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This article introduces a novel multiobjective design optimization (MOO) framework for enhancing magnetically levitating (Maglev)
systems. By integrating finite-element method (FEM) simulations and focusing on the dynamic interplay between mechanical and
electromagnetic properties, as well as control system dynamics, our approach addresses the complex challenges of Maglev design, such
as variable inductance, force production due to air-gap fluctuations, and magnetic saturation. The proposed framework facilitates the
development of more efficient, reliable, and adaptable Maglev technologies. Through a simulated implementation, we demonstrate
the framework’s effectiveness in optimizing electromagnet design for improved system integration and performance, marking a
significant advancement in electromechanical system optimization.

Index Terms— Design optimization, electromagnetic suspension (EMS), multiobjective optimization (MOO).

I. INTRODUCTION

TRADITIONALLY, electromechanical system design and
optimization have relied on manual processes, using

finite-element method (FEM) simulations, analytical models,
and equivalent circuit models to predict and optimize per-
formance. The current trend is moving toward automation,
employing optimization techniques to streamline this process.
Key performance metrics derived from FEM simulations, such
as generated force relative to energy or minimizing weight
while maximizing performance [1], are optimized for specific
operational points, reflecting static performance expectations
typical of conventional applications, such as motors.

However, this approach has limitations when applied
to magnetically levitating (Maglev) systems based on
ferromagnetic materials. Traditional electrical machine design
targets the upper linear part of the iron’s saturation curve
to balance weight and remagnetization losses. In contrast,
Maglev systems, especially electromagnetic suspension (EMS)
systems, operate in nonlinear regions where inductance and
force production vary significantly with air-gap fluctuations,
introducing high nonlinearity challenges [2].

Designing Maglev systems to avoid saturation conditions is
impractical due to increased weight and energy consumption.
Thus, a sophisticated optimization approach that accounts
for the wide operational range and inherent nonlinearities is
essential. This approach must automate FEM simulations and
accommodate the complex interplay of performance metrics
within the system’s operational envelope.
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Fig. 1. General sequence of the optimization process involving FEM
simulation, model building, levitation simulation, and evaluation using a
multiobjective optimization (MOO) algorithm.

While our focus is on EMS systems using ferromag-
netic materials, superconducting materials present different
challenges, particularly in simulations involving both super-
conducting and ferromagnetic materials [3].

The existing methodologies fall short by failing to provide
a cohesive framework for the simultaneous optimization of
electromagnets and their control systems, thereby hindering
efficient and effective development of Maglev technologies.

Recognizing these challenges, our study explores an
alternative approach. We propose a multiobjective design
optimization (MOO) framework that concurrently considers
both mechanical attributes and control system integration in
the early design stages of electromagnets. With the use of
FEM simulations, we derive the highly nonlinear inductance
and force values of the electromagnet that are crucial for
understanding the behavior of Maglev control systems under
varying operational conditions. Based on those values,
we derive a plant model, and a model-based controller,
that is used in simulation to determine the operational
performance of a certain mechanical configuration. Utilizing
these performance metrics, an MOO algorithm is employed
to optimize the mechanical structure of the magnet. This
optimization sequence is depicted in Fig. 1.

Our main contributions are the following.
1) In Section IV, we present a comprehensive reference

framework employing an MOO algorithm for the design
of electromagnets. An overview of this framework is
depicted in Fig. 2.
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Fig. 2. Reference framework for the optimization process with its individual components and their interaction. (a) Magnetic configuration. (b) Magnetic
properties. (c) Magnetic model. (d) Mechanical vehicle model. (e) Controller design. (f) Experimental setup. (g) Performance evaluation + MOO algorithm.

2) In Section V, we provide a detailed explanation of
the simulation components that interact within the
optimization process.

3) In Section VI, we demonstrate the practical application
of our framework through a simulated implementation,
showcasing its efficacy in optimizing electromagnet
design for improved integration with control systems.

II. RELATED WORKS

In this section, we discuss previous works relevant to our
contribution, focusing on the following: 1) EMS magnets and
2) related electrical machines.

A. Optimal Design of EMS Magnets

In [4] a general flowchart for the design process of an EMS
magnet is outlined, covering system configuration, control
requirements, magnet dimensioning, modeling, and evaluation
of simulation results. Our approach adheres to this workflow
while emphasizing automation to accelerate optimization.

Zhang et al. [5] focus on optimizing the cross-sectional
dimensions of high-temperature superconductor (HTS) coils
to achieve desired magnetic levitation forces using the FEM
analysis. Their aim is to optimize mechanical attributes of HTS
magnets for efficient levitation force generation.

Our framework, however, employs an MOO methodology
that concurrently considers mechanical attributes and control
system integration from the early design stages. This holistic
approach reduces the iterative design process traditionally
seen in EMS system development, where control systems
compensate for electromagnet design limitations.

B. Multiobjective Optimal Design of Electrical Machines

The literature is rich of MOO of electrical machines [6].
While most of those MOO approaches follow a similar method
of determining the performance directly from the electrome-
chanical simulations, our approach constructs the performance
through a combination of electromechanical simulation and
model-based control simulation. Furthermore, we want to
highlight one specific approach to underscore the differences.

For instance, the design optimization of interior permanent-
magnet machines (IPMs) has been explored using multiphysics
models that integrate electromagnetic, thermal, and structural
analyses within an MOO framework [7]. Similar to our
approach, the electromechanical properties are determined at
different operating points for each design iteration. However,
our approach significantly diverges in constructing the
performance function to drive the optimization.

We derive the performance of the overall system by con-
structing a controller and plant model from the magnetic model
and simulating these to determine the performance of the
overall target system of the electromagnet during operation.
This holistic method ensures that the dynamic interplay of the
mechanical and electromagnetic properties, as well as control
system dynamics, is considered. By contrast, the approach
in [7] determines the overall performance by averaging of the
performance metrics at the individual operation points.

III. BACKGROUND

This section discusses the theoretical background of the
following: 1) MOO and 2) electromagnet design influences.

A. Multiobjective Optimization

MOO is a mathematical and computational approach used
to find the best trade-offs when optimizing multiple, often
conflicting objectives simultaneously. This is particularly
important in real-world scenarios where improvements in one
aspect can lead to compromises in another, such as in engi-
neering design, economics, and environmental management.

In MOO, the goal is to identify Pareto-optimal solutions.
A solution is considered Pareto optimal if no objective can
be improved without worsening at least one other objective.
These solutions form the Pareto front, representing the best
possible compromises between the conflicting objectives. For
example, in the design of an electric vehicle, one might need
to balance maximizing battery life against minimizing weight
and cost.

Genetic algorithms (GAs), such as the NSGA-II
algorithm [6], and surrogate-based MOO, such as Gaussian
process regression (GPR), are two prominent methods used
to tackle these kinds of problems. Both approaches have their
unique strengths and weaknesses, particularly in terms of the
number of samples required to model a problem and their
ability to model complex systems.

GAs are a class of evolutionary algorithms inspired by
natural selection processes. They are particularly well suited
for solving complex optimization problems with large, non-
linear search spaces where the mathematical model is not
straightforward. By contrast, surrogate-based MOO relies on
fitting a surrogate function to the original model, which the
optimization algorithm then uses. A common approach com-
bines Bayesian optimization with GPR as the surrogate model.
GPR includes probabilistic information, enabling the system
to be represented with a smaller sample size compared with
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nonprobabilistic models [8], making it suitable for expensive
models, such as FEM models.

Recently, a novel theoretical approach was introduced that
allows users to target Pareto points with specific properties.
This approach, which inherits mathematical guarantees, is
particularly useful in scenarios where the black-box function
is expensive to evaluate and the user is primarily interested in
Pareto points that satisfy certain properties, such as prioritiz-
ing specific objectives or meeting minimum constraints. The
approach was demonstrated in [9].

B. Electromagnet Design Influences on Control

Designing an electromagnet requires careful consideration
of multiple factors beyond just the weight of the assembly. Key
aspects are the coil’s electrical resistance determining energy
consumption, static and dynamic magnetic characteristics such
as the magnetic force at various currents, and air gaps, which
affect the levitation system’s lifting capacity and suspension
stiffness.

Effective control systems must account for current behavior
determined by inductance, as current dynamics influence the
force required for stable levitation, particularly during dis-
turbances. This calls for a design where current and force
dynamics are responsive enough to handle such disturbances.

Design conflicts arise, because both force and inductance
depend on the structure’s geometry, winding characteristics,
and material saturation properties. Adding iron can increase
lifting force but also inductance, complicating control due
to slower current dynamics. Energy consumption is also a
concern, as it depends on lifting force, magnet weight, and coil
resistance. For instance, a thicker core can enhance control
and lifting force by delaying iron saturation but may shift
the operating point due to added weight. The interconnected
nature of these parameters underscores the need for a holistic
optimization approach.

Thus, electromagnet design requires balancing static and
dynamic aspects with control system requirements. For the
modeling process, FEM is commonly used to obtain detailed
system characteristics. Based on this, it is possible to derive
levitation simulations and control using system models, such
as an electric circuit model [10].

IV. REFERENCE FRAMEWORK

This section presents our reference framework for the
MOO of electromagnets, as shown in Fig. 2. The framework
integrates an MOO Algorithm with FEM simulation and
Maglev simulations to yield Pareto-optimal design parameters
by influencing the mechanical attributes of the electromagnet.

The framework includes the following:

1) an FEM simulation module to predict electromagnetic
characteristics;

2) an electric circuit model, based on those characteristics
for developing a responsive and efficient EMS system
controller;

3) a Maglev system simulation to understand the con-
troller’s interaction with the electromagnet in practical
settings;

Fig. 3. Exemplary characteristics: normalized inductance L(s, I ) (left) and
magnetic force Fmag(s, I ) (right), both based on air gap s and current I .

4) a performance evaluation module to generate a vector of
performance metrics, encompassing system efficiency,
reliability, and response characteristics.

The metrics feed back into the MOO algorithm for iterative
enhancements, converging toward optimal design parameters.
This systematic, data-driven approach ensures comprehensive
optimization of electromagnet designs in EMS systems.

V. HOMOPOLAR MAGNET MODELING AND CONTROL

A. Magnet Modeling

Typically, an EMS system consists of a coil wound
around an iron core, which, along with the limbs, forms a
U shape with the opening facing toward the rail of the track.
Applying current to the coil creates a magnetic flux through
the core, limbs, air gap, and rail, generating an attractive
force that counteracts gravity and enables levitation. We start
with parameters coming from the MOO algorithm defining
the magnetic configuration. The parameters involve the
thicknesses of the core tc, limbs tl , and rail tr , as shown in the
cross section in Fig. 2(a). In addition, the number of windings
in the coil is defined by their arrangement side by side nside
and stacked nstacked. The arrangement of the windings, in turn,
influences the widths of the core and rail, while the total
number of windings sets the coil’s electrical resistance.

An electromagnetic FEM simulation in ANSYS Maxwell
derives the configuration’s magnetic properties—force
Fmag(s, I ) and inductance L(s, I ). Both are influenced by
the electromagnet’s air gap s between limbs and rail and
the current I flowing through the coil. The magnetic force
typically increases initially quadratically with the current I .
The simulation incorporates magnetization curves for iron and
accurately maps saturation effects and resulting nonlinearities
in force and inductance, as depicted in Fig. 3. The results of
the FEM simulation have been validated with measurements
from our prototype design. Neglecting flux line displacement
due to eddy currents is justified, as laminating the rail,
a standard Maglev practice, minimizes this effect. Besides
the characteristics Fmag(s, I ) and L(s, I ), the chosen param-
eterization of the coil windings also influences the electrical
resistance Rel that occurs in the subsequent modeling.

The electromagnet is modeled as an RL circuit, as described
in [10] and illustrated in Fig. 2(c). The dynamics of electric
current can be formulated by applying Kirchhoff’s second law

U (t) = Rel I + Uind

= Rel I +
d
dt

[L(s, I )I ]

= Rel I + L̃(s, I ) İ +
∂L(s, I )

∂s
I ṡ (1)
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Fig. 4. Experimental setup showing liftoff, landing phase, and the nominal
operation with track irregularity simulation.

where U is the applied voltage, Rel is the electric
resistance, and L̃(s, I ) is used to abbreviate the expression
((∂L(s, I ))/∂ I )I + L(s, I ). In this case, L(s, I ) represents
the previously derived inductance. Solving (1) for İ results
in the differential equation for the current

İ =
1
L̃

(
U − Rel I +

∂L(s, I )
∂s

I ṡ
)

. (2)

The force output of the model Fmag(s, I ) is obtained using the
current output from solving (2) under the common assumption
that current and magnetic force share the same dynamics.

B. Controller Design

Based on the system’s mechanical properties and the derived
magnetic model, an active levitation control system is being
designed. The controller consists of a linear–quadratic regu-
lator for mechanics, influencing body dynamics. It receives
the desired air gap, actual air-gap measurements, vertical
acceleration of the magnet, and current as input variables. The
control process accounts for the magnetic force nonlinearities
from the FEM model. The resulting reference current IRef is
realized through feedforward control (FFC), considering the
magnet’s inductance characteristic of the magnet to determine
the control voltage U .

VI. EVALUATION

A. Experimental Setup

The experimental setup features the integrated controller
as described in Section V-B within a Maglev vehicle model
simulation with solely the vertical degree of freedom. This
simulation, executed in SIMULINK, runs for 5 min to cover
the system’s complete operational range.

1) Mechanical Vehicle Model: The magnetic model is
embedded in the mechanical vehicle model shown in Fig. 2(d).
The electromagnet is suspended from the vehicle chassis via
a primary suspension, with the passenger cabin connected to
a secondary suspension.

2) Simulation Operational Setup: The simulation follows
an operational graph that mirrors real-world Maglev opera-
tions, as shown in Fig. 4.

a) Liftoff and landing phases: Highlight the system’s
nonlinearity, particularly the saturation of iron components
during liftoff, impacting energy requirements, magnetic-field
dynamics, and stable control.

b) Nominal operation and track irregularity simulations:
Maintains the target air gap, testing the controller’s effec-
tiveness in stable levitation and adaptability to real-world
challenges. Using real data from the Transrapid track in
Shanghai [11], a 1 mm amplitude sine sweep simulates track
irregularities, assessing the controller’s capability to ensure
passenger comfort and system stability.

The overall goal of the system is to minimize the following
three performance metrics.

1) Passenger Discomfort (P): Quantified by the integral of
the vertical acceleration a, and weighted by the Sperling
weighting factor w [12].

2) Controller Deviation (C): Average of the squared devi-
ations from the target air gap gtarget (10 mm), reflecting
controller precision and stability.

3) Energy Consumption (E): Total power consumed by the
electromagnet during the experiment.

In total, this leads to the following optimization model:

min

(
P =

∫ (
F−1

{F(a) · F(w)}
)

dt,

C =

√∫ (
g(t) − gtarget

)2 dt, E =

∫
U · I 2 dt

)
s.t. nside ∈ {2, 3}, 120 ≤ nstacked ≤ 200, 20 ≤ tc

tl , tr ≤ 40. (3)

B. Optimization Algorithm

Executing the FEM simulation along with the controller and
model generation takes approximately 20 min per simulation
point, making the process highly expensive. This is primarily
because the FEM simulation must be performed independently
for each air gap s and current I , as shown in Fig. 3.
Therefore, it is crucial to minimize the number of required
samples. To achieve this, we utilize a surrogate-based model as
described in Section III-A. In addition, we are only interested
in specific points on the Pareto front rather than the entire
front, allowing us to use the Paref approach [9].

To initialize the surrogate model for the Paref framework,
we begin by sampling our system 50× using Latin hypercube
sampling [6]. These initial samples help explore the target
space and fit the underlying surrogate model effectively.

C. Results

The results are illustrated in Fig. 5, where the three per-
formance metrics are compared pairwise in 2-D plots. The
original evaluation, characterizing the magnet configuration
of our prototype design, is marked by a black star. The
initial evaluations are represented as small gray dots. The
MOO algorithm, designed to find Pareto points that showcase
balanced trade-offs between the three performance metrics,
successfully identifies configurations that significantly improve
performance metrics compared with the original evaluation.
These points are marked in blue in Fig. 5 and are compared
with the starting point on a percentage basis in Table I.

Notably, trade-offs between the performance metrics are
apparent. Configuration 1 shows a significant reduction in



DEMICOLI et al.: SYSTEMATIC OPTIMIZATION OF ELECTROMAGNET HARDWARE FOR EMS 7201605

Fig. 5. Pairwise comparisons of resulting electromagnet design metrics. (a) Passenger Discomfort vs. Controller Deviation. (b) Controller Deviation vs.
Energy Consumption. (c) Passenger Discomfort vs. Energy Consumption. Lower values of the metrics denote higher performance.

TABLE I
PERCENTAGE COMPARISON OF THE EVALUATIONS

TO THE ORIGINAL POINT

controller deviation but performs poorly in passenger comfort.
Configuration 2 demonstrates the greatest improvement in
energy consumption among the presented configurations, yet
it does not reduce the controller deviation as effectively.
In contrast, Configurations 3–5 prioritize reducing passenger
discomfort, although their improvements in the other two met-
rics are not as substantial as those observed in Configurations 1
and 2.

D. Discussion

Additional trade-offs are significant in meeting the prede-
fined design criteria of the levitation system. For example,
when the MOO algorithm prioritizes low-energy consump-
tion, the resulting configurations are marked as red dots.
Fig. 5(b) and (c) shows that these configurations have gen-
uinely low-energy consumption. Fig. 5(a) reveals a trade-off
between controller deviation and passenger comfort, forming
a Pareto edge. Similar trade-offs can be identified when
prioritizing other performance metrics.

The results of the optimization can also be interpreted geo-
metrically. Within the pink ellipse, configurations with higher
energy consumption are visible. These points correspond to
settings with greater saturation of the narrowly parameterized
iron core during nominal operation, resulting in an unfavorable
force-to-power ratio. The weight savings from the reduced
core mass do not compensate for the lack of lift force. The
original evaluation exhibits the same issue.

The orange arrows indicate a trend toward configurations
with thicker iron core, which consume less energy [Fig. 5(c)]
but lead to greater control deviations [Fig. 5(a)] due to their
inertia.

VII. CONCLUSION

Our study presents a novel MOO framework, streamlining
electromagnet design in Maglev systems. This innovative
approach significantly reduces design time by integrating
electromagnet and control system optimization from the
start, diverging from conventional methods. While showing

improvements in system performance in simulated environ-
ments, the framework demands further validation through
real-world testing. Our method represents a crucial step toward
more efficient and rapidly developed Maglev transportation
systems.
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