM algorithms encounter implementation

challenges because a global control action needs to be com-

puted at every time step [18]. Therefore, our contributions in

this paper can be summarized as follows.

• We develop a novel 3GPP-compliant optimization frame-

work that accounts for the specific features of IAB net-

works with the goal to satisfy diverse user demands with-

out any particular assumption on the traffic model. Specif-

ically, we formulate a new delay-aware link scheduling

problem as MDP that accounts for realistic half-duplex

constraint, non-negligible interference, and UL and DL

directions of communication.

• We propose a practical customized genetic algorithm

(GA) that delivers desirable system performance in terms

of service satisfaction and packet delay of delay-sensitive

flows. It converges to the preferred performance region

three times faster than the reference MCTS algorithm.

Moreover, it improves the packet delay by 15% on aver-

age as compared to the baseline backpressure algorithm.

• We assess the performance of IAB systems under a

wide range of traffic load, deployment, and topology

configurations. Based on these observations, we formulate

practical recommendations for link scheduling in IAB

networks subject to a given system setup.

The rest of this paper is organized as follows. Section II

describes the system model, while Section III introduces the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3409179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

CN

CU-CP CU-UP
Other

functions

IAB-donor

Wireless 

backhaul link

Wireless 

access link

NR Uu

NG

NR Uu

DU DU

IAB-MT IAB-node IAB-node

IAB-node IAB-node

UE

UE

UE

NR Uu

NR Uu

F1F1

NR UuIAB-CU

IAB-node

Fig. 1: Example IAB network with multi-hop topology [1].

problem formulation. Section IV provides details on the RL

framework used to overcome the complexity of a given MDP,

while Section V outlines the employed approximate solutions.

Essential simulation assumptions and numerical results are

discussed in Section VI. Finally, Section VII summarizes this

work and discusses its potential extensions.

II. SYSTEM MODEL

This section outlines the assumptions adopted for modeling

a mmWave IAB network. We start by describing network

deployment and user traffic dynamics. This is followed by

a summary of the channel and antenna modeling procedure.

Finally, the interference calculations are explained.

A. Topology, Routing, and User Demand Assumptions

We consider an IAB network with a single donor, V IAB

nodes, and U UEs. The topology is assumed to be given by

a graph T = {V, E}, where V = {0, . . . , V } represents the

set of IAB nodes including the donor and E = {(eij)i,j∈V}
denotes the backhaul links. We consider two types of topolo-

gies, namely, DAG and spanning tree, which can be obtained

as explained, e.g., in [26]. In spanning tree topology, each IAB

node except the donor can have only one parent, while in DAG

topology, IAB nodes can have up to Vp parents.

Each UE can generate data flows in UL and DL directions.

To address delay requirements of different applications, we

assume that UL and DL flows can be categorized into distinct

classes of flows based on their sensitivity to packet delay.

Without loss of generality, we consider two classes of flows,

namely, delay-sensitive and delay-tolerant flows. Let F be the

total number of flows. F1 denotes the set of flows with frame-

based delay requirements, while F0 denotes the set of flows

without any specific delay constraints. We let parameter δ
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Fig. 2: Illustration of optimal scheduling and routing solution

and a frame pattern allocation that can be derived from it.

control the ratio of delay-sensitive and delay-tolerant flows

in the system. The classes are assigned randomly, such that

|F1| = ⌊δF ⌋, while1 |F0| = ⌈(1− δ)F ⌉.
Each flow is associated with its source and destination nodes

sf and df from the joint set of UEs U = {1, . . . , U} and donor

node with index 0. Given the network topology T , the number

of paths between the source and the destination nodes can be

more than one. We let Kn denote the set of flows, which have

node n ∈ N in their paths. When the number of paths from

sf to df is higher than one, the routing decision for flow f
is made dynamically by the nodes depending on the queue

backlogs.

Demand r∗f of flow f ∈ F is given as the number

of packets to be delivered in a given frame to satisfy the

timely throughput requirements. We assume that flow demands

(r∗1 , . . . , r
∗
F ) and packet arrivals are known to the controller at

the beginning of a frame and can be computed based on the

predicted traffic load and perceived packet flow rates.

The goal is to find a scheduling and routing strategy that

fulfills the flow demands and reduces the delay of delay-

sensitive flows. As explained in Fig. 2, this strategy produces

a scheduling pattern, which sets the order of link activations

in space and time.

B. User Deployment and Communication Model

1) Propagation: We consider the urban macrocell (UMa)

channel model as suggested for IAB networks in [1]. Accord-

ingly, UEs are uniformly deployed over the area of interest,

while the UE heights are uniformly distributed within interval

[1.5, 20] m.

Let x and y be the 2D and 3D distances between a UE

and an IAB node. A UE may fall into either line-of-sight

1⌊.⌋ and ⌈.⌉ represent flooring and ceiling operators, respectively.
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PLoS(x) =

{

1, x ≤ 18 m,
[

18
x
+ exp (− x

63 )(1− 18
x
)
](

1 + C
′

(h) 54 (
x

100 )
3 exp (− x

150 )
)

, 18 m < x.
(1)

LdB(x) =















28 + 22 log10(x) + 20 log10(ωc), LoS, 10 m ≤ x ≤ dBP ,

28 + 40 log10(x) + 20 log10(ωc)− 9
[

log10(dBP )
2 − (hBS − h)2

]

, LoS, dBP ≤ x ≤ 5km,

32.4 + 30log10(x) + 20 log10(ωc), NLoS.

(2)

TABLE I: Table of notations.

Parameter Definition

Network model

F Total number of flows

F , F1, F0 Set of all flows, sets of delay-sensitive and delay-tolerant
flows

r∗
f

Demand requirements for flow f

r
f
π Achieved transmission rate of flow f under strategy π

δ Fraction of delay-sensitive flows

V , V Set and number of IAB nodes and donor

U , U Set and number of UEs

N , N Set and total number of nodes in the system

T Frame duration

T = {V, E} Network topology

Q
f
n(t) Queue state of flow f at node n in time slot t

sf , df Source and destination nodes of flow f

a
f
ij(t),a(t) Link scheduling decision for flow f over link ij

A Set of all feasible schedules

π Link scheduling strategy

Cij(t) Link capacity in number of packets

b
f
ij(t) Transmission rate of flow f over link ij

Nb Maximum number of simultaneously active beams at
donor or IAB nodes

Communication model

LdB(x), L(x) Propagation loss in dB and linear scales

ωc Carrier frequency in GHz

x, y 2D and 3D communication distances

dBP Breakpoint distance

htx, hrx Heights of TX and RX antennas

c Speed of light

Gij , G
l
ij Antenna gain in the main communication direction in

dBi and linear scales

W Bandwidth

PRij
Receive power at node j from node i

PTij Transmit power of node i toward node j

N0 Noise power

Γij(x, t) SINR of the link between nodes i and j

Ij(a(t)) Interference at node j for a given schedule a(t)
Aij(φ, θ) Antenna radiation pattern from node i toward node j

φ, θ Horizontal and vertical angular shifts

AE
ij(φ, θ) Radiation pattern of a single antenna element

w, v Antenna side lobes weighting factor and phase shift

MDP model

st, at MDP state and action

S State space

A Action space

P (s′|s, a) Transition probability

Rπ(s0) Return of implementing strategy π in state s0
gt(st, at) Immediate cost of taking action at in state st
gT (st) Terminal cost of being in state st

(LoS) or non-LoS (LoS) region, thereby experiencing different

pathloss conditions [27]. Specifically, the LoS probability

in (1) depends on the 2D distance x and UE height h, where

C
′

(h) =

{

0, h ≤ 13 m,
(

(h−13)1.5

10

)

, 13 m < h.
(3)

The path loss LdB(y) for the links in the LoS and NLoS

conditions is provided by (2), where ωc is the carrier frequency

in GHz, hBS denotes the height of an IAB node, and the

break-point distance dBP is given by

dBP = 4
(h− 1)(hBS − 1)ωc,Hz

c
, (4)

where c denotes the speed of light and the carrier frequency

ωc,Hz is given in Hz.

For user association, we assume that each UE selects a

node from V with the maximum reference signal received

power (RSRP). Further, large-scale link fading is assumed to

be known to the controller at the beginning of a frame and

does not change during the frame duration.

2) Antenna and Interference: In our reference IAB deploy-

ment, the DgNB and IAB nodes comprise of three sector-

ized antennas with sufficient spatial separation to limit self-

interference [28]. We assume that the beams in the transmit

and receive directions of the intended communicating pair

are perfectly aligned. Beyond that, we explicitly model an-

tenna radiation patterns as recommended by [27] to evaluate

interference, since the beams of interfering transmitters and

intended receiver may overlap. An example of interference

under a particular scheduling pattern is shown in Fig. 3. For

each link in the scheduling pattern, all other links are treated

as interfering.

According to our antenna model, the antenna radiation

pattern is represented as a superposition of element radiation

patterns. Therefore, the values of the half-power beamwidth

(HPBW) and antenna gain depend on the number of antenna

elements.

The radiation pattern A(φij , θij) of antenna at node i seen

at node j is expressed by

A(φij , θij) =AE(φij , θij)+

10 log10

(

1 + ρ
[

NH
∑

m=1

NV
∑

n=1

|wmnvmn|2 − 1
]

)

,

(5)

where AE(φij , θij) stands for a single antenna element pat-

tern, φij and θij are the horizontal and vertical angular shifts,

respectively, w is the weighting factor responsible for the

strength of side lobes, v is the phase shift, NH and NV are the

numbers of antenna elements in horizontal and vertical planes,
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and ρ is the degree of correlation between the elements. The

single antenna element pattern AE(φij , θij) is computed as

AE(φij , θij) =GE−
min[−(AEH

(φij) +AEV
(θij)), Amax],

(6)

where GE is the gain of a single antenna element, Amax

is the front to back ratio, while AEH
(φij) and AEV

(θij)
are the attenuation values in horizontal and vertical planes,

correspondingly [27], [29].

The gain in the main transmit direction of the intended

communicating pair is

G0
ij = A(0, 0). (7)

We note that the antennas of the main transmitting–receiving

pair are directed toward each other. Therefore, the beam

misalignment angle equals zero, and the resultant gain in this

direction is the best achievable, which is computed via (7).

For instance, Fig. 3 shows an example link schedule, where

UE 1 and UE 3 transmit toward the donor and IAB node 2,

and IAB node 1 transmits toward UE 2 and the donor. As an

example, let us consider the link between UE 2 and IAB node

1.

However, the horizontal and vertical beam misalignments

φkj and θkj between the target receiver j and the interfering

transmitter k are typically non-zero. For the example deploy-

ment in Fig. 3, the link from UE 3 to UE 2 is considered to be

an interfering one. Having the coordinates of the transmitter

(xk, yk, zk) and the receiver (xj , yj , zj), the direction of

arrival can be computed as

(xkj , ykj , zkj) =























(xj−xk)
2√

(xj−xk)2+(yj−yk)2+(zj−zk)2)

(yj−yk)
2√

(xj−xk)2+(yj−yk)2+(zj−zk)2)

(zj−zk)
2√

(xj−xk)2+(yj−yk)2+(zj−zk)2)
.

(8)

The corresponding angular shifts φkj and θkj can be ex-

pressed by converting the Cartesian coordinates in (8) into the

spherical ones. Further, these values are utilized for weighting

the incoming signals according to their directions of arrival

and departure. Therefore, the antenna gain in the interfering

direction for a receiving antenna is given by

Gkj = A(φkj , θkj). (9)

A similar procedure is performed for the computation of the

gain for a transmitted signal.

III. PROBLEM FORMULATION

We assume that the IAB network operates in slotted time

and formulate a scheduling and routing problem for the

duration of a frame T . Let Qf
n(t) be the number of packets

of flow f queued at node n ∈ Nf at time t. The network of

interest has
∑

n∈N |Kn| keep total queue length of different

flows across all nodes.

Let afij(t) ∈ {0, 1} be a scheduling decision representing

whether the packets of flow f are transmitted over the link

from node i to node j at time t. The joint scheduling decision

produces a scheduling pattern a(t) = (afij(t))i,j∈N ,f∈F . Due

IAB node 1

UE 1

UE 2

UE 3

Activated Links

Directional Antenna Patterns

Non-Activated Links

DgNB

Main transmission: AA (0, 0)

Interfering transmission: AA (ϕ5,6, θ5,6)

(e.g., from UE 3)

AA (ϕ6,5, θ6,5)

0

1

IAB node 2

2

4

5

6

IAB node 3

3

5

5

6

Fig. 3: Example interfering transmissions and simultaneously

activated links at time slot t.

to the half-duplex constraint, a node cannot transmit and

receive packets at the same time, whereas it can receive from

or transmit to several nodes. Therefore, the pattern a(t) should

comply with the following half-duplex constraint:
∑

f∈F

∑

i∈P(n)

afin(t) ·
∑

f∈F

∑

j∈P(n)

afnj(t) = 0, n ∈ V, (10)

where P(n) is a set of immediate neighbors to node n. Owing

to the multi-beam transmission and reception capabilities at

IAB nodes [19], the maximum numbers of simultaneously

active outgoing and incoming transmissions are limited by Nb

as follows:
∑

f∈F

∑

i∈P(n)

afin(t) ≤ Nb, n ∈ V, (11)

∑

f∈F

∑

j∈P(n)

afnj(t) ≤ Nb, n ∈ V. (12)

Scheduling pattern a(t) is feasible if constraints (10), (11),

and (12) are met. We, thus, denote by A the set of all feasible

scheduling patterns for a given network deployment.

Let PTij
(a(t)) be the transmit power of node i to node

j under the pattern a(t). If node i ∈ N transmits to node

j the packets of only one flow, then it sends them with

the maximum transmit power Pi. Otherwise, the power Pi

is equally distributed across the flows yielding PTij
(a(t)) =

Pi/
∑

j∈N

∑

f∈F afij(t).
Let L(y) denote the pathloss (in the liner scale) between

the nodes separated by distance y. As we demonstrate in

subsection VI-B, for many scheduling patterns a ∈ A, the

cross-link interference is non-negligible [30]. Therefore, the

signal-to-interference-plus-noise ratio (SINR) over link (i, j)
denoted by Γ(yij ,a(t)) is given as follows:

Γ(yij ,a(t)) =
PTij

(a(t))G0
ijG

0
ji

(NW + Ij(a(t)))L(yij)
, (13)

where N is the thermal noise power spectral density, W is the

system bandwidth, Gij and Gji are the corresponding linear

antenna gains at nodes i and j for the perfectly aligned beams,

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3409179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

and Ij(a(t)) stands for the interference power at the receiver

j for a given pattern a(t). The latter can be obtained by

Ij(a(t)) =
∑

k∈Kj(a(t))

∑

m∈N akm(t)PTkm
GkjGjk

L(ykj)
, (14)

where Kj(a(t)) is the set of interfering nodes to node j given

the link scheduling pattern a(t), G is the antenna gain in

the linear scale considering the corresponding horizontal and

vertical angular shifts φkj and θkj for the current locations of

the nodes. The interference can be computed independently

for each node once the pattern a(t) is known.

The capacity of link (i, j) in slot t expressed as the number

of packets is then

Cij(a(t)) = Fl

(

W log2

(

1 + Γ(yij ,a(t))
))

, (15)

where Fl is a function that determines the number of transmit-

ted packets for a chosen modulation and coding scheme [31].

We let bfij(a(t)) be the amount of data in flow f transmitted

from node i to node j in slot t. The number of transmitted

packets is determined by the capacity Cij(a(t)) and the

number of packets in the backlog queue Qf
i (t), so that only

the packets that are in the backlog queue can be transmitted

subject to the capacity:

bfij(a(t)) = afij(t)min[Qf
i (t), Cij(a(t))]. (16)

The numbers of packets in the queues as a result of the

scheduling decision a(t) are given for all f ∈ F and t ∈
{0, . . . , T − 1} by the following:

Qf
n(t+ 1) =Qf

n(t) + Λf
n(t)+

∑

i∈P(n)

bfin(a(t))−
∑

j∈P(n)

bfnj(a(t)),
(17)

where Λf
n(t) denotes the number of exogenously arrived pack-

ets and, therefore, Λf
n(t) = 0 for all IAB nodes n ∈ V \ {0}

except for the donor. The initial system backlog Qf
n(0) for

n ∈ N \{d1, . . . , dF } follows from the distribution Q0, while

Qf
df
(0) = 0 for f ∈ F .

Let rf = Qf
df
(T ) be the sizes of the destination queues for

flows f ∈ F after T slots, which represent the numbers of

delivered packets during a scheduling interval. The difference

r∗f −rf indicates whether a flow demand is satisfied. Consider

a case where the initial flow backlog is greater than or equal

to r∗f . The demand of flow f is satisfied if r∗f − rf ≤ 0 and

is assumed to be unfulfilled if r∗f − rf > 0 for f ∈ F . It is

also possible that r∗f −rf < 0 if all the packets in the backlog

queues of flow f are delivered to the destination within T slots.

We, therefore, require that r∗f − rf is always greater than 0. If

the initial flow backlog is less than r∗f , the difference r∗f − rf
always exceeds 0. By minimizing r∗f − rf over all flows, we

aim at satisfying the flow demands, but cannot improve the

delay of delay-sensitive flows f ∈ F1.

To reduce the latter, we introduce binary penalty uf (a(t)),
f ∈ F1, to prioritize the scheduling of packets of delay-

sensitive flows. It serves to impose a penalty if the size of

the destination queue Qf
df
(t) is not equal to the flow demand

r∗f of delay-sensitive flows f ∈ F1. The penalty in slot t equals

1 if Qf
df
(t+ 1) ≤ r∗f and equals 0 otherwise:

uf (a(t)) =

{

0, Qf
df
(t+ 1) ≥ r∗f ,

1, Qf
df
(t+ 1) < r∗f .

(18)

We let π = (a(0), . . . ,a(T−1)) be a centralized scheduling

and routing strategy formulated as a sequence of scheduling

decisions from the set Π of all feasible strategies.

Our goal is to find a strategy π∗ ∈ Π that minimizes the

expected demand dissatisfaction max[r∗f−rf , 0] over all flows

and improves the delay of delay-sensitive flows. This can be

achieved by solving the following optimization problem:

Min:
π∈Π

Eπ

[

T−1
∑

t=0

∑

f∈F0

uf (a(t)) +
∑

f∈F

(

max[r∗f − rf , 0]
)2
]

,

Being subject to: (10), (11), (12), (16), (17), and (18).
(19)

IV. REINFORCEMENT LEARNING

The problem in (19) represents a finite horizon MDP. The

size of Π in the worst case is |A|T . However, the number

of practical scheduling patterns in every slot t, which avoid

scheduling from empty queues, is usually significantly less

than |A|, but remains exponentially high. Therefore, we utilize

a single-agent RL approach to find a close approximation

for the solution of (19). In this section, we define RL-

specific formulations that include states, actions, transition

probabilities, and costs.

a) States: Let st ≜ (Qf
i (t))i∈N ,f∈F be the state of the

MDP at time t. All queues Qf
n are finite and bounded by

the demand r∗f in a given frame. The state space S and its

cardinality |S| can be given by

S = ∪Ff=1Sf ,Sf = {(Qf
n)n∈Nf

: Qf
n = {0, . . . , r∗f}}, (20)

|S| = (r∗f + 1)K . (21)

b) Actions: At the beginning of t ∈ {0, . . . , T − 1}, the

MDP agent chooses a feasible action at ≜ a(t), at ∈ A.

c) Transition probabilities: Since the arrivals Λf
n(t) and

large-scale fading are known to the MDP agent and do not

change within a frame duration, any transition from state st
to state s′t after taking action at is deterministic. Hence, the

transition probabilities P (s′t|st, at) = 1 if state s′t is produced

via (16) and (17) from st by taking action at; otherwise,

P (s′t|st, at) = 0.

d) Costs: Let gt(st, at) and gT (sT ) be the cost of taking

action at in state st and the cost of being in state sT at the

end of the problem horizon, respectively. The cost gt(st, at) =
∑

f∈F0
uf (at), while uf (at) is given by (18). The cost of

being in state sT after T slots gT (sT ) =
∑

f∈F (max[r∗f −
rf , 0])

2 represents demand dissatisfaction.

The return Rπ(s0) represents the total cost obtained by

following the strategy π ∈ Π from state s0 and is given by

Rπ(s0) = Eπ

[

T−1
∑

t=0

gt(st, at) + gT (sT )
]

. (22)
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Algorithm 1 Q-Learning

Initialize Q-table, α, Ne, T
for n = 1, . . . , Ne do

Reset the environment s0 ∼ S0
for t = 0, . . . , T − 1 do

Sample action at using ε-greedy policy

Take action at and observe g(st, at), st+1

if st /∈ Q-table then

Add q(st, at) to Q-table

end if

Update Q-table via (23)

end for

end for

Minimization of Rπ(s0) is equivalent to the problem in (19)

subject to st ∈ S and at ∈ A. It is known as shortest path

problem [32] and can be solved iteratively through the Bellman

equation if the state and action spaces are small enough.

It is worth noting that for a given initial state s0 there might

be several paths with the same cost, i.e., the optimal strategy

π is not unique. For deterministic problems, in contrast to

stochastic ones, minimizing the cost over admissible actions

at in every decision epoch results in the same optimal cost as

minimizing over sequences of actions π = (a(0), . . . ,a(T −
1)), since the future states and control are determined via

dynamic equations.

V. APPROXIMATE SOLUTIONS

In this section, we describe the algorithms, which can be

adopted for solving the formulated MDP for a realistic network

size and frame duration. We consider different algorithms to

identify their advantages in relation to the addressed problem.

A. Q-Learning

First, we consider the Q-learning method, which uses a

lookup table to find the best action in a given state. The so-

called Q-table [33] specifies the value of an action taken in a

particular state. The Q-table is initialized with zeros; then, the

elements q(st, at) of the table are iteratively updated as

q(st+1, at+1) =q(st, at)+

α(−g(st, at) + max
a

q(st+1, a)− q(st, at)),

(23)

where α is the learning rate. Note that we use negative reward

−gt(st, at), which is defined in Section IV, since the original

problem aims at minimizing the expected return. The solution

is summarized in Algorithm 1, where Ne refers to the number

of training episodes.

The learning of a Q-table is executed via the following

steps. After the initialization of the table, the learning rate,

and the number of training episodes, the initial state s0 is

drawn from a known distribution S0 ∈ S . At every iteration,

the actions are chosen randomly from A according to the ε-

greedy policy. Specifically, action at = argmaxa q(st, a) is

selected with probability 1−ε, while a random action from A

is selected with probability ε. Then, after the corresponding

cost is derived, the Q-table is updated by following (23). The

algorithm runs for a fixed number of episodes, each of which

episode is terminated after T steps. In our case, the terminal

state corresponds to the queue states Q(T ).
The time complexity of this method depends on the cardi-

nalities of action and state spaces as O(T |A||S|). Moreover,

buffer utilization under this algorithm increases over time

as new actions and states are discovered. The use of deep

Q-learning (DQL) helps tackle the problem of a growing

Q-table. However, the process remains memory-heavy as it

requires storing the states and actions in the replay buffer.

As the learning agent may not encounter the majority of the

states during the learning process, we further consider a Q-

learning algorithm with prioritized sweeping that can signifi-

cantly improve the performance of Q-learning in deterministic

environments.

B. Q-Learning with Prioritized Sweeping

In conventional Q-learning, Q-values are updated in the

order of agent experience, i.e., as they are encountered. In

contrast, prioritized sweeping updates are based on the impor-

tance of the state–action pairs [34]. The respective steps are

summarized in Algorithm 2.

We introduce P priorities for the encountered states and

a priority queue PQ to store the most promising states. The

priorities are computed via a temporal difference error between

the discounted estimated value of the current state–action pair

and the value of the next state-action pair added to the reward

received. However, even though the priorities are updated for

every state–action pair, only those that are above the threshold

θ are stored in the priority queue PQ. The next state and

reward of each state–action pair above the priority threshold

are stored in the Model array. During the Q-table update

process, the last state–action pair from the priority queue is

used for an update. Prioritized sweeping allows for a more

directed search over the problem search space as it calculates

the impact of a new state–action pair on all its predecessors

and keeps track of only the important ones.

The theoretical complexity of the prioritized sweeping

scheme is as high as that of the conventional Q-learning

method. However, several studies, such as the one in [35],

demonstrated empirically that the enhanced algorithm con-

verges faster as compared to the conventional option due to

its prioritized search.

C. Monte Carlo Tree Search

The MCTS [36] scheme seeks the best strategy by combin-

ing the tree search method and the sampling technique [37] to

build a decision tree from the initial state. In this algorithm,

the problem is represented via a graph where states are graph

nodes. The initial state S0 is named the root node, while a

node extending from the root or another node is named a child

node.

This method has become a state-of-the-art technique for

deterministic combinatorial games and problems [38]. The
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Algorithm 2 Q-Learning with Prioritized Sweeping

Initialize q(s, a), Model(s, a), PQ, θ,∀s ∈ S , ∀a ∈ A(s)
for n = 1, . . . , Ne do

st ← current non-terminal state

Sample action at using ε-greedy policy

Take action at, observe reward g(st, at) and state st+1

Model(st, at)← g(st, at), st+1

P ← |g(st, at) + γmaxa q(st+1, a)− q(st, at)|
if P > θ then insert st, at into PQ with priority P
while PQ is not empty do

st, at ← first(PQueue)
g(st, at), st+1 ←Model(st, at)
Update elements of Q-table via (23)

for ∀s̄, ā predicted to yield st: do

ḡ(st, at)← predicted reward for s̄, ā, st
P ← |ḡ(st, at) + γmaxa q(st, a)− q(s̄, ā)|
if P > θ then insert ā into PQ with priority P

end for

end while

end for

fundamental challenge of balancing exploration and exploita-

tion in MCTS is addressed in the same way as in multi-armed

bandit (MAB) problems. The algorithm treats each state of the

search tree as a MAB and selects an action that maximizes

the upper confidence bound (UCB) heuristics. In particular,

the algorithm consists of four main steps:

• Selection. At the initial step, all graph weights v̂ are

initialized as infinite. Therefore, a child node in a graph is

selected randomly. Then, the child node is chosen based

on the maximization of the UCB score, which is given

by

max
a

(

∑Nv(st,a)
k=1 (−Rπ)

Nv(st, a)
+ CUCB

√

log(Nv(s0))

Nv(st, a)

)

,

(24)

where Nv(st, a) is the number of times action a has been

selected in state st, while Nv(s0) is the total number

of visits,
∑Nv

k=1(−Rπ) is the reward accumulated over

Nv(st, a) when action a has been selected in state st,
and cUCB is a parameter responsible for the exploration–

exploitation trade-off.

• Expansion. The search tree is expanded via all possible

actions by adding child nodes to the leaf nodes.

• Roll-out. From a selected child node, the sequence of

actions is chosen randomly at each depth of the tree until

the terminal state is reached. Then, for this sequence of

actions, an intermediate return is conducted to estimate

the performance of the selected child node.

• Backpropagation. The reward returned from the previ-

ous step is backpropagated all the way up to every node

by updating the accumulated rewards, the numbers of

visits, and the corresponding UCB values.

These steps are repeated as many times as time or computa-

tional resources allow. A strategy is formed either after a fixed

number of iterations or when a computational limit is reached.

Algorithm 3 Customized Genetic Algorithm

Initialize population of size Npop randomly

Evaluate initial population

for n = 1, . . . , Ne do

for i = 1, . . . , Npop/2 do

Pick two parents with the best fitness score

Reproduce

Mutate

end for

for j = Npop/2, . . . , Npop do

Pick an individual Pb with the best return Rπ

Identify flows with satisfied demands Fs in Pb

Exclude a ∈ Fs from action space A
for action a(t) in Pb do

if a(t) ∈ A or satisfied flow queue is empty then

Compare queues of unsatisfied flows

Change a(t)
end if

end for

end for

Evaluate population

end for

The complexity behind a single update of the MCTS algo-

rithm is O(T |A|). On the other hand, the overall complexity

of the method depends on the total number of iterations. In

turn, the number of iterations is a function of multiple factors,

such as, e.g., the initial state and deployment parameters.

D. Genetic Algorithm

GA represents a policy-based approach inspired by the

biological evolution process [39]. It starts with an initial

population, where an individual represents a scheduling policy

π = (a(0), . . . ,a(T − 1)) for all a(t) ∈ A, while the gene of

an individual represents a single pattern a(t) for the time slot

t. The fitness score of an individual, thus, corresponds to the

expected return Rπ(s0) starting from state s0 and following

policy π. The size of the population Npop is chosen at the ini-

tialization step and does not change. Therefore, the algorithm

complexity depends on this parameter as O(TNpop). Further,

the memory utilization of GA is more efficient compared to Q-

learning because it depends only on the population size Npop,

which remains unchanged throughout the simulation time.

The initial population is generated randomly, and the fitness

score for every individual is then evaluated. The fitness score

of the entire population is equivalent to the best fitness score

among its individuals. A new population is obtained from the

current one via the following steps:

• Selection. At the selection step, Np individuals with the

best fitness score are tagged within the population. These

individuals are named parents, while others are named

children. Further, two parents with the best fitness score

are selected from the current population to reproduce at

the next step.

• Reproduction. At the reproduction step, crossover is per-

formed for all pairs of parents to produce offspring. The
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crossover procedure is executed by selecting a crossover

point within the parent sequences and by exchanging their

genes beyond that point. The crossover point t of a parent

is selected randomly from [0, . . . , T − 1].
• Mutation. Offspring individuals can be subject to a mu-

tation, when pattern at at a randomly selected position of

policy π is to be changed. Note that the newly produced

individuals always account for the half-duplex constraint,

because a(t) is selected from the set of actions A.

Both crossover and mutation procedures are performed with

certain probabilities Pc and Pm, which are set at the initial step

of the algorithm execution. The above steps are repeated until

the time/computational limit or a given number of iterations

is reached.

E. Customized Genetic Algorithm

Even though GA demonstrates adequate operation in com-

binatorial search problems, its performance may drop due to

the random population initialization, selection, crossover, and

mutation steps [40], [41]. To overcome this shortcoming, we

develop a customized version of the GA for our problem.

The pseudo-code of our customized GA is summarized in

Algorithm 3.

In the modified GA, the population is generated via two

different methods. Specifically, the first half of the population

follows the rules of the classical GA method, while the other

half is produced via a customized approach. At the same

time, the best individual is determined at each step. The

second half represents a modification of the best individual

(scheduling policy) being obtained by executing lines 10-19

in Algorithm 3. It is worth noting that such a population split

offers more diversity and decreases the probability of falling

into a local minimum.

The complexity of the modified GA version is similar to

that of the classical implementation in the worst-case scenario.

However, the customized algorithm may converge faster than

the basic GA for the problem of interest. This is because the

number of iterations that the GA needs to converge is subject

to random mutations and crossovers, which may not guarantee

reasonable convergence. On the contrary, our customized GA

has more control over how the scheduling patterns are updated,

because it aims to improve the current schedule as long as

possible rather than update the links in a pattern randomly.

The links within the scheduling pattern at which can be

changed are selected based on the buffer states. Specifically,

for the current best policy, the number of transmitted packets

is compared to the target requirements r∗f . Those links, which

contain flows where the requirements were satisfied are con-

sidered to be fixed, while all other links can be changed. Note

that it is also necessary to compare not only the requirements

but also the buffer states of these flows to avoid scheduling

a packet transmission from an empty buffer. After identifying

the links that can be modified, we reduce the action space

by excluding those actions, which involve only ’satisfied’

flows. Moreover, before an action change, we track the queues

of ’unsatisfied’ flows to determine the number of potential

changes in policy π needed to satisfy the requirements as well

TABLE II: Parameters utilized in numerical assessment.

Parameter Value

Deployment parameters

Carrier frequency, ωc 30 GHz

Bandwidth, W 400 MHz

Cell radius 500 m

Tx power of donor, PT 40 dBm

Tx power of IAB, PT 33 dBm

Tx power of UE, PT 23 dBm

Noise figure of donor and IAB node, fn 7 dB

Noise figure of UE, fn 13 dB

Power spectral density of noise, N0 -173.93 dBm/Hz

Antenna array size of UE, NH ×NV 4x4

Antenna array size of DgNB and IAB node,
NH × NV

16x16

Height of DgNB 25 m

Height of IAB node 10 m

Height of UE 1.5 m

LoS fading variance, σ2

LoS 4 dB

NLoS fading variance, σ2

NLoS 7.8 dB

Gain of a single antenna element, GE 8 dBi

Front to back antenna ratio, Amax 30 dB

Algorithmic parameters

Learning rate, α 0.1

Maximum number of episodes for Q-learning 50000

Population size 1000

as which flows should be prioritized for the change. In the

following section, we present a comparative assessment of the

discussed algorithms.

VI. NUMERICAL RESULTS

A. Simulation Assumptions

We consider a large number of IAB network deployments,

which results in many different realizations of spanning tree

and DAG topologies. In particular, the DgNB is placed at the

center or at the edge of the cell, while UEs are uniformly

distributed within the cell, and IAB nodes are positioned

within the cell by ensuring sufficient distance between each

other and the DgNB as recommended in [1]. Examples of the

IAB deployments with realistic tree and DAG topologies are

given in Fig. 4a and Fig. 4b, respectively.

We utilize our custom simulation software written in Python

programming language to assess the performance of the con-

sidered strategies [42]. The modeling parameters are 3GPP-

compliant and can be found in Table II. The parameters of the

approximation algorithms are selected empirically, i.e., after

evaluation of different values, the preferred ones are chosen.

We assume that for the selected numerology, the time slot

∆t is 1 ms and it is represented by 14 OFDM symbols. This

is a reasonable assumption due to the practical limitations of

beamforming. However, one can assume that ∆t is equal to

the duration of an OFDM symbol or a sequence of OFDM

symbols to conduct scheduling with a desired granularity.

Without loss of generality, we assume that Λf
n(0) = r∗f

and Λf
n(t) = 0 for t ∈ [1, . . . , T − 1] and f ∈ F . The flow

demand r∗f can either be obtained from real data or sampled

as follows. In order to understand the impact of heterogeneous

demands on the system performance, we introduce parameter

σ ∈ {0.1, . . . , 0.9, 1} that captures how far the flow demands

are from the capacity region [19] for a given topology and
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Delay-tolerant UEs

Delay-sensitive UEs

IAB node 1

IAB node 2

DgNB

IAB node 3UEs connected to IAB node 1

Topology

(a) Spanning tree topology

Delay-tolerant UEs

Delay-sensitive UEs

IAB node 1

IAB node 2

DgNB

IAB node 3

UEs connected to IAB node 1

Topology

(b) DAG topology

Fig. 4: Examples of IAB network deployments.

number of users. Here, σ = 0 means that all the demands

are within the network capacity region and σ = 1 means

that each demand exceeds the capacity. For every value of

σ, we generate different combinations of flow demands and

then average the results of simulation runs collected for each

combination.

With respect to unseen topologies, the scheduling strategy

is updated every frame as the initial state of the MDP S0

changes. The latter means that the initial queue backlogs and

channel states might be updated. However, all the considered

algorithms utilize previously learned statistics and strategy,

which facilitates finding a new strategy. Whenever the network

deployment changes, one needs to update state space S and

action space A with respect to a new number of IAB nodes,

UEs, and network topology before solving the target problem

again.

B. Intra-Cell Interference and Small-Scale Fading

In this subsection, we verify our assumption on the presence

of non-negligible interference under certain scheduling pat-

terns. Specifically, we expect to see only marginal interference

when the distances between all active transmitters are large

(a) Patterns with larger angular resolution between links

(b) Patterns with smaller angular resolution between links

Fig. 5: SNR/SINR CDF for different scheduling patterns.

enough, and their antenna radiation patterns do not overlap

significantly.

To demonstrate this effect, we compute the SINR across

the transmission links for all possible scheduling patterns in

a given deployment and average the results for two represen-

tative examples. In the first set of patterns, the transmitters

are distributed sparsely, and their beams aim in different

directions. In the second set of patterns, the transmitters are

located nearby, such that the angular resolution between the

main and interfering transmissions is less than 20-25◦. It was

previously demonstrated in [28] that such an angular resolution

or higher is sufficient to guarantee negligible interference.

Fig. 5a and Fig. 5b illustrate the CDFs of the signal-to-noise

ratio (SNR) and SINR for each of the two sets of scheduling

patterns. To obtain these CDFs, we consider small-scale fading

ln (Xσ) ∼ N (0, σ2), where σ2 takes different values for LoS

and NLoS links.

In Fig. 5a, the interference impact is negligible. However,

the effect of interference becomes more noticeable for the

second set of scheduling patterns as demonstrated in Fig. 5b.

The average SINR is 3.4 dB lower as compared to SNR.

Moreover, the tail of the distribution indicates that the link

capacity can drastically decrease and SNR unlike SINR cannot
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Fig. 6: Demand dissatisfaction rate.

capture this degradation. Despite the fact that the gap between

SNR and SINR may not be significant on average, accounting

for interference when selecting a scheduling pattern is essential

because some patterns can cause link outage if, e.g., UEs

are located close to a shared border of two adjacent antenna

sectors [28].

Our observations suggest that the link capacity degradation

is dependent on the link scheduling pattern rather than the

small-scale channel variations.

C. Convergence Analysis

We compare the performance of conventional Q-learning,

Q-learning with prioritized sweeping, MCTS, GA, and cus-

tomized GA in terms of the demand dissatisfaction rate

Sπ =
∑

f∈F

max[r∗f − rf , 0]
2. (25)

Due to the prohibitive complexity of the value iteration method

for solving the MDP problem in (19) even for a small-scale

deployment, the true optimal value Rπ∗(s0) is unavailable.

Therefore, comparing the values of Rπ(s0) achieved by the

above methods may not provide a clear understanding on

the satisfaction of traffic demands. Moreover, the addition of

binary penalty does not reflect how close the achieved rates are

to the desired ones. On the contrary, demand dissatisfaction

rate Sπ has its minimum at 0. Note, however, that this value

might generally be unreachable in deployments with arbitrary

demands.

Fig. 6 compares the convergence of the baseline methods to

the minimal demand dissatisfaction. For these results, we fix

the flow demands and consider the scheduling interval T to be

equal to 80 slots or one episode. The performance in time is

compared in terms of iterations, where one iteration represents

the choice of one scheduling pattern in a frame. Due to the

fact that the conventional and customized GAs estimate Np =
1000 link schedules (policies) per one iteration, the curves in

Fig. 6 for these two methods are scaled correspondingly for a

fair comparison in terms of time. The experiment spans over

20000 episodes for all other algorithms, which corresponds to

Ne = 250 episodes of the conventional and customized GAs.

As can be seen in Fig. 6, the MCTS algorithm achieves

the lowest demand dissatisfaction rate over 20000 iterations.

However, its computational complexity is higher as compared

to, e.g., GAs. On the other hand, we demonstrate that by

customizing the basic GA, the performance can closely match

that of MCTS while maintaining the computational efficiency

of the conventional GA. Therefore, a sub-optimal solution can

be achieved after a smaller number of iterations. Moreover,

all other algorithms display better dissatisfaction rates until

14500 iterations, after which the values obtained with the help

of MCTS rapidly converge to the minimum. As demonstrated

in other applications [36]–[38], MCTS is subject to a long

exploration period, which, on the other hand, facilitates finding

the global minimum rather than stalling in the local ones.

It is an appropriate benchmark when the true optimum is

unknown but remains computationally heavy in practice, since

the duration of the exploration period grows with the number

of flows and nodes in the system.

The Q-learning and prioritized Q-learning options demon-

strate the worst performance as these algorithms tend to con-

verge to a local minimum. The prioritized Q-learning scheme

performs better than the conventional Q-learning in terms of

the convergence time, but it is even more prone to convergence

to a local minimum. Moreover, both algorithms have memory

utilization issues, which can be tackled by employing GAs.

The proposed GA customization allows for faster convergence

as compared to the basic GA, while inheriting its advantages

in resource utilization. The latter makes it attractive for im-

plementation in real-world systems. From the system design

perspective, it means that the customized GA is more suitable

for larger-scale deployments, whereas MCTS can be applied

in smaller-scale networks.

D. Optimality Gap Analysis

Further, we consider the behavior of the optimality gap

across a wide range of deployments and user traffic de-

mands. Fig. 7a and Fig. 7b demonstrate the average demand

dissatisfaction rate over 20 realizations of the DAG and

spanning tree topologies with identical user traffic demands.

In addition, the parameter σ represents demand diversity of

the traffic flows. The purpose of introducing this parameter

is to understand whether the performance of the considered

algorithms depends on the traffic demands. In this experiment,

deployment variations have varying link conditions, while

UEs remain associated with the same parent node. Notably,

the assumed variations in the link quality do not violate the

maximum RSRP association rule as they mainly correspond

to the variations in the link length within the radii of the

parent IAB nodes or donor. In the second experiment, the link

quality is fixed, but the user traffic demands are varied. Its

results for the considered DAG and spanning tree topologies

are given, respectively, in Fig. 7c and Fig. 7d. We remind that

the figures obtained for a single value of σ are the average

demand dissatisfaction rates observed over the deployments

with different demands.
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(a) Fixed requirements, different deployments (DAG topology) (b) Fixed requirements, different deployments (spanning tree topology)

(c) Fixed deployments, different requirements (DAG topology) (d) Fixed deployments, different requirements (spanning tree topology)

Fig. 7: Best demand dissatisfaction rate achieved by the considered algorithms.

As evident from the results of both experiments in Fig. 7,

MCTS algorithm is the best solution for finding a close-to-

optimal predictive schedule that satisfies all traffic demands.

Specifically, it performs equally well for the deployments

with arbitrarily DAG and tree topologies as well as with

highly asymmetric traffic loads (where σ = 1). Note that

one of the advantages of the MCTS scheme is that it can

be terminated when any of the specified stopping conditions

are met. Examples are computational resources or time bud-

get, target or acceptable demand dissatisfaction rate. These

conditions may be implemented specifically by taking into

account the computing capabilities at the network controller

or the deadline by which the predictive schedule needs to be

constructed.

Q-learning-based algorithms demonstrate an inconsistency

in their performance with respect to the changing demands.

Even though Q-learning and Q-learning with prioritized

sweeping are able to achieve close-to-optimal dissatisfaction

rates in some setups, e.g., where σ = 0.4 as demonstrated in

Fig. 7a, they fail to do so in the majority of other cases and

demonstrate the worst results on average. The poor perfor-

mance of the off-policy learning methods represented by Q-

learning is likely due to the large action space. In general, this

class of methods is more suitable for offline training scenarios

where a pre-trained model is deployed in the real-world system

and is expected to perform moderately well while keeping the

learning of a better schedule in an online manner. However,

this does not apply to link scheduling in IAB systems, where

the use of Q-learning or DQL models requires slot-by-slot

feedback aggregation from the IAB nodes to compute a link

scheduling pattern for the upcoming time slot. A combination

of these methods with system state prediction as demonstrated

in [21] resolves the feedback issue but does not reduce the op-

timality gap. In particular, the performance gain of Q-learning-

based solutions vanishes with the network scale growth and

converges to the performance of the MWM algorithm [21] for

link scheduling pattern optimization.

The demand dissatisfaction rate achieved by the GA and

customized GA is smaller on average as compared to that

of the Q-learning methods both with and without prioritized
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15%

Fig. 8: Delay comparison for baseline vs. proposed customized

GA.

sweeping. In all the experiments, the results shown by the

customized GA are at least 2 times better than the perfor-

mance of the baseline GA. It is more sensitive to highly

dissimilar demands than MCTS and persistently demonstrates

second-best performance. At the same time, the amount of

resources and the complexity of necessary operations required

by the customized GA are significantly smaller as compared

to MCTS. Moreover, it converges faster to its best sub-optimal

result than any other algorithm. Therefore, we conclude

that our customized GA achieves an attractive performance–

complexity trade-off.

E. Delay Performance

We now focus on the delay assessment by comparing the

CDF of the packet delay achieved by using our customized

GA variant with the CDF computed by using the reference

predictive backpressure scheme [21] as the baseline. It is

worth mentioning that the delay obtained with the MCTS

method may be the smallest as it provides closer-to-optimal

performance. However, the main drawback of this algorithm

is in its long convergence time. Therefore, we consider the

customized GA as it demonstrates a preferred performance–

complexity trade-off.

The results are reported in Fig. 8. The proposed customized

GA improves the packet delay by 15% on average as compared

to the baseline. Such performance gains are mainly due to

the penalty term introduced for the delay-sensitive flows by

the objective function in (18). The cumulative penalty grows

as long as the packets of delay-sensitive flows remain in

the queues. Hence, our proposed algorithm tends to schedule

delay-sensitive flows first whenever possible and address the

residual dissatisfied demands of delay-tolerant flows later.

Therefore, the customized GA can achieve near-optimal results

in terms of the demand dissatisfaction rate fast and perform

delay-aware scheduling that reduces the system packet delay.

VII. CONCLUSIONS

We develop a practical centralized delay-aware link schedul-

ing solution for IAB networks with dynamic user demands.

The proposed scheme takes into account realistic half-

duplex constraints of IAB systems together with possible

non-negligible cross-link interference to address transmission

scheduling in both uplink and downlink directions over po-

tentially multi-hop paths. The outlined framework allows for

efficient handling of dissimilar UE demands and accounts for

different delay requirements. Moreover, the developed solution

helps balance the load across IAB nodes by dynamically

selecting the next hop if multiple paths to the destination are

available.

To address the high complexity of the formulated MDP, we

employ different RL algorithms, including Q-learning, MCTS,

and GAs. Our proposed customized GA method demonstrates

the best performance–complexity trade-off among the refer-

ence solutions. It also achieves a significant 15% packet delay

reduction across the considered types of traffic flows and

various system configurations as compared to the backpressure

algorithm. In addition, we provide system design recommen-

dations based on our comparison of the alternative algorithms.

As future work, one may consider exploring a distributed

optimization framework based on the problem formulation

addressed in this paper to improve the scalability of the

developed method. We aim at comparing centralized and

distributed solutions in terms of scalability, convergence, and

incurred overheads.
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