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We generalize the description of transport in ferromagnetic systems using a coupled spin and charge drift-diffusion approach to
account for the spin-orbit torques acting on the magnetization. We consider both bulk and interfacial spin-orbit coupling and treat
the transverse spin transport in the bulk of ferromagnets. We compare our approach with the typical assumption that the transverse
spin currents are instantaneously absorbed in the ferromagnet. Furthermore, we investigate the effects of a strong interfacial Rashba
spin-orbit coupling on the thickness and angular dependence of the torques, and we demonstrate its importance in capturing the
behavior reported by experiments in the literature.

Index Terms—Spin and charge drift-diffusion, spin Hall effect, Rashba-Edelstein effect, spin-orbit torque.

I. INTRODUCTION

SPIN-ORBIT torque (SOT) provides a fast and efficient
way to manipulate the magnetization in devices such as

magnetoresistive random access memory [1]. These devices
take advantage of the strong spin-orbit coupling (SOC) in
the bulk or at the interfaces of heavy metal (HM) layers
to generate spin-polarized currents. The spin currents are
injected into an adjacent ferromagnetic (FM) layer, where
through spin dephasing the spins align with the magnetization
while exerting a torque on the magnetization. In the bulk,
the spin currents are generated through the spin Hall effect
(SHE), which generates out-of-plane spin currents with in-
plane polarization. The HM/FM interface plays a crucial role
in the resulting torques as spin-flip scattering can be strong and
additional spin currents can be generated through the Rashba-
Edelstein effect (REE) at the interface [2]. Typically, the SOTs
are modeled by assuming that the spins instantly align with
the magnetization in the FM layer. In this picture, the SOT
is determined purely by the spin current on the HM side of
the interface, and the interface scattering is captured by the
complex spin-mixing conductance [3].

In this work, we present a comprehensive approach to
computing the spin torques in ferromagnetic systems with
SOC. We compare the approach of assuming instant absorption
of transverse spin currents in FM layers with one that allows
for transmission of the transverse spin currents into the bulk
by introducing a spin-mixing conductance for transmission.
Furthermore, we explore the addition of the REE by consid-
ering spin-flip scattering from a Rashba SOC potential at the
interface.

II. COUPLED SPIN AND CHARGE DRIFT-DIFFUSION

The spin drift-diffusion model was first derived from the
Boltzmann equation by Valet and Fert [4]. This model provides
an efficient and less computationally demanding approach for
exploring the transport in magnetoelectronic systems and has
been shown to agree well with the more rigorous Boltzmann
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equation even at diffusion lengths close to the mean free path
[5].

The spin polarization and charge current densities in HM
and FM layers can be expressed as follows [6], [7]:

J̃s = −σ∇µs + βσσ(∇µc)⊗ M̂ + θSHAσε∇µc (1)

Jc = −σ∇µc + βDσ(∇µs)M̂ + θSHAσ∇× µs (2)

The spin polarization current density tensor (J̃s)ij describes
the flow of spin angular momentum in direction i with
polarization j; it is expressed here in units of A/m2. From
here onward we will refer to J̃s simply as the spin current.
The spin current can be converted back to units of angular
momentum current density (J/m2) by multiplication with ℏ/2e,
where ℏ and e are the reduced Plank constant and the
elementary charge, respectively. µc is the chemical potential,
while µs is the spin chemical potential proportional to the
spin accumulation µs = (De/σ)(e/µB)S. σ, De, and µB are
the electrical conductivity, the electron diffusion constant, and
the Bohr magnetron, respectively. M̂ is the direction of the
magnetization. βσ and βD are the dimensionless conductivity
and diffusion polarizations, respectively. The magnitude of the
direct and inverse SHE is captured by the spin Hall angle
θSHA, while its orthogonal flow and polarization directions
are described by the unit antisymmetric tensor εijk [8]. Other
bulk spin-orbit effects, such as the magnetic spin Hall effect
or the anomalous Hall effect, can be included in equation (1)
to enhance the model even further.

For a steady state, the chemical potentials are determined
by the continuity equations for spin and charge [6], [7]:

∇J̃s = −σ

(
µs

λ2
sf

+
µs × M̂

λ2
J

+
M̂ × (µs × M̂)

λ2
ϕ

)
(3)

∇ · Jc = 0 (4)

λsf , λJ , and λϕ are the spin-flip, spin exchange, and spin
dephasing lengths, respectively.

At external boundaries not containing contacts, we assume
vanishing flux of spin and charge, i.e. Jc ·n = 0 and Jsn = 0.
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At external boundaries containing contacts, Dirichlet boundary
conditions for the electrical potential are applied, and the
contacts are kept long to ensure the total decay of the spin
chemical potential.

III. BOUNDARY CONDITIONS FOR HM/FM INTERFACES

We consider an interface at z = 0 with an HM and
FM layer below and above the interface, respectively. At the
interface, we assume a spin-independent scattering potential,
an interfacial exchange interaction, and an interfacial Rashba
SOC:

V (r) =
ℏ2kF
me

δ(z)

[
u0I2×2

+ σ ·
(
uexM̂ + uRẑ × k

kF

)]
(5)

u0, uex, and uR are the dimensionless magnitudes of the
spin-independent potential, the exchange interaction, and the
Rashba SOC at the interface, respectively. δ(z) is the Dirac
delta function, kF is the Fermi wave number, and me is
the electron mass. σ is the vector of Pauli matrices and
k is the wave vector. By considering plane-wave scattering
from the interface potential one can derive scattering matrices
for reflection and transmission Rαβ(k), and Tαβ(k), respec-
tively, describing an ensemble of spins with polarization β
being scattered into polarization α [2], [9], [10], with indices
α, β ∈ {x, y, z, c}, where x, y, z denote the spin polarization
directions and c denotes the charge. The same matrices can
be used as boundary conditions for the Boltzmann equation,
to describe the scattering of an incident spin and charge
density function gIα(0

±,k) from the interface. 0± denotes if
the density function at the interface is incident from the upper
(+) or lower (−) side of the interface. The spin and charge
currents above and below the interface are then described by
[2]:

Jzα(0
±) = ∓ e

ℏ(2π)3

∫
FS

dk
kz
kF

[
(δαβ −Rαβ(k))g

I
β(0

±,k)

− Tαβ(k)g
I
β(0

∓,k)
]

(6)

δαβ is the Kronecker delta; the integration is performed over
the incident part of the Fermi surface and a summation
convention is assumed for repeated indices.

We consider two contributions to the incident distribution
function which are isotropic and anisotropic in k-space. The
isotropic contribution captures the contribution of incident
charge/spin currents and is described by the charge/spin chem-
ical potentials in the HM and FM layers. The anisotropic
contribution captures the shift of the distribution function due
to an applied electric field along x [2], [11]:

gIα(0
±,k) = eµα(0

±) + e∆µE
α (k, 0

±) (7)

In the relaxation time approximation the shift is given by
∆µE

α (k, 0
±) = ℏkxτ±P±

α Eip/me, where τ± and P±
α are the

momentum relaxation times and the dimensionless charge/spin
polarization at either side of the interface, respectively. Eip =
Ex(0) is the magnitude of the applied in-plane electric field
at z = 0.

After inserting (7) into (6) and performing the integration,
the spin and charge currents can then be expressed as

J̌z(0
±) = ±

[
Gµ̌(0±)− Γµ̌(0∓)

]
+ σ̌±Eip, (8)

where J̌z(0
±) = [Jsz(0

±), Jcz(0
±)] and µ̌(0±) =

[µs(0
±), µc(0

±)] are four component current and potential
vectors, respectively, for spin and charge. G and Γ are interface
conductance tensors of rank 4, and σ̌± are the conductiv-
ity vectors at either side of the interface. G is related to
the complex spin-mixing conductance from magnetoelectronic
circuit theory, while Γ contains the mixing conductances for
transmission to capture the spin currents from transmitted
spins [2], [9], [12]. In magnetoelectronic circuit theory, it is
assumed that the transverse spins dephase rapidly in the FM
layer and, consequently, that the transverse spin current and
accumulation are instantaneously absorbed in the FM layer.
This approximation is obtained by neglecting the transverse
components of the spin current on the FM side of the interface,
i.e. J⊥

sz(0
+) = [I3×3 − M̂ ⊗ M̂ ]Jsz(0

+) = 0, where
[I3×3−M̂⊗M̂ ] is an operator which removes the longitudinal
spin component.

IV. SPIN TORQUES

The spin torques acting on the magnetization in the bulk
of FM layers are given by the transfer of angular momen-
tum from the spin accumulation through exchange-induced
precession and spin dephasing, described by the second and
third term contributing to the divergence of the spin current
in equation (3) [6], [7]. The total spin torque acting on the
magnetization in the bulk is then obtained by integration over
the volume of the ferromagnetic layer:

T FM
s = − σ

A

∫
FM

dx

(
µs × M̂

λ2
J

+
M̂ × (µs × M̂)

λ2
ϕ

)
(9)

A is the area of the HM/FM interface.
At the interface the torque is obtained from the exchange

interaction between the magnetization and the spin density at
the interface s0 [9], [11]:

T int
s = −e

∫ 0+

0−
dz

Jex
ℏ

s0 × M̂ (10)

Jex = −ℏ2kFuexδ(z)/me is the exchange energy at the
interface. Using the transmission matrix to compute the spin
density at the interface one obtains [11]:

T int
α =

uexe

ℏ(2π)3

∫
FS

dkεαijM̂iTjβ(k)
[
gIβ(0

+,k)

+ gIβ(0
−,k)

]
, (11)

where the indices go only over the spin polarization compo-
nents, i.e. α, β, i, j ∈ {x, y, z}. Inserting (7) into (11) yields:

T int
s = Γ̃int

s

[
µs(0

−) + µs(0
+)
]
+ γint

s Eip (12)

Γ̃int
s is the rank 3 interface torkance tensor and γint

s is the
interface torkivity vector [9].
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Fig. 1. A sketch of a HM(dHM)/FM(dFM) bilayer with an applied electric
field along x. The magnetization points along z.

Fig. 2. The transverse spin accumulation and spin current in the
HM(10 nm)/FM(10 nm) bilayer depicted in Fig. 1. The upper row shows
the spin accumulations and the lower row shows the spin currents, while the
left and right columns show the results for x and y polarization, respectively.
Dashed lines are obtained by assuming instant absorption of transverse spin
in the FM.

Assuming the transverse spin current is instantly absorbed
in the FM T FM

s = J⊥
sz(0

+) together with µ⊥
s (0+) = 0, the

total spin torque can be expressed as follows [11]:

T tot
s =

(
Γ̃int
s + Γ̃FM

s

)
µs(0

−) +
(
γint
s + γFM

s

)
Eip (13)

γFM
s = [I3×3 − M̂ ⊗ M̂ ]σ+

s is the bulk torkivity vector and
Γ̃FM
s = Γ̃s[I3×3 − M̂ ⊗ M̂ ] is the bulk torkance tensor [9].

The torques can be converted from units of current density
into units of magnetization flux density by multiplication with
−geµB/e, where ge is the electron g-factor.

V. RESULTS & DISCUSSION

We consider an HM/FM bilayer, depicted in Fig. 1, with
a 106 V/m applied electric field along x and solve the drift-
diffusion equation using the boundary conditions. We assume a
spin Hall effect with θSHA = 6% in the HM layer and varying
strengths of interfacial SOC uR at the HM/FM interface. The
resulting transverse spin accumulation and spin currents in
the bilayer are shown in Fig. 2. The solid lines show the
results obtained by considering the decay of the transverse
spin currents in the bulk of the FM layer, while the dashed
lines show the result obtained with the approximation that the
transverse spin currents are instantaneously absorbed at the
FM side of the interface. We observe a good match between
the two approaches in the HM layer, while in the FM layer,

Fig. 3. The total spin torque acting on the magnetization of the FM layer, for
the system depicted in Fig. 1, as a function of the upper FM thickness dFM.
The HM thickness is kept at 4 nm. Dashed lines are obtained by assuming
instant absorption of transverse spin in the FM. Panel (a) shows the field-like
torque and panel (b) shows the damping-like torque.

Fig. 4. Same as Fig. 3, except that the HM layer thickness is varied, and the
FM layer thickness is kept at 0.5 nm.

there are no transverse spin currents present using this ap-
proximation and the transverse spin transport is only captured
by the full model. At the interface, there is a discontinuity of
the spin accumulation and current corresponding to the spin
current transferred to the magnetization at the interface due to
the interfacial exchange interaction. For uR ̸= 0, part of the
spin current is also transferred to the crystal lattice through the
precession of the spin density around the interfacial spin-orbit
field, which does not contribute to the spin torque.

To investigate the validity of the instant transverse spin
decay approximation, we vary the FM layer thickness and
compute the total torque acting on the layer using the two
models. We decompose the spin torques into field-like and
damping-like contributions, i.e. Ts = Tf f̂ + Tdd̂, which for
an SOT bilayer system are along f̂ = M̂ × (ẑ × Ê) and
d̂ = M̂ × [M̂ × (ẑ × Ê)], respectively [2]. The resulting
torques can be seen in Fig. 3. We observe that the two
approaches agree well for a thick FM layer as all of the
transverse spin current is transferred to the magnetization.
The minor difference between the models in this thickness
regime originates from the contribution of the transverse spin
accumulation at the FM side of the interface to the spin current
at the HM side of the interface, which is not captured by the
reduced model. In the limit of λϕ → 0, the reduced model
is re-obtained from the full model. For a thin FM layer, the
two approaches disagree as in the full model, the spin current
is not entirely absorbed in the FM layer and is instead partly
reflected back into the HM layer.

In Fig. 4 we show the dependence of the torques on the
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Fig. 5. Same as Figs. 3 and 4, except that the polar angle of the magnetization
direction θ is varied and the FM and HM layer thicknesses are kept at 4 nm
and 0.5 nm, respectively. In panels (a) and (b) the azimuthal angle ϕ is kept at
90◦ and 0◦, respectively. The field-like torque is divided by cos(θ) to remove
the conventional angular dependence and highlight the effects of interfacial
SOC.

HM layer thickness. The two approaches give qualitatively
similar results, therefore, the instant absorption assumption
with proper parameter fitting can be a good approxima-
tion for bilayer systems. The addition of the REE yields a
much stronger field-like torque which does not vanish with
decreasing HM layer thickness in agreement with reported
experimental results [13].

The dependence of the torques on the magnetization di-
rection is typically entirely described by d̂ and f̂ , however,
with interfacial SOC more complex dependencies are allowed
due to the interplay between the SOC and exchange interac-
tion at the interface. We express the magnetization direction
in terms of the polar and azimuthal angles M̂(θ, ϕ) =
[cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)]. For ϕ = 0 the damping-
like torque will have a constant dependence on θ and for
ϕ = 0◦ the field-like torque will have a cos(θ) dependence.
Fig. 5 shows the dependence of the field-like and damping-
like torque on the polar angle in the two planes given by
ϕ = 90◦ and ϕ = 0, respectively. We observe that for zero
interfacial SOC the angular dependence is fully described
by d̂ and f̂ , while for increasingly stronger uR the angular
dependence becomes more complex, implying that the magni-
tudes of the field-like and damping-like torques depend on M̂ ,
i.e. Tf (M̂) and Td(M̂). This additional angular dependence
has been thoroughly reported in HM/FM SOT systems [14],
[15], and can be explained in terms of so-called higher-
order contributions to the torque. By not taking the crystal
structure into account, the contributions to the torque allowed
by the continuous rotational symmetries of the HM/FM bilayer
structure are described by

Ts =

∞∑
l=0

(Mz)
2l
[
al(ẑ× Ê)×M̂ + blM̂ × [(ẑ× Ê)×M̂ ]

+ cl(M̂ · Ê)ẑ × M̂ + dl(M̂ · Ê)M̂ × (ẑ × M̂)
]
, (14)

where al, bl, cl, and dl are expansion coefficients [2], [14],
[15]. The first two terms for l = 0 are the typical field-like
and damping-like terms, the latter two explain the angular
dependence observed in the damping-like torque for ϕ = 0◦.
For the field-like torque in the ϕ = 90◦ plane, l > 0
contributions from the first two terms are required to obtain the
additional observed angular dependence. With the generalized

boundary conditions presented in this work, these higher-order
contributions are included as a phenomenological consequence
of the interfacial SOC.

VI. CONCLUSIONS

A generalized coupled charge and spin drift-diffusion ap-
proach for computing spin torques in ferromagnetic structures
with SOC has been presented. Interfacial SOC is accounted for
through boundary conditions derived by considering scattering
from a Rashba interface potential. We treat the transverse spin
inside ferromagnets and show that the typical approximation
that the transverse spin currents are instantly absorbed in-
side FM layers, agrees qualitatively with the full treatment.
Moreover, our results show that the inclusion of interfacial
Rashba SOC is crucial for capturing the thickness and angular
dependence of the SOTs reported in experiments.
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