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Model Order Reduction for Multi-Strand Electrical
Machine Windings

Rainer Schneckenleitner and Paavo Rasilo

Electrical Engineering Unit, Tampere University, 33014 Tampere, Finland

We develop an efficient model order reduction (MOR) method for the finite-element (FE) simulation of an electrical machine with
a multi-strand stator winding. The reduced model is independent of the connection of the strands. Therefore, simulation results
of only a single slot are required to compute a reduced basis, which can be used for different winding configurations. Numerical
simulations of a high-speed induction motor in time-harmonic and time-dependent regimes show significant savings in terms of
memory and solving time of the proposed method compared with a standard FE approach.

Index Terms— Eddy currents, electrical machines, finite-element (FE) analysis, local reduced basis, model order reduction (MOR).

I. INTRODUCTION

THE demand to electrify mobility requires efficient and
suitable hardware to meet certain requirements, such

as high-power output with respect to the size and weight,
sustainability, and so on. One trend to meet those requirements
is to supply electrical machines with high frequency. Despite
the benefits of an increased frequency, this can also cause
higher losses, in particular, in windings. To keep the losses at
a low level and in order to construct power dense electrical
machines, it is important to know already in the design stage
where the losses occur, how high they are, and how they
are distributed across the conductors the winding is made of.
In the mid-frequency range, litz wires provide many benefits
and are, therefore, a common choice nowadays to construct
windings. For the designer, on the other hand, litz wires
cause a prohibitive computational load in the simulations
if a classical finite-element (FE) approach is used. Various
analytical, numerical, and combined simulation methods have
been proposed in the past to estimate losses in litz wires and
machine windings made thereof. The developed simulation
methods target to mitigate the computational burden due to
the required fine FE mesh to resolve the strands in litz wires.
If certain assumptions are made, analytical methods allow for
fast estimation of skin-effect and proximity losses in litz wires
(see [1], [2], [3], [4], [5], and the references therein). Accord-
ing to [6], circulating currents often contribute a significant
amount to the winding losses in electrical machines, which
add up on top of the skin-effect and proximity losses. The
analytical model developed in [7] was capable of estimating
losses due to circulating currents in litz wires for frequencies
up to 5 kHz in high-power medium-frequency transformers.

Analytical models often require a lot of assumptions to
hold or are even oversimplified. Numerical models, on the
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other hand, are much more flexible and general and can be
adopted to estimate the losses in litz wires. To mitigate the
computational burden due to the fine mesh in the strands,
different approaches have been proposed in the literature. One
option is to replace the strands by a uniform current density
and compute the losses in a postprocessing step as is done in
[8], [9], [10], and [11]. These methods are often referred to as
hybrid methods, since the flux density obtained from the FE
simulation is used in analytical formulas to estimate the losses.
Although such methods are computationally efficient and may
catch the proximity and skin effects accurately, they cannot
account for the circulating currents, since circuit equations are
not solved for individual conductors. In addition, the effect of
the eddy currents on the field solution is neglected. Homog-
enization methods, such as [12], [13], and [14], can include
the skin and proximity effects in the field solution, but they
also neglect circulating currents. Note that also the previously
mentioned approach, where a uniform current density is used,
can be interpreted as a homogenization method (see [14]).
Another method that is often found in the literature to estimate
losses in litz wires is the partial element equivalent circuit
method [15], [16]. This method can also capture circulating
currents; however, this method is only practical for simple
geometries, and the equivalent circuit equations introduce large
dense blocks in the final system matrix.

Approaches, which are capable of computing circulating
currents, can be found in [17], [18], [19], and [20], where
the authors also provided some applications to electrical
machines. In [18] and [20], the slot domains are considered as
linear time-invariant systems, and hence, the responses to unit
impulses at the boundaries are computed. In [18], the solutions
to the unit impulses are collected in snapshot matrices and
used as the representations of the basis functions in the slots.
In [20], on the other hand, the Lagrange multipliers enforce
certain compatibility constraints at the interfaces, and the
voltages were expressed by the responses to the input impulses
involving convolutions. These expressions were utilized in
assembling a reduced linear system that has to be solved for
the magnetic vector potential and the currents. This method
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Fig. 1. Cross section of the considered induction machine with its mesh.

has been successfully applied to time-stepping simulations of
an induction motor with a stranded winding. In both methods,
many local systems need to be solved as there are boundary
nodes and strands in a slot, which can be quite large for fine
meshes. However, in [18], coupling nodes were introduced
to reduce at least the number of solutions related to the unit
impulses at the boundary.

In this article, we present a new general, fully numerical
method that is capable of estimating the winding losses and
computing the exact distribution of the currents within the
strands of litz wires in the windings of an electrical machine at
a reduced computational cost. To reduce the number of degrees
of freedom (dofs) in the slots, we use a local randomized
model order reduction (MOR) technique (see [21], [22]). The
reduced basis is computed from local solutions of the problem
in one slot. The derived local problem is independent of the
strand connections, and therefore, the computed reduced basis
can be used for all the slots in the machine. The computation
of the reduced basis vectors is done in a preprocessing stage,
which is very fast. By numerical experiments, we demonstrate
that the reduced system can be solved up to 16 times faster
than a high-fidelity (HF) FE problem with almost the same
accuracy.

II. COMPUTATIONAL MODEL

In this section, we present the computational model of
the 2-MW, two-pole, 12-kr/min high-speed induction machine
from [23]. The model is derived with the aim of accurately
estimating the resistive losses in the stator winding, accounting
for both skin and proximity effects and the circulating currents
in the parallel strands. We use the 2-D AVI formulation,
see [24], which couples the magnetoquasistatic magnetic
vector potential formulation to circuit equations for solid
conductors. For the discretization of the problem, we use
Lagrange FEs and polynomial basis functions of first order on
a triangular mesh. Denoting the cross section of the solid-rotor
induction machine in Fig. 1 by �, the AVI formulation after
spatial discretization is given byS(a)+ M ∂

∂t DS 0
CE

∂
∂t −I RL

0 L⊤ Rew + Lew
∂
∂t

a
u
i ′

 =
 0

0
us

 (1)

where the matrices S and M are the usual stiffness and
mass matrices, respectively; and DS , CE , and L denote the
current source, the back EMF, and the connection matrices,
respectively. The diagonal matrix R consists of the strand
resistances, and Rew and Lew are the end-winding resistance
and end-winding inductance, respectively. The end-winding
resistance is estimated as follows:

Rew = Rco
rslotτ + 2ℓov

ℓz

where rslot is the average radius of the slot, τ is the coil
pitch angle (τ = π for the full-pitch two-pole winding in
this case), ℓov is the overhang of the end winding, and Rco is
the resistance of the winding inside the core region calculated
based on the number and area of the conductors. The value for
Lew = 7·10−5 H is taken from [25], where it was estimated by
an analytical method. The operator (∂/∂t) denotes the partial
derivative operator with respect to time, and I denotes the
identity matrix. The vectors a, u, and i ′ contain the coefficients
of the discretized out-of-plane component of the magnetic
vector potential a, and the voltage drops in the strands and
the loop currents, respectively. The voltage source is denoted
by the vector us . The entries of the matrices are given by

Si j =

∫
�

ν(a)∇ϕ j · ∇ϕi dx, for i, j = 1, . . . , n

Mi j =

∫
�

σϕ jϕi dx, for i, j = 1, . . . , n

DSim = −
σ

ℓz

∫
�m

ϕi dx, for i = 1, . . . , n, m = 1, . . . , nv

CEmj =
ℓz

|�m |

∫
�m

ϕ j dx, for m = 1, . . . , nv, j = 1, . . . , n

Lmℓ =


1, loop ℓ travels through strand m forward
−1, loop ℓ travels through strand m backwards
0, otherwise

where ν is the reluctivity, σ is the electrical conductivity, ℓz

is the core length of the electrical machine, and the values of
�m , m = 1, . . . , nv , denote the cross sections of the strands
of the wires. The numbers n, nv ∈ N denote the number of
basis functions ϕi of the discretization space and the number
of conductor regions in the cross section, respectively. The
number of current loops (number of columns of L) is denoted
by ni . Given a domain �, we denote by |�| the area of �.

For the purpose of building the reduced model, we decouple
the slots from the rest of the machine and allow that the slots
can be modeled independently of the stator. Using the mortar
method [26], we ensure that the solution is continuous across
the stator–slot interfaces. The mortar conditions are enforced
via the matrix B. The matrix B is of size nλ × n, where
nλ ∈ N denotes the number of continuity constraints. So, the
system we are going to solve is

Ax = f (2)

where

A =


S(a)+ M ∂

∂t DS 0 B⊤

CE
∂
∂t −I RL 0

0 L⊤ Re w + Le w
∂
∂t 0

B 0 0 0


x =

(
a⊤, u⊤, i ′⊤, λ⊤

)
, and

f =
(
0⊤, 0⊤, u⊤s , 0⊤

)
.

In the time-harmonic regime, the time derivative in (2)
becomes a multiplication with jω, where j is the imaginary
unit and ω denotes the fundamental frequency. In order to get
a real-valued time harmonic AVI system, we split the real and
the imaginary parts of the variables where the entities get the
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Fig. 2. Discrete subdomain, conductors in orange, insulation and air regions
in white, extra layers for the subdomain in green, and the surrounding stator
material in gray.

indices R and I , which denote the real and imaginary parts
of the entities, respectively. Problem (2) will denote the HF
problem in all the remaining sections for both the (real-valued)
time-harmonic case and the time-dependent case.

III. COMPUTATION OF THE REDUCED BASIS

In this section, we describe the randomized local MOR
method we used to lower the number of field unknowns in the
stator slots. We present the method for the real-valued time-
harmonic problem derived from (2) and extend the method
then to the time-dependent regime in Section V. We consider
a subdomain that is the union of slot elements of one slot
plus some extra layers of elements around, see Fig. 2, where
the green elements extend the slots to a subdomain. The local
system for the subdomain is extracted from the main system
and is given by

Ãx̃ = f̃ (3)

where

Ã =


S̃ −ωM̃ B̃⊤ 0

ωM̃ S̃ 0 B̃⊤

B̃ 0 0 0
0 B̃ 0 0



x̃ =


ãR

ã I

λ̃R

λ̃I

, and

f̃ ⊤ =
(
−(D̃S ũ R)⊤ + g̃

⊤

R ,−(D̃S ũ I )
⊤
+ g̃

⊤

I , 0⊤, 0⊤
)
.

The entries with ∼ on top are obtained by a restriction of
the corresponding variables from the main system without ∼.
Note that (3) does not depend on the connection between the
strands. Furthermore, we consider S̃ as not being dependent
on a, since the material laws in the slot are linear. The two
sources that cause a magnetic field in the slot region are
excitations g̃R and ũ I at the boundary of the subdomain and
voltage differences ũ R and g̃ I in the strands. The function
space where the Dirichlet data g̃R and g̃ I are taken from
should represent all possible restrictions of the solution to the
subdomain boundary, independent of the number and location
of the slots in the whole machine as well as the connection of
the strands. This motivates the use of random, but continuous
boundary conditions, which are generated according to [22,
Algorithm 2]. To keep this article self-contained, we briefly
recap the algorithm in Algorithm 1 for generating the boundary
data. Since we do not make any assumptions about the voltage

differences in the strands, we use random vectors for ũ R and
ũ I , where the entries are sampled from a uniform distribution
over the interval [−1, 1]. The local system (3) is solved nS ∈ N
times with nS different Dirichlet data g̃R , g̃ I and voltage differ-
ences ũ R , ũ I . The local solutions ãR,i and ã I,i , i = 1, . . . , nS

are collected in snapshot matrices X R = (ãR,1, . . . , ãR,nS ) and
X I = (ã I,1, . . . , ã I,nS ), respectively, from which singular value
decompositions are computed. The vectors for the basis of
the reduced space are obtained by using the first NR and NI

left singular vectors of the matrices X R and X I , respectively,
where NR, NI ∈ N are determined by

N∗∑
i=1

σ 2
i ≥ (1− εtol)

nS∑
i=1

σ 2
i , ∗ ∈ {R, I } (4)

where the values of σi are the singular values of X∗ and εtol >

0 is a prescribed tolerance. Once the reduced basis vectors
for the slots are computed, we define as W ∈ R2nRED×2n ,
where nRED := n + nv + ni − nslots + NR + NI and nslots ∈ N
is the number of dofs in the slots, the matrix that is used to
replace the FE basis in the slots with the reduced basis vectors.
The reduced matrix and right-hand side for the time-harmonic
problem are then obtained from A and f of original system
as follows:

ARED = W⊤AW, and f
RED
= W⊤ f .

Algorithm 1 Generating Continuous Boundary Conditions
Require: Nf ∈ N, α ≥ 0, umax ∈ (0, 1]
Ensure: g : [0, 1] → [0, 1) with regularity α

1.) Draw cR, cI ∈ RNf , s.t. cR,i , cI,i ∼ N (0, 1)

2.) Draw Y1, Y2 ∼ U(0, umax),
set a = min {Y1, Y2}, b = max {Y1, Y2}

3.) Set g(1)
:= R{g̃(·; cR, cI)}, where

g̃(s; cR, cI) :=

Nf−1∑
k=0

cR,k+1 + jcI,k+1√
1+ (2πk)2α

e2πksj

4.) g = a + b−a
max g(1)−min g(1)

(
g(1)
−min g(1)

)

IV. NUMERICAL RESULTS FOR THE TIME-HARMONIC
PROBLEM

In this section, we report numerical results for the nonlinear
time-harmonic problems, which were carried out on a Lenovo
ThinkPad P1 with 16 11th Gen Intel Core i7-11850H @
2.50-GHz processors. The proposed method was imple-
mented in MATLAB, and the meshes were generated using
GMSH [27]. The conductivity σ was set to 0 in air regions
and the laminated stator, 4 MS/m in the solid rotor, and to
25.8 MS/m in the copper regions. The supply voltage and
supply frequency were 660 V and 200 Hz, respectively. The
rotor slip was set to 0.005%, and 36 parallel strands were
modeled in the slot. The subdomain to compute the reduced
basis for the slots was the union of the slot elements and
two extra layers of elements around the slot. The parameters
required to create the boundary conditions were N f = 10,
α = 2, and umax = 0.002; see Algorithm 1. The tolerance
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Fig. 3. Real part of the flux density of the nonlinear time-harmonic problem.

εtol for determining the number of reduced basis vectors was
10−6. For ũ∗ = (u∗,1, . . . , u∗,nv

)⊤, we considered two different
choices as follows.

1) u∗,1 = · · · = u∗,nv
, u∗,1 ∈ U(−1, 1).

2) u∗,1, . . . , u∗,nv
∈ U(−1, 1).

We refer to them as V 1 and V 2, respectively. The distribution
U denotes the uniform one over the interval [−1, 1]. The HF
problem had 443 154 dofs. The HF solution with nonlinear
material laws can be seen in Fig. 3.

A Newton–Raphson implementation required around 126 s
to solve the HF system. Using a linear local system, it took
about 5.13 s to compute the snapshot matrices with 50 random
boundary conditions. The reduced systems with 42 402 (V 1)

and 45 102 (V 2) dofs were solved in about 22.1 and 70.2 s,
respectively. The corresponding relative ℓ2 errors in the solu-
tions were about 0.01 and 6 · 10−3, respectively. Since the
model with V 1 is solved three times faster with satisfying
error, we continue with this approach. Moreover, numerical
experiments indicated that we require about three times more
random samples for V 2 to work properly. This is probably the
case due to the fact that more variations in the data for the
voltages are possible; however, we can see that the flexibility
that V 2 provides is not necessary for our problem.

In Table I, we show the solving times (stime) as well as
the number of dofs and the density of the matrices for both
the HF and the reduced systems for an increasing number of
strands per slot. The speedup increases from about 6 to 13 if
we increase the number of strands per slot from 16 to 100. The
reduced system with 100 strands was about 1/23 times as large
as the related HF system, and the relative error in the solution
was at about 1.74 · 10−2 measured in the standard Euclidean
norm. The number of required basis functions for the reduced
systems for the different numbers of strands was more or
less equivalent, as can be seen in Table II. For comparison,
we show in Table III the number of dofs and the solving times
for a Schur complement method [28], where we eliminated the
dofs inside the slots. We can see that the proposed method is
up to four times faster than the Schur complement method.

The next set of experiments shows that it is possible that
we can build a reduced order model for varying parameters.
Without loss of generality we restrict ourselves to variations
of the copper conductivity σc. We considered a machine with
36 strands in each slot. To create the reduced basis vectors,
we solved system (3), where σc ∈ [19.8, 33.8] MS/m was
chosen randomly. The rest of the parameters remained the
same. We solved the local problem 400 times. The number of

TABLE I
NUMBER OF DOFS, SOLVING TIMES (STIME), AND THE ERROR IN THE

SOLUTION BETWEEN THE HF AND THE REDUCED MODELS IN THE

TIME-HARMONIC CASE

TABLE II
NUMBER OF REDUCED BASIS FUNCTIONS FOR THE TIME-HARMONIC

AND TIME-DEPENDENT PROBLEMS

TABLE III
NUMBER OF DOFS AND SOLVING TIMES (STIME) OF THE

SCHUR COMPLEMENT METHOD

reduced basis vectors was eight for both the real and imaginary
parts, and the number of reduced dofs was 42 546. We did five
actual simulations with the obtained reduced basis, where we
chose σc ∈ {20.0, 23.0, 26.0, 29.0, 33.0} MS/m. The reduced
systems were solved in about 18.0 s, and the errors between
the solutions of the HF and the reduced models were between
0.01 and 0.06.

V. EXTENSION TO THE TIME-DEPENDENT CASE

In this section, we extend the procedure from Section III
to the time-dependent case. The AVI system for the
time-dependent regime with the continuity constraints
enforced by the matrix B is given by (2). The backward Euler
time-stepping scheme is applied. We refer to (2) as the HF
problem in the time-dependent setting. The procedure to get
the reduced basis vectors is similar as above; i.e., we consider
one subdomain, which is a slot plus some extra layers of mesh
elements. The local problem we have to solve is given by(

S̃ + M̃ ∂
∂t B̃⊤

B̃ 0

)(
ã
λ̃

)
=

(
−(D̃S ũ)+ g̃

0

)
where we use analogously as above Algorithm 1 to obtain
g̃ and the variants V 1 for ũ. The procedure to compute the
reduced basis vectors for the slot regions is summarized in
Algorithm 2. Analogously, as in Section III, for the time-
harmonic case, we define a matrix W ∈ RnRED×n , where, in this
section, nRED := n + nv + ni − nslots + N , where nslots is
defined as in Section III and N is the number of reduced
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Fig. 4. Terminal voltage for time stepping.

basis functions in the time-dependent case computed by (4),
that replaces the basis in the slots. The reduced time-dependent
problem is obtained from (2) as follows:

AREDxRED = f
RED

(5)

where

ARED = W⊤AW, and f
RED
= W⊤ f .

Algorithm 2 Compute a Reduced Basis for the Time-
Dependent Problem
Require: time interval (ts, T ], where T > ts ≥ 0,

th = (t0, . . . , tnt), where t0 = ts and tnt = T and
t0 < t1 < · · · < tnt , nS ∈ N

Ensure: Reduced basis R
1.) Y = ∅
for i = 1,. . . ,nS do

2.) X = ∅
3.) Compute g̃ according to Algorithm 1
4.) Draw ũ ∈ U(−1, 1)nv

for t = 1, . . . , nt do
5.) Solve (5) for ãt and set X ← X ∪ ãt

end for
6.) Compute the SVD decomposition X = U6V T

7.) Get the most significant singular values N via (4)
8.) Y ← N most significant left singular values of X

end for
9.) Compute the SVD decomposition Y = U6V T

10.) Get the most significant singular values N via (4)
11.) R← N most significant left singular values of Y

VI. NUMERICAL RESULTS FOR THE TIME-DEPENDENT
PROBLEM

In this section, we present numerical results for the time-
dependent problem. The hardware and the parameters were
almost the same as already stated in the beginning of
Section IV. We considered 120 time steps per fundamental
period and initialized the simulation with the solution of
the nonlinear time-harmonic problem. As seen in Fig. 4, the
supply voltage was gradually changed from sinusoidal to a
rectangular wave corresponding to converter supply. Three
periods with nt = 360 time steps in total were simulated,
and all the results were recorded during the last period.

We report the performance of the method only for V 1 but
for a varying number of parallel strands. We used 16, 36,

TABLE IV
NUMBER OF DOFS, SOLVING TIMES (STIME), DENSITIES OF THE

JACOBIANS, AND THE ERROR IN THE SOLUTION BETWEEN

THE HF AND THE REDUCED MODELS IN THE

TIME-STEPPING CASE

64, and 100 parallel strands for our numerical experiments.
In Table IV, we show the number of dofs, the solving times,
and the error of the solutions between the HF and reduced
models. The error e is measured in the norm

∥e∥2
TD :=

∑nt
i=1 ∥yi

− y
H,i
∥

2
ℓ2∑nt

i=1 ∥yi
∥

2
ℓ2

where y
i
:= (a⊤i , u⊤i , i ′i

⊤
)⊤ is the solution vector without the

Lagrange multipliers of the HF problem (2) at time step i and
y

H,i
is computed from W xRED, with xRED being the solution

to the reduced problem (5), and removing the coefficients for
the reduced λ. The norm ∥·∥ℓ2 is the standard Euclidean norm.

We observe from Table IV that the number of dofs can be
reduced significantly, and the solving times for the reduced
problems drop by factors between 2 and 4. The errors were
about the same order for every number of strands. The number
of basis vectors for each case can be seen in Table II. This
table shows that the solutions in the slot over all the timesteps
can also be represented by a low number of basis functions.

In the following, we compare the phase currents and the
winding losses for the model with 100 strands per slot. The top
graph of Fig. 5 shows a very good agreement between the
phase currents of the HF and the reduced model. In the bottom
graph, we see the variations of the strand currents, represented
by the gray shaded areas, and the average strand currents of
phase a, represented by a blue solid line. The eddy-current
losses computed from the solutions of the HF and reduced
problems were about 47.3 and 46.3 kW, respectively. So, the
losses computed from the solution of the reduced problem
underestimate the losses from the HF models only slightly.

VII. IMPLEMENTATION CONSIDERATIONS

In this section, we describe the implementation steps of
the proposed method, which can be used in any commercial
software package. The implementation of the MOR method
can be divided into three steps: preprocessing, solving, and
postprocessing. In the following, we describe the implemen-
tation steps for the time-stepping method.

A. Preprocessing

This step considers the setup of the reduced basis.
1) Use Algorithm (2) to obtain the reduced basis for one

slot.
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Fig. 5. Above are the phase currents of the HF model (x marks) and the
reduced model (solid lines) for 100 parallel loops, estimated losses: 47.3 and
46.3 kW, respectively. Below is the variation of the strand currents computed
with the MOR model of phase a (gray shaded area) and the average current
(blue solid line).

B. Solving

In this step the reduced linear system is solved.
1) Use the reduced basis to project the HF data in the

slots into a reduced space spanned by the reduced basis
functions.

2) Solve (5) to get the reduced solution xRED.

C. Postprocessing

The solution of the reduced model must be prolongated into
the HF space to compute the losses.

1) Prolongate the reduced solution into the HF space by
computing

x = W xRED.

2) Use x to compute the losses Ped by

Ped = ℓz

∫ t∗

t∗

∫
�

(
−

∂a
∂t
+ u

)2

dx

where t∗ and t∗ are the start and end times of the last
period.

VIII. COMPARISON WITH PREVIOUS APPROACHES

The MOR methods proposed in [18] and [20] share some
similarities to the suggested one in this article. In [18], the
snapshot matrix containing the reduced basis vectors can be
quite large due to a large number of boundary nodes and a
large number of strands. The method in [20] uses the snapshot
matrices to compute convolutions involving the inputs and
responses to assemble and solve a reduced AVI problem.
In both approaches, the problems related to the slot need
to be solved consecutively, first with a unit impulse at each
boundary node and then with a unit current for each strand.
In our method, both field sources in the slot are set at once,

and we demonstrated that we need to solve the local problem
fewer times as there are boundary nodes. Moreover, the pro-
posed method is capable of constructing vectors representing
a reduced basis where material parameters may vary, as is
demonstrated for the time-harmonic case, where we varied the
electric conductivity. This means we have to compute only one
reduced basis, which can be used for systems with different
material parameters. This property is not obvious from the
methods in [18] and [20] and would probably require some
modifications of the algorithms.

IX. CONCLUSION AND OUTLOOK

In this article, an efficient MOR method is proposed to
reduce the dofs in multi-strand electrical machine windings.
Given that suitable parameters are used, the proposed method
requires only little offline computation time and provides an
accurate reduced model with good speedups in the online
stage. The proposed method is independent of the strand
connections. Hence, using only one subdomain to compute
a reduced basis is sufficient for the whole machine. In par-
ticular, once a reduced basis is computed, it can be used to
solve problems with different connection matrices L , provided
that the number of strands in the slots remains the same.
Furthermore, we compared the phase currents from the HF
and the reduced models as well as the losses in the strands.
The results show that the reduced model is indeed capable of
providing a good estimate for the losses in the machine. The
mortar method allows to create the slot geometry independent
of the stator geometry; i.e., hanging nodes at the stator–slot
interface do not cause any issues, and a reduced basis for
the slot can be computed independent of the final rotor and
stator geometries of the machine. One possible approach for
modeling machines with twisted or transposed windings is to
combine the proposed method with a multi-slice model where
the 2-D problem is solved simultaneously in several slices
along the axial direction [29], [30].
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