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Abstract—In the last years, the number of applications for Un-
manned Aerial Vehicles (UAVs) has increased. Among them, the
possibility to deploy them as flying base stations, namely Unmanned
Aerial Base Stations (UABSs), has attracted the attention of indus-
try and researchers. The unmatched mobility of UAVs, together
with the unique quality of air-to-ground radio links, allow a boost
in the capacity and coverage of existing mobile networks. In this
paper, the use of UABSs is studied to assist a terrestrial mobile
network aiming at serving moving connected vehicles, denoted
as Ground User Equipments (GUEs), implementing Vehicle-To-
Anything (V2X) extended sensing applications. To this aim, tech-
niques are presented to tackle two important problems: trajectory
design for the UABS allowing for tracking GUEs moving in a
complex urban scenario and the scheduling of radio resources
used to serve them. The former is solved by leveraging a Deep
Reinforcement Learning (DRL) algorithm, Double Dueling Deep
Q-Network (3DQN), whereas the latter is modelled via Integer
Linear Program (ILP). Since we assume radio resources are all
shared among GUEs, Macro Base Stations (MBS) and the UABS,
the positioning of the UABS deeply affects interference, that is
the radio resource management (RRM) algorithm; therefore, the
two problems must be considered and solved jointly, choosing the
reward function of the DRL algorithm properly. Two different
scenarios are addressed: a coverage limited and a capacity limited
one. Performance metrics shown are both machine learning related,
delivering the training outcome of the agent, and network related,
such as the percentage of satisfied GUEs for different application
requirements.

Index Terms—Unmanned Aerial Vehicle (UAV)-aided vehicular
networks, trajectory design, RRM, DRL, ILP.
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I. INTRODUCTION

IN THE last years, the number of possible applications for Un-
manned Aerial Vehicles (UAVs) has increased, going from

on-field inspections at construction sites to crop spraying, from
package delivery to search and rescue missions, thus, the study
of UAVs has attracted the attention of researchers worldwide [1],
[2], [3].

One of the emerging applications is the use of UAVs to
provide network service to terrestrial users, by means of radio
equipment onboard them [4], [5]. This application falls inside the
paradigm of 3D networks, in which, more in general, terrestrial
components cooperate with aerial ones to provide service to
ground users. In particular, the use of UAVs can provide a lot of
advantages: they are easy to be deployed, different from other
aerial systems such as satellites and balloons that have very high
time-to-market; they can fly above rooftop level, providing radio
links that have a higher probability of being in line of sight
(LoS), thus potentially increasing the overall link conditions;
their unmatched mobility characteristics allow them to fly when
and where needed offering the possibility to behave proactively
and reactively to events. It is expected that 3D networks will
play a fundamental role in the context of 6G. Indeed, new 6G
applications and use cases are becoming increasingly eager in
terms of requirements, one of them being vehicle-to-anything
(V2X) communications [6], [7], [8]. Such applications require
high data rates, high reliability, and low latency [9], which
terrestrial networks alone might not be able to guarantee. This
work envisions the use of a UAV with onboard Base Station
(BS), namely Unmanned Aerial BS (UABS), working along-
side the terrestrial network. By leveraging its mobility, it can
follow vehicles to provide continuous service that meets high
demanding V2X application requirements.

In this work, we jointly address the Unmanned Aerial
BS (UABS)’s trajectory design problem and the cooperative
terrestrial-aerial radio resource management (RRM) problem.
For what concerns the former, optimization tools have been
widely adopted under the assumption of full knowledge of
the environmental characteristics and fixed ground user loca-
tions [10]; however since in this work we address vehicular
services, hence, user mobility and high dynamicity of the en-
vironment, such approaches turn out to be unfeasible. For these
reasons, we exploit deep reinforcement learning (DRL)-based
algorithms to solve such a problem [11]. reinforcement learning
(RL) is a branch of machine learning (ML) in which an agent
interacts within an environment to learn how to accomplish
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a specific task, which in this case represents the movement
decision. On the other hand, the problem of RRM is formalized
as an Integer Linear Program (ILP) [12], allowing an optimal
solution for scheduling resources that maximizes the number of
served users, addressing at the same time many aspects, such
as beamforming and interference management. Even if the two
problems are solved by using two algorithms based on very
different approaches (model-driven for RRM and data-driven
for trajectory), they can be intertwined by means of a proper
reward function that accounts for the UABS observation and the
RRM outcome. Since the learning process aims at maximizing
the reward obtained considering an entire flight, the UABS will
learn a trajectory that exploits the best utilization of resources
in the network considered.

The remainder of the paper is organized as follows: in
Section II, the literature state of the art is reported, whereas
Section III presents the considered system model; in Sections IV
and V the RRM and DRL algorithms are described respectively,
while in Section VI the steps to intertwine both algorithms are
shown. A comparison of the proposed system with three bench-
marks and numerical results for two investigated scenarios are
presented in Section VII. Conclusions are drawn in Section VIII.

II. STATE OF THE ART

In the scientific literature, some works already solve the issue
of trajectory planning for UABSs jointly with the problem of
assigning resources, even though they show some limitations.
One UABS that serves as an active relay is studied in [13],
where its trajectory, user association, and selection of frequency
bands are optimized, whereas multiple relaying UABS are con-
sidered in [14]. In [15] the optimized path planning and resource
assignment in Non-Orthogonal Multiple Access (NOMA) and
Orthogonal Multiple Access (OMA) systems are studied and
compared. Works [16] consider an aerial communication sys-
tem that shares resources with a separate underlying cellular
network. As a result, the optimization of the scheduling of
resources and the UABS’s trajectory account for the mutual
interference among primary and secondary users. In [17] the
authors examine in-band and out-band backhaul, and its effect
on the optimal trajectory, taking into account also the physical
constraint of fixed-wing UABSs. Works [18], [19], [20], [21],
[22] consider networks with multiple UABSs, making the joint
deployment and resource scheduling even more difficult. It is
worth mentioning the work made in [20], where authors demon-
strate the benefit of optimizing subchannel scheduling, user
association and individual trajectories, but they also highlight
that the advantage of adding UABSs tends to decrease due to
the raising level of mutual interference among them.

All the previously cited works consider a detailed RRM
algorithm, but resources are assigned to maximize the fairness
among users, while in vehicular communication applications,
such as extended sensing, it is more important to guarantee
service continuity, i.e., assignment of resources for a given
amount of time, so that it can upload all data continuously [23]
and [24]. Furthermore, the trajectory design is always simplified
since it is supposed that the users’ location is fixed and known a

priori. Such a hypothesis cannot be extended easily to our case
of interest, since cars move at speeds comparable to that of the
UABS.

Finally, the methodology used in the above-mentioned works
is based on splitting the joint problem into smaller ones, more
tractable. These sub-problems are then solved iteratively, in
series, by means of heuristic or optimization algorithms until
a convergent solution is met. In contrast to these works, we
exploit two different classes of algorithms that can work in
parallel, so that in each iteration the two do not influence each
other. Convergence to the optimal joint solution is then ensured
by a learning phase that uses the outcome of RRM, based on
ILP, as a training signal for the trajectory design, based on
DRL. By doing so, we can discover UABS paths that maximize
resource utilization. The use of RL algorithms allows a system
to learn the implicit dependencies and patterns of the reference
scenario, while requiring less a-priori information, in exchange
for a training phase. They can be exploited to solve a vast
range of UABS related problems, see, e.g., [25]. In [26], the
authors jointly design the data collection schedule and the flying
speed of drones using a centralized Deep Q-Network (DQN)
algorithm. A decentralized approach is instead studied in [27].
User scalability poses the main limitation of these systems.
Indeed, resource scheduling relies on the hypothesis that the
number of users to serve is fixed in time, thus it cannot be
used in dynamic networks. To solve such a problem, in [28]
it is implemented a mixed system that uses both a DRL and
an optimization algorithm. In particular, the former provides
the deployed position of UABS, while the latter calculates the
best beamforming vector and the best user association, allowing
the needed scalability. Nonetheless, it is supposed that ground
terminals are in a fixed position, thus its extension to vehicular
use cases is yet to be demonstrated.

Concerning UABS aided vehicular communications, in [29],
by means of an iterative optimization technique, the schedul-
ing of subchannels and the UABSs trajectories are addressed
for maximizing the minimum average rate among vehicles.
The coexistence of vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) links, each with their own requirement, are
considered in [30]. Here, the authors study the optimal schedul-
ing of resources and use Q-learning to improve the UABS
trajectory. In [31] it is studied a UABS whose mission is to follow
a single mobile user providing sensing and communications ser-
vices. These works consider a typical highway scenario, where
vehicles move on straight roads and the path followed by the
drone turns out to be simplified. An urban scenario is considered
in [32], where UABSs are used as content providers for proactive
caching towards users in a data dissemination V2X protocol.
Optimization of the drone’s trajectory achieves minimization of
the caching time. All these works consider the position of all
users, limiting their applicability to highly dynamic scenarios
and real-time systems, where the exchange of such information
would correspond to communication overheads.

To summarize, in this work we study a system that jointly
addresses the UABS trajectory design and the resources’ as-
signment problem in the presence of full reuse, providing strict
cooperation between terrestrial and aerial networks in a complex
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urban scenario. The primary objective is to ensure uninterrupted
service for mobile ground user equipments (GUEs), employing
a prioritization mechanism for resource assignment tailored to
application-specific service windows. The complexity arises
due to GUEs traversing unpredictable paths in urban settings,
requesting prediction capabilities by means of DRL algorithms.
To the best of our knowledge, this is the first work that addresses
such a complex scenario, where the knowledge of GUEs’ num-
ber and their positions is not required a priori.

III. SYSTEM MODEL

A. Scenario of Reference

We consider an urban area, whose street layout is based on
a part of the city of Bologna (Italy). We assume a group of
macro BSs (MBSs)M, of cardinality |M|, is providing cellular
coverage to users in the area at a carrier frequency fc in the
mmWave band. Their position is given by [xm, ym, hm]. All
the MBSs run the RRM algorithm described in Section IV to
assign resources and serve GUEs. The algorithm optimizes the
scheduling so that the number of served users at each time instant
t can be maximized according to a Quality of Experience (QoE)
metric.

At the same time, one UABS, u, is flying above the rooftop
level to provide additional coverage to ground users in coordi-
nation with the terrestrial infrastructure. The UABS is equipped
with a radio antenna system enabling beamforming in the
mmWave frequency band considered; its position is given by
[xt, yt, hu], with constant altitude hu, at time instant t.

The UABS can move along directions belonging to the dis-
crete set D = [←, ↑,→, ↓,↖,↗,↘,↙], by flying with a vari-
able speed that is chosen from a discrete set V , spanning from
vmin to vmax with a resolution of vstep, or it can decide to stay
still, referred as ∅, thus hovering in place for the current time
instant t.

For the entire duration of the flight, the UABS needs to keep
connection with (at least) one macro BS (MBS) via backhaul
connection. This link allows the exchange of information needed
for running the RRM algorithm and forwarding data packets
collected from users to the core network. By defining the most
suitable trajectory to follow, the UABS is expected to cooperate
with all the MBSs to maximize the network service. In order to
avoid continued handover between multiple MBS, which in real-
case scenarios could deeply increase the number of overhead
communications, a handover mechanism is considered so that,
at the beginning of each flight, the UABS will associate with the
MBS, m∗, with the highest level of received power. After the
first association, a handover towards a different MBS, mh, may
happen if its received power is greater than the one from m∗ by
a given threshold Ph,th for th consecutive time instant.

Inside the considered area, a set of vehicles denoted as GUEs,
g, belonging to the set G, are moving with average speed vg
. Their movement is based on simulations run by Simulation
Urban MObility (SUMO), which is an open-source program
used to realistically model the behaviour of vehicles traveling
in complex road networks. They exchange V2X messages with
the network by connecting directly to a MBS or the UABS.

Fig. 1. Joint Trajectory-RRM Scenario. The UABS is associated with MBS
1, which will schedule the resource by running the proposed RRM algorithm.

Fig. 1 shows an example of the considered scenario. In partic-
ular, in the following, we will consider two different scenarios
that can take advantage, for different reasons, of the presence of
the UABS:
� in the Coverage Limited Scenario, we assume that a portion

of the area of interest is not well covered due to the lack of
presence of MBSs. This means that some GUEs will not be
able to connect to the network due to radio links being under
a Signal-to-Noise ratio (SNR) threshold requirement. In
this case, one should expect the UABS to fly towards
locations where GUEs are moving but MBSs are not able
to serve them, thus providing them connectivity.

� in the Capacity Limited Scenario, the area of interest is
fully covered by MBSs, but, at the same time, the amount
of resources available is not sufficient to serve all the GUEs
moving in the area. In such a scenario, the role of the UABS
is to fly towards the area of the map that requires a boost
in the capacity to fulfil the GUEs demand (for example,
crowded streets or location with traffic lights). Indeed,
given the best channel condition of the radio link between
GUEs and UABS, we can expect better use of the radio
resources.

The comparison between the two scenarios will be investigated
in Section VII.

B. Application Requirements

GUEs request to upload Cooperative Awareness Message
(CAM) messages to the network [23], using the resources pro-
vided either by the MBS or the UABS, every tmsg s. Such a
behaviour models an extended sensing application, where GUEs
exchange data obtained through local sensors or videos with
the nearby vehicles. We defined a GUE to be served if, at the
current time step t, can upload its message, that is the scheduling
algorithm has assigned enough resources for the transmission of
the data packet. A priority pg,t is introduced and given to each
GUE, g, to keep track of the service history at each time instant, t.
The priority mechanism is used both inside the RRM algorithm
and the trajectory design to allow a continuous service that meets
the Quality of Experience (QoE) constraints.

C. Channel Model

The channel model follows the Urban Macro (UMa) channel
described in the 3GPP TR 38.901 [33]. The considered model
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provides different channel descriptions for LoS and Non-LoS
(NLoS) conditions through the exploitation of the parameter ρL
which is the probability of being in LoS condition that depends
on the distance between the considered GUEs g, regarded as
transmitters, and the UABS/MBSs, the receivers, and on the
height of g, hg . The path loss variation due to shadowing can
be described through a log-normal distribution zero-mean and
with a standard deviation σLoS and σNLoS for LoS and NLoS
respectively. Consequently, the SNR in dB can be derived as:

SNR = Ptx +Gtx +Grx − Lpath − Pnoise, (1)

where Ptx is the transmitted power in dBm, Gtx and Grx are
the transmitter and receiver antenna gains in dB, Lpath is the
path loss in dB calculated following Table 7.4.1-1 and 7.4.2-1
in [33] and Pnoise is the noise power in dBm. For what concerns
the modelling of the UABS beams, by defining φ(u) as the field
of view of the UABS on the vertical plane, and Φ(u), through
the relationship Φ(u) = 2π(1− cos(φ(u)/2)), the correspond-
ing solid angle, then the solid angle of the single beam may be
approximated as Φ

(u)
beam ≈ Φ(u)/Nbeam. Finally, the receiving

gain of UABS can be expressed as follow [34]:

Gbeam =
41000(

Φ
(u)
beam

360
2π

)2 . (2)

For the sake of simplicity, it is assumed that the radiation
pattern of the equivalent beam is ideal, with gain Gbeam inside
φ
(u)
beam and 0 outside, i.e. GUEs that are not inside a beam are

not considered connected to the UABS, thus this assumption
provides a worst-case scenario for what concerns the drone and
vehicles connectivity.

D. Resource Definition

A radio resource unit (RU), which is used by the network to
enable communication, may span over three dimensions: time,
frequency, and space. In particular, the frequency domain is
subdivided into subcarriers with a spacing of Δf . A resource
block (RB) is composed of Nsub consecutive subcarriers. The
time domain is split into multiple time slots of durationTslot. The
slot duration is chosen accordingly toΔf so that a RB carries 14
orthogonal frequency-division multiplexing (OFDM) symbols.
Assuming that the RRM algorithm runs everyΔt, corresponding
to tmsg, andBsys is the total system bandwidth, the total number
of RU that can be scheduled in a RRM period is given by:

W =
Bsys

12Δf
· Δt

Tslot
. (3)

In addition, also the space domain can be used to provide
orthogonality among resources to further increase the number
of available ones and reduce the level of interference. Spatial
separation is achieved by the MBSs and UABS using beam-
forming techniques and creating directional links to the GUEs.
In particular, the UABS can generate a fixed footprint composed
ofNbeam=9 circular beams on the ground. They are all active si-
multaneously and arranged in a 3x3 non-overlapping grid. Since
they do not overlap, full reuse of resources is possible between
each of the beams. On the contrary, since the MBSs-GUEs links

are prone to the presence of cluttering obstacles and NLoS links,
such a perfect spatial separation cannot be guaranteed. So, even
if the per-beam full reuse cannot be used at the MBS, directional
beams can reduce the level of interference.

IV. RADIO RESOURCE MANAGEMENT

In this section, we address the RRM problem via ILP. A ILP
is composed of an objective function, that states the target of the
performance optimization, and a number of constraints, which
define the environment and the system model. To formulate
the ILP problem, a number of variables subject to optimization
(integer or binary) need to be defined and, in our context, they
are related to RUs utilization. Since the ILP is solved at each
time step t, the model description that follows is implicit as a
function of time. Nonetheless, for the sake of conciseness, the t
indexing is dropped hereafter.

To introduce the ILP, we now describe the variables used.
First, the binary variables are defined as follows:

ψg =

{
1 if user g ∈ G is served
0 otherwise

λu,m =

⎧⎨
⎩

1 if UABS u is assigned RUs by
MBS m ∈M

0 otherwise

λg,m =

⎧⎨
⎩

1 if user g ∈ G is assigned RUs by
MBS m ∈M

0 otherwise

λg,u =

⎧⎨
⎩

1 if user g ∈ G is assigned RUs by
UABS u and λu,m = 1

0 otherwise

ej =

⎧⎨
⎩

1 if beam j ∈ K is active on
UABS u and λu,m = 1

0 otherwise

ιg,m =

⎧⎨
⎩

1 if link g −m is interfered by any GUE
connected to u and λu,m = 1

0 otherwise

ιg,u =

⎧⎨
⎩

1 if link g − u is interfered by any GUE
and λu,m = 1

0 otherwise

ι(b)m,u =

⎧⎨
⎩

1 if MBS m ∈M suffers interference from
any GUE connected to u and λu,m = 1

0 otherwise

ι(b)u,m =

⎧⎨
⎩

1 if UABS u suffers interference from any
GUE connected to m ∈M and λu,m = 1

0 otherwise

The following integer variables are also subject to optimiza-
tion and, together with binary variables, are the output of the
RRM procedure. They specify the number of RUs given to a
communication link:
� wg,m andwg,u represent the number of resources assigned

to user g ∈ G by the MBS m ∈M or UABS u, respec-
tively;
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� wu,m is the number of resources assigned by the MBS
m ∈M to the backhaul with UABS u.

The objective function aims at maximizing the number of
served users, through ψg . One GUE is denoted as served in the
given interval,Δt, if it can upload its demandDg . In addition, we
aim at serving vehicles continuously, to evaluate the percentage
of users satisfied. Each GUE is assumed to be satisfied if it is
served for at least N̂s time intervals within a given time window,
Tw = Nw Δt (being N̂s a given percentage of Nw), i.e., if it
served continuously by the network, thus it is able to upload its
demand, in a specific time interval. The QoE requirement, N̂s, is
determined by the time the vehicle may take to manoeuvre (e.g.,
turn at crossroads, enter/exit roundabouts, stops, and so on).
Example values are reported in [35], considering the average
values of vehicles’ speed and communication range in specific
use cases. To do this, we weigh each user g ∈ G with a priority
value that varies over time, pg,t. In particular, in each time
window (i.e., t = 1, .., Tw) pg,t varies as follows:

pg,t =

⎧⎨
⎩

1 for t = 1
pg,t−1 + 1 if ψg,t = 1
pg,t−1 if ψg,t = 0

The RRM algorithm runs separately at each MBS m ∈M,
therefore the model is dependent onm. GUEs and UABS select
the MBS which guarantees the strongest communication link,
with the highest Signal-to-Interference-plus-Noise ratio (SINR).
Each MBS manages a given set of RUs assigned to a number
of GUEs, Gm, and to UABSs u. MBS m∗ is the one currently
associated to the UABS u. Since RUs are shared from a common
pool for the GUE-UABS and GUE-MBS links, the interference
coming from the links managed by the same MBS is known.
P is mathematically described in (4a)–(4w), where kg,j is an

input to the problem and indicates with value 1 whether vehicle
g is covered by beam j of UABS u and 0 otherwise. Set Gm ⊆ G
and the value of λu,m depend on m. If m = m∗, λu,m = 1, and
0 otherwise. FB is denoted as the backhaul factor and ranges
within [0, 1]; it is used to enhance the backhaul capacity, by
reducing the RUs needed to forward traffic: lower FB values
correspond to greater backhaul capacity. Constraint (4c) ensures
each vehicle g transmits a demand ofDg bits given the rate of the
unitary RU and the number of RUs assigned by a specific Base
Station (BS). Then, constraints (4d) and (4e) guarantee that the
number of RUs assigned does not exceed the maximum available
for MBSs and UABS, respectively. Clearly, RUs allocated for the
backhaul are accounted for in both. Also, constraint (4f) ensures
the backhaul capacity is enough to forward the UABS vehicular
traffic to the network. As motivated previously, RUs are reused
for different beams only by UABS. Then, constraints (4g) and
(4h) limit the number of beams that can be simultaneously
activated at the UABS u to Nbeam, which is the number of
antenna elements on the array. Finally, constraints (4o) to (4q)
specify that each vehicle is served by one BS at a time.

The constraint (4b) is similar to (4c) as it defines the number
of resources required by GUE g to satisfy its demand, Dg;
however, (4b) serves to recompute the number of RUs required

only in the case interference is present, i.e., g is connected to
an interfered BS. Then, the constraints (4i) and (4j) verify if
there is an effective interferer on the MBS that is connected
to the UABS u or vice versa, respectively, and constraints 4k
and (4l) verify if UABS u is interfering the link g −m given
it is established or if the MBS m is interfering the link g − u
given it is established, respectively. Finally, the constraints (4m)
and (4n) specify that ι(b)u,m, ι(b)m,u, ιg,u, and ιg,m are all binary
variables. The expressions (4r)–(4w) show the validity interval
of each variable in problemP . As previously studied in [12], the
formulation of this problem resembles the generalized Multiple
Knapsack problem which is NP-hard. Therefore, its complexity
can be described as 2|G|, being G the set with the largest
cardinality within the model considered.

P : max

⎛
⎝∑

g∈Gm

pgψg

⎞
⎠ (4a)

s.t. :wg,mr
I
g,m,uΔt+

∑
j∈K

kg,jwg,ur
I
g,u,mΔt ≥

≥ λu,m (ιg,m + ιg,u)Dg , ∀g ∈ Gm (4b)

wg,mrg,mΔt+ λu,m

∑
j∈K

kg,jwg,urg,uΔt

≥ ψgDg , ∀g ∈ Gm (4c)∑
g∈Gm

wg,m + wu,m ≤W ∗
m (4d)

∑
g∈Gm

kg,jwg,u + wu,m ≤ λu,mW
∗
u, , ∀j ∈ K (4e)

∑
g∈Gm

∑
j∈K

wg,ukg,jrg,u ≤
ru,m
FB

wu,mλu,m (4f)

∑
j∈K

ej ≤ λu,mNbeam, (4g)

∑
g∈Gm

wg,ukg,j ≤ ejλu,mW
∗
u, , ∀j ∈ K (4h)

ι(b)m,u ≥ λu,m

∑
g′∈Gm

Ig′,u,mλg′,u

Ig′,u,m
, ∀g′ ∈ Gm (4i)

ι(b)u,m ≥ λu,m

∑
g′∈Gm

Ig′,m,uλg′,m

Ig′,m,u
, ∀g′ ∈ Gm (4j)

ιg,m ≥ λg,m + λu,m + ι(b)m,u − 2, ∀g ∈ Gm (4k)

ιg,u ≥ λg,u + λu,m + ι(b)u,m − 2, ∀g ∈ Gm (4l)

ι(b)m,u, ι
(b)
u,m ∈ {0, 1}, ∀g ∈ Gm (4m)

ιg,m, ιg,u ∈ {0, 1}, ∀g ∈ Gm (4n)

λg,m + λg,u ≤ 1, ∀g ∈ Gm (4o)

wg,m ≤ λg,mW
∗
m, ∀g ∈ Gm (4p)

wg,u ≤ λg,uλu,mW
∗
u, ∀g ∈ Gm (4q)
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λg,u ∈ {0, 1}, ∀g ∈ Gm (4r)

λg,m ∈ {0, 1}, ∀g ∈ Gm (4s)

λu,m ∈ {0, 1} (4t)

wg,u ∈ {0,W ∗
u}, ∀g ∈ Gm (4u)

wg,m ∈ {0,W ∗
m}, ∀g ∈ Gm (4v)

wu,m ∈ {0,min [W ∗
m,W

∗
u]}, (4w)

V. REINFORCEMENT LEARNING MODEL

A. Markov Decision Process

In order to use RL algorithms to solve a task, the problem
must be formalized as a Markov Decision Process (MDP) by
means of the tuple (S,A, T ,R):
� S is the state space, that is the set of all possible states
s. A state is a limited observation of the environment to
which the agent has access. At each time step t the agent
observes a state st. In this work, a state s ∈ S is represented
by the vector of elements [xt, yt, t,bt], where: (xt, yt) is
the current position of the UABS; t is the current time of
flight;bt is the per-beam information vector, that is a vector
of length Nbeam whose elements bi,t represent the sum of
the priority of GUEs under the i-th beam at time instant t.

� A is the action space, which is the set of all possible
actions a that the agent can perform to interact with the
environment. In this work, the action a represents the
selection of a direction to follow and the choice of flight
speed of the UABS. Therefore, we refer to action a as
instantaneous velocity. For this reason, the action space is
defined asA = ∅ ∪ (D × V), that is the combination of all
the possible discrete directions and possible speed values
plus the action to stay still indicated as ∅.

� T is the transition probability function T : S ×A → S ×
(0, 1). Depending on the action a ∈ A and a state s ∈ S ,
it expresses the probability of transitioning to a new state
s′ ∈ S , in short, it captures how the environment changes
due to agent’s actions.

� R is the reward function R : S ×A× S → R. It models
a scalar function that assigns scores to the agent based on
the action a, observed state s, and landing state s′. It will be
used in the following as the key factor that allows designing
a trajectory that jointly considers the RRM output provided
by the MBS. The reward, indeed, is calculated after the
assignment of resources. Since the discussion on the reward
requires a more thoughtful explanation, being the mecha-
nism behind the trajectory design and RRM cooperation,
Section VI-A is entirely dedicated to its description.

The UABS at each time instant t observe the current state st
and choose a direction and a speed, the action at, following
the policy π(a|s), π hereafter, that is a stochastic mapping
between the state space S and action space A. Executed the
action, the environment gives back to the agent a scalar reward
rt = r ∼ R(s, a, s′), and it transitions to a new state
st+1 = s′ ∼ T (s, a). The task is episodic so that it can be seen

as a sequence of actions from time t = 0 to time t = T , where
T is defined as the flight duration.

RL algorithms have the goal to find the optimal pol-
icy π∗ which maximizes the expected discounted return
G0 =

∑T
i=0 riγ

i from the beginning to the end of the flight, at
time step T . The discount factor γ ∈ [0, 1) is a hyperparameter
that balances the importance of immediate and future rewards.

Given a policy π, it is possible to numerically score it by
means of the following functions [36]:

Vπ(s) = Eπ[Gt|st = s] = Eπ

[
T∑
i=t

Riγ
i|st = s

]
; (5)

Qπ(s, a) = Eπ[Gt|st = s, at = a]; (6)

Aπ(s, a) = Qπ(s, a)− Vπ(s). (7)

Equation (5) is the State Value for a state s, which is defined as
the expectation of the discounter return Gt, given that at time t
it is observed state s and the agent follows exactly policy π.
Equation (6) is the Q-value function for action a and state s, that
is the expectation of Gt given that at time t the agent is in state
s, perform action a and then it follows policy π until the end of
the episode. Finally, (7) is the advantage for action a and state s,
and it represents the relative benefit of choosing action a rather
than the action prescribed by the current policy π. Policy π∗ is
optimal if these conditions hold:

Vπ∗(s) ≥ Vπ(s), ∀s ∈ S (8)

Qπ∗(s, a) ≥ Qπ(s, a), ∀s ∈ S, ∀a ∈ A (9)

Qπ∗(s, a) = r(s, a, s′) + γmax
a′

Qπ∗(s
′, a′). (10)

B. 3DQN Algorithm

Our system is based on the Double Dueling DQN (3DQN)
algorithm in which we jointly exploit the Dueling architec-
ture [37], as well as the Double action selection strategy [38].
3DQN represents an extension of the original DQN algorithm
that was first introduced in [39]. The main idea of DQN is
to estimate the Q-values of the optimal policy π∗ using Deep
Neural Networks (DNNs), using batches of data obtained by
a replay buffer D filled by experiences et =< st, at, rt, s

′
t >.

Experiences are collected at each time step t, while interacting
with the environment. An experience is collected every time
the agent interacts with the environment, and it includes the
observed state st, the action selected at, the reward obtained rt
and the new state observed s′t. To correctly estimate the Q-values,
DQN uses two DNNs, the online Q-network with parameters
θ, and the target Q-network, with parameters θ−. The latter
is a delayed copy of the former. Networks receive as input a
One-Hot-Encoded representation of a state s, and as output the
estimates of the Q-values for each possible action. Since the
output layer has finite dimension, DQN can only be used with
a discrete action space A. In addition to standard DQN, the
Double action selection strategy is used for the loss function
calculation, allowing for avoiding the problem of overestimation
when updating the DNN parameters [38].
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Fig. 2. Training procedure of the proposed DRL algorithm.

Finally, the Dueling architecture [37] is used, so the estimates
of Q-values are done starting from the separate estimates of the
state value and advantage for each action, and recombining them
following:

Q(s, a|θ) = V (s|η) +
(
A(s, a|μ)− 1

|A|
∑
a′

A(s, a′|μ)
)
,

(11)
where μ and η are two separate streams of neurons, such that
θ = μ ∪ η and μ ∩ η = ∅. At the i-th update step of the online
Q-network, a batch Bi of experiences is randomly drawn from
D and an average loss is calculated following:

Li(θi) =
1
||B||

∑
ei∈Bi

(
Q(si, ai|θi)−

(
ri +Q(s′i, â|θ−)

))2

,

(12)
where â = arg maxaQ(s′i, a|θ) is the estimated best action to
choose when state s′ is observed. As the loss converges to 0,
the policy π will converge to the optimal one and (10) will be
verified. Once Li(θi) is calculated, the Q network is updated:

θi+1 ← θi + α∇θiLi(θi), (13)

where ∇θiLi corresponds to the back-propagation of the loss
along the DNN and α is the learning rate. A schematic repre-
sentation of the overall algorithm is reported in Fig. 2. Given
a generic experience tuple, ei =< si, ai, ri, s

′
i >, the Online

Network estimates Q-values for state-action pairs and predicts
the subsequent best action. Then, the Target Network estimates
the target Q-value for the next state and the predicted action.
Based on (12), a loss is calculated and accumulated for all
the experiences in batch, Bi, and finally the Online Network’s
parameters are updated.

As widely known in the literature, e.g. [26], the complexity
of the 3DQN can be studied in function of the overall number
of parameters of the DNNs employed and their peculiar archi-
tecture. By defining Ni and No as the number of neurons in
the input layer and output layer, which are in function of the
count of state variable and available actions respectively, M the
number of hidden layers, and mi the number of neurons at the
i-th layer, then the strict complexity bound can be written as
θ(2Nim1 +mM (No + 1) + 2

∑M−1
i=1 mimi+1).

Fig. 3. Schematic representation of the modified RL framework.

VI. INTEGRATING TRAJECTORY DESIGN AND RRM

A. Reward Function Design

We now focus the attention on the design of suitable reward
functions to take into account both the RRM and the trajectory
design issues.

Fig. 3 shows the schematic representation of the considered
RL framework. It is worth noticing the addition of the RRM
block in the closed loop, which is in charge of calculating the
reward for the agent. At each time step t, assuming that UABS
u is associated with MBS m∗ ∈ M, we define the following
subsets:
� Gu, the set of g ∈ G that are covered by UABS u at time t.
� Gm, the set of g ∈ G that are covered by MBS m ∈M at

time t.
� Yu, the set of g ∈ G that are served by UABS u at time t.
� Ym, the set of g ∈ G that are served by MBS m ∈M at

time t.
where covered means that the SNR of the link between the
receiving UABS u or MBS m and the GUE g is above a given
threshold, i.e SNRg,m > SNRth or SNRg,u > SNRth, where
SNRg,m is the SNR of the link between GUE g ∈ G and the MBS
m ∈M at time step t, and SNRg,u is the one of the link between
the GUE and the UABS. The SNR is calculated following (1).
On the other hand, Served indicates that g is covered and the
RRM algorithm has assigned resources for uploading its data
packet. This means that setsGm andGu depend on the reciprocal
positions among TX and RX, which will affect the link budget,
while the other two sets will be determined in the aftermath
of the RRM algorithm outcome. It is worth mentioning that
a GUE g can either be served by a MBS or by the UABS,
thus Ym ∩ Yu = ∅ ∀m ∈M. While a GUE can be considered
covered by the UABS and multiple MBSs at the same time. Then
we can define the following reward functions:
� Greedy Reward: rt =

∑
g∈Yu pg,t, which coincides with

the sum of the priority of the GUEs served by the UABS.
� Network Reward: rt =

∑
g∈Yu∪Ym∗ pg,t, that is the sum of

the priority of GUEs served by the UABS and its current
associated MBS m∗.

� Exclusive Reward: rt =
∑

g∈Yex pg,t, that is the sum of
the priority of GUEs belonging to the exclusive set Yex =
Yu ∩ Gm∗ , that collects all the GUEs that are served by the
UABS not covered by the associated MBS m∗.

The exploitation of the priority mechanism in the calculation
of the reward can help in defining trajectories allowing a contin-
uous service for the connected GUEs, thus improving the QoE
metric. Following the user assignment and RRM scheduling
snapshot example shown in Fig. 4, and assuming unitary pg,t
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Fig. 4. User assignment and RRM outcome in a generic time step t.

for simplicity, the calculated rewards would be equal to 3, 8,
and 2 respectively.

B. Sets Aggregation

Changing the MBSm∗ the UABS is connected to can change
the reward received by the UABS, in particular for what concerns
the Network Reward and the Exclusive Reward. Therefore, the
association (u−m∗) that maximizes the reward at each time
step is implicitly learned by the agent. However, this raises the
concern that the UABS could forcefully change the associated
MBS only to obtain temporarily, and artificially, higher rewards,
leading to a sub-optimal trajectory and service degradation to
GUEs. For this reason, we introduce the concept of sets aggrega-
tion. When applied, and only for the sake of reward calculation,
rather than using the separate sets, Gm and Ym for each MBSs,
we consider GM =

⋃
m∈M Gm and YM =

⋃
m∈M Ym, that are

all users currently covered and served by the whole terrestrial
network, respectively. Thanks to the latter, we provide a more
global view of the current state of the network, driving the
UABS towards areas of the map where its contribution is most
needed. It is important to notice that even if the reward function is
calculated by aggregating multiple MBS information, the RRM
algorithm can still run in a distributed and independent way at
each MBS and that the UABS has an active backhaul connection
with only one MBS m∗, as described before.

VII. RESULTS

In this section, the results obtained considering the joint
design of trajectory and RRM will be reported. In the following,
we consider an urban area of size 1500 m× 800 m. As stated be-
fore, we explored two different scenarios, namely coverage and
capacity limited. Nonetheless, most of the simulation parameters
are in common and listed in Table I. In particular, in the capacity
limited scenario, we consider a smaller system bandwidth to
reduce the number of available resources, but at the same time,
more MBSs are present to cover the entire area. Each MBS has
the same amount of resources, which are shared with the UABS,
and we assume full reuse among all the MBS and the UABS.

During the training, the UABS makes a tradeoff between
exploration of the environment and exploitation of its current
knowledge, by means of an exploration policy to follow. In
this work, the ε-greedy policy is taken into account, where at
each time step, t, the UABS can choose a random action with
probability ε or select the action a = arg maxaQ(a|s, θ), i.e.,
the action with the highest Q-value, with probability 1-ε. To

TABLE I
SIMULATION PARAMETERS

TABLE II
3DQN HYPERPARAMETERS

aid the agent in converging to an optimal policy, ε is linearly
decreased throughout the training. In particular, this trade-off is
regulated by the choice of the exploration fraction, εratio, that is
the fraction of training episodes used to linearly decay ε, from
a maximum value εmax to a minimum one εmin.

The online Q-network parameters θ are updated, following
(12)–(13), every n steps, while they are copied to the target
Q-network every l step.

The 3DQN hyperparameters used are listed in Table II.
The UABS is trained for Nepoch epochs. An epoch is com-

posed ofNe training episodes, each characterized by a different
randomly selected trace. A trace is the collection of all GUEs po-
sitions at each time step t obtained by simulating their movement
using SUMO. Traces share a common road traffic distribution
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based on real urban traffic conditions. This is done to minimize
the problem of over-fitting during training.

At the same time, during training (once every 20 training
episodes), an evaluation of the UABS is performed by letting
the agent move according to an evaluation trace. In this case,
the evaluation trace is fixed and is the same during the entire
duration of the experiments so that results and performance can
be compared fairly among different evaluation episodes as the
train goes on. This trace used is exclusive for the evaluation
and it is not used during training. It is worth mentioning that
during an evaluation episode, to evaluate the current policy, the
agent has no possibility to move randomly, in contrast with what
happens during training. Evaluation episodes let us understand
how well the UABS can design trajectories “on the go” based
only on the observations it gets from the environment.

A. Performance Metrics

In this section, the performance metrics used in the following
are presented. Such metrics can be categorized into either ma-
chine learning-related or network-related ones. The results are
obtained net of an average among three repeated simulations,
each of which used different random seeds. For what concerns
the comparison with benchmarks, presented in Section VII-B,
performances are studied in terms of episode return at the i-th
evaluation episode:

Ri =

T∑
t=0

rt,i. (14)

We show results considering the Greedy Reward only since it is
the one that better reflects the UABS contribution to the network
service, thus offering the best insight into its behaviour, but
the same comparison applies for the Network Reward and the
Exclusive Reward.

Instead, while investigating the above-mentioned scenarios,
respectively Section VII-C and Section VII-D, the training of the
agent is shown in terms of normalized average return per epoch
as a function of the number of epochs simulated. By defining
Ri,e as the return obtained during the i-th training episode in
an epoch e, the average return over the Ne episodes in the e-th
epoch can be written as:

Re,avg =
1
Ne

Ne∑
i=0

Ri,e. (15)

Once the training has finished, all Re,avg for each epoch are
collected and normalized between 0 and 1, corresponding to the
lowest and highest one respectively, so that the final metric is
referred to as Re,avg. Evaluation of the agent is based on the
normalized return obtained in the i-th evaluation episode, Ri,
which indicates how well the agent can perform when it acts
following the learned policy (i.e., without taking random actions
to explore), and it shows the ability at following unknown tra-
jectories based on the observations it gets from the environment.
To provide a smoother trend, evaluation curves are exponentially
averaged with an exponent equal to 0.3. Normalization is needed

to allow the comparison between different types of reward
functions that might have very distinct orders of magnitude.

For what concerns the network performance, they are obtained
once the training has ended based on the best evaluation episode
of each simulation. First, the percentage of satisfied usersP (sat)

g

is presented:

P (sat)
g =

1
|G|

∑
g∈G

N
(sat)
g

Ng
, (16)

i.e. the ratio between the number of satisfied service windows
N

(sat)
g and the total amount of services windows Ng for each

GUEs g ∈ G, average among them and as a function of different
service threshold N̂s.Ng depends on the travel’s duration of the
GUE considered. Then, the number of GUEs served at each time
step t, Ψt =

∑
g∈G ψg,t, highlights the users served by MBSs

and the ones served by the UABS. The curve is averaged with a
sliding window of fixed length to get a smoother trend.

As an additional metric for the network performance, we
consider the network throughput, which is the overall number
of bits transmitted by each GUEs and correctly received by the
network following resource allocation, averaged over the entire
flight duration. Given that ψg is 1 if the g-th GUE has been
served at timestep t andDg is the user demand, it can be written
as:

Snet =
1
T

T∑
t=0

∑
g∈G

Dgψg,t. (17)

It is worth noticing that both types of metrics, machine
learning-based and network ones, provide useful insights when
studied jointly. Indeed, by looking only at the former, it is
possible to estimate the training performance of deployed UABS
with different reward functions, but the impact which such
training has on the network performance point of view is not
addressed. On the other hand, such aspects should be taken into
account since, as will be discussed in the following, better or
equal training performance does not always mean better network
performance.

B. Benchmarking the Algorithm

In this section, the proposed system denoted as Proposed
UABS, is compared with three different benchmarks.

The first benchmark, Dummy UABS, is based on a UABS that
moves at each time step, t, in the direction corresponding to the
beam with the maximum sum of the priority values. Thus, it is
not trained via RL and it simply follows a greedy policy that
selects ât = arg maxibi,t. This benchmark comparison allows
an understanding of the performance’s gain offered by using
a DRL algorithm for the trajectory design w.r.t. a simpler one
that maximizes only the step-by-step reward. In other terms, it
investigates the trade-off among short-term goals, i.e. choosing
the next best position by looking only at the immediate future,
and long-term goals, with the UABS that flies along a trajectory
that takes into account the overall flight duration and the total
reward.
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Fig. 5. Benchmark Comparison - Greedy Reward.

The second benchmark, Oracle UABS, is based on a hypo-
thetical UABS that knows the exact future position of vehicles,
which in real scenarios is not feasible. In this case, the system is
modelled and trained by defining a new state st that is composed
of the vector of elements [xt, yt, t,bt,bt+1,max]. bt+1,max is
a binary mask of length Nbeam, whose i-th element is equal
to 1 if the i-th beam has the highest sum of the priority values
among all the others when considering the positions of GUEs
at the next time step t+ 1, and 0 otherwise. The comparison
with such a benchmark allows us to understand how good the
standard trained agent is at learning, thus anticipating, the path
most likely followed by GUEs, avoiding interrupting service to
the prioritized users.

Finally, the third benchmark corresponds to the DRL agent
proposed in [28] that we have implemented and trained following
our states, actions, and rewards definition.

In Fig. 5 it is possible to notice that Proposed UABS performs
better than the Dummy UABS one after around 10 evaluation
episodes. This suggests that, in a complex and dense urban sce-
nario, the trajectory design must consider the implicit trade-off
among short and long-term optimization of the UABS position,
indeed the simplified step-by-step greedy optimization turns out
to be ineffective. For what concerns the Oracle UABS, it is
possible to see that, as expected, providing data about the future
position of GUEs increases the performance of the systems, i.e.
better trajectories. Nonetheless, the gap between the two curves
is relatively small meaning that the Proposed UABS tries to learn
and predict the traffic characteristic during its training. Finally,
our 3DQN agent showed faster learning in the initial phase when
compared to the agent proposed in [28]. Although both agents
performed equally towards the end of the simulation, our agent’s
superior performance has the potential to reduce the deployment
time of the UABS.

C. Coverage Limited Scenario

In this section, we discuss the numerical results obtained when
considering a scenario that is limited in coverage, i.e. MBSs are

positioned so that most of the map is not well covered, thus
the outage probability is high. As a result, the GUEs’ QoE is
not guaranteed by the terrestrial network only, thus the UABS
needs to play a crucial role in providing connectivity where
missing. As a first result, a comparison between the different
reward functions, defined in Section VI-A, is reported.

In Fig. 6(a) the training as a function of the number of epochs
is reported. Since training is done for 1000 episodes, 10 epochs
are simulated. In Fig. 6(b) the normalized cumulative reward
obtained during each evaluation episode is shown. It is possible
to see that the Greedy Reward outperforms the other reward
functions since the agent’s performance is smoother both during
training and evaluation. This is due to the fact that the reward
defined this way better reflects the single UABS actions and
interactions within the environment. The Exclusive Reward,
instead, uses the initial part of the training to discover which
part of the map is not covered by the MBSs. In contrast, the
Network Reward performs worse compared to the others in the
final stages of training. This happens because the reward also
depends on the service provided by the MBSs over which the
agent has no control, thus it introduces a noisy signal not suitable
for learning. In particular, the agent trained with such a reward
is unable to reliably define new trajectories during evaluation
episodes and loses the ability to generalize when new traffic
conditions are encountered.

In Fig. 7(a) the percentage of satisfied users P (sat)
g is shown

for different satisfaction thresholds and for the different reward
functions. Also, the black line shows, as a baseline, the QoE
in the absence of the UABS. It is possible to notice that, as
expected, the presence of the UABS significantly increases
users’ satisfaction for all the threshold levels. The UABS, flying
along its learned trajectory, can increase the coverage area of the
network, allowing it to serve GUEs for a longer period of time.
For lower satisfaction thresholds the agent trained with the Ex-
clusive Reward outperforms the other reward functions. Such an
advantage diminish as the threshold increases because the radio
channel and strict beamforming become major impairments for
the reliability of the service. This allows concluding that, even if
the training with the Exclusive Reward turned out to be difficult,
due to the implicit discovery phase of the uncovered area, the
learned trajectory is the best one in terms of overall network
performance. In contrast, the Greedy Reward had the easiest
and fastest training, but the trajectory learned is not suitable
for a coverage limited scenario. Considering the best episode
obtained with the Exclusive Reward, in Fig. 7(b) the number
of GUEs served by the network is reported, highlighting also
those that are served specifically by the UABS. Finally, Fig. 7(c)
shows the gain of network throughput achieved by deploying the
UABS in the considered service area, as a function of different
user demandDg . Indeed, it is clear that the high mobility offered
by the drone can severely boost the network throughput since it
can alleviate coverage issues of the terrestrial network.

D. Capacity Limited Scenario

In this section, we look at the numerical results obtained when
considering a scenario that is limited in capacity, i.e. the number
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Fig. 6. Coverage limited ML performance. (a) Per-epoch average return comparison. (b) Agent evaluation comparison.

Fig. 7. Coverage limited network performance (a) Percentage of satisfied GUEs. (b) Number of GUEs served in a flight. (c) Network throughput.

of MBSs is sufficient to cover the entire considered map, but the
amount of total available resources is not enough to fulfil the
GUEs’ demand requirements. Since the RRM is accounted as
distributed, there cannot be offloading of users between MBSs,
and potential interfering links can worsen the performance of
the network. The system bandwidth is set to Bsys = 50 MHz
and the demand of each GUEs has been increased to 1 Mbit.
Due to the characteristic of this scenario, the GUEs’ QoE is
not guaranteed by the terrestrial network only, thus the UABS
plays a crucial role in providing a boost in the network capacity
and reliability. This is possible by exploiting the advantageous
GUE-UABS channel quality allowing better resource utilization.
It is also worth mentioning that when coverage is guaranteed by
the terrestrial network, the Exclusive Reward is always equal to
zero, thus it becomes pointless to use it for training.

In Fig. 8(a) and (b) the training and evaluation performances
are compared for the Greedy Reward and Network Reward
respectively. In the capacity limited scenario, differently from

the one discussed before, the Greedy Reward and Network
Reward provide similar performance in training. Since network
resources are limited, it is easier for the UABS to understand
where it should go to boost the overall network service. Also,
the RRM algorithm makes sure to use the UABS only when
there are enough resources for the backhaul link, thus the Greedy
Reward is different from zero (i.e. the UABS serves at least one
GUE) only if there are enough resources for both the fronthaul
and backhaul considering also the current load on the associated
MBS. Once again, the Greedy Reward provides a strong signal
for the training of the UABS, allowing a faster convergence to
“good-enough” trajectories during evaluation.

In Fig. 9(a) the QoE achieved by comparing the different
rewards function and a benchmark where no UABS is used
are presented. It is possible to see the advantage of deploying
an UABS with the aim of boosting the network capacity, and,
differently from the coverage limited scenario, both reward
functions provide similar network performances at the end of
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Fig. 8. Capacity limited ML performance. (a) Per-epoch average return comparison. (b) Agent evaluation comparison.

Fig. 9. Capacity limited network performance. (a) Percentage of satisfied GUEs. (b) Number of GUEs served in a flight. (c) Network throughput.

the training, suggesting that the UABS has learned similar tra-
jectories. Considering the best episode obtained with the Greedy
Reward, Fig. 9(b) presents the number of GUEs served by the
network. Using this trained model, we have studied the network
throughput in function of the user demand. It is possible to
notice that since all users are covered, the network throughput
improvements are now due to better use of the limited number
of radio resources available. Indeed, the benefits become more
evident as user demand increases. This indicates that the UABS
would be crucial for V2X applications that require uploading
large amounts of data, such as images.

Finally, we have also investigated a scenario characterized by
both, capacity and coverage constraints (results are not reported
here for the sake of conciseness). In this case the agent trained
with Exclusive Reward undergoes the most challenging training,
due to the sparse nature of the reward function. Furthermore,
resource scarcity introduces a more stringent limitation on the
resources allocated for backhauling, thereby diminishing capac-
ity and restricting the range of the UABS from the associated
MBS m∗. Conversely, the Network Reward approach, given

the limited resource pool, imparts a more consistent training
experience for the agent, in contrast to the findings presented in
Section VII-C.

VIII. CONCLUSION

In this paper, we presented a framework designed for the joint
optimization of the UABS trajectory planning and RRM, by
considering different scenarios where a UABS has to cooperate
with multiple on-ground MBSs to serve moving GUEs. They
implement high demanding V2X applications, such as extended
sensing, and therefore require continuous service to upload their
data towards the network in an uninterrupted way. To this end,
we designed a system which relies on a 3DQN algorithm for the
trajectory planning, which is more suitable for such dynamic
environments w.r.t. standard optimization tools, whereas the
RRM algorithm is based on an ILP, allowing for an optimal
distribution of network resources to maximize the number of
satisfied GUEs. After benchmarking the proposed solution,
we investigated two different scenarios (namely, capacity and
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coverage limited), to prove the usefulness of the introduction
of UABSs in such networks. Numerical results show that, by
properly defining the reward functions according to the network
needs, it is possible to track moving GUEs providing continuous
service and improving the overall QoE.
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