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Influence of Resonant Circuits on Optimal Design of
Magnetostrictive Energy Harvester in Free Vibration
Yoshito Mizukawa , Jesse Ranta, Umair Ahmed , David Blažević , and Paavo Rasilo

Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland

This article presents a novel modeling method for a magnetostrictive energy harvester connected to a resonant circuit. The
method is based on analytical calculations coupled with experimental parameter identifications. The magnetic flux leakages
from the pickup coil and the magnetostrictive material are considered. Under the assumptions of linearity and fundamental
oscillation, the governing equations of the magnetostrictive energy harvester were derived from the Euler–Lagrange equations for an
electromagnetic-mechanically coupled system. The energy-harvesting efficiency of the harvester was obtained by solving the derived
governing equations, and it can be described with five non-dimensional parameters. Among the non-dimensional parameters, the
natural frequency ratio and damping ratio of the load resistance have optimal values to maximize the energy-harvesting efficiency. This
study derived these optimal design parameters depending on the circuit configuration and types of energy given to the harvester. In the
magnetostrictive energy harvester with a series-resonant circuit subject to kinetic energy impact, these optimal design parameters
can be obtained in simple algebraic forms. Experimental validations were conducted for the magnetostrictive energy harvester with
a pure resistive circuit, with series- and parallel-resonant circuits, respectively, to compare their energy-harvesting efficiencies. While
the pure resistive configuration can harvest 21% of given mechanical energy, both series- and parallel-resonant configurations can
harvest 23%.

Index Terms— Efficiency maximization, energy harvesting, free vibration, magnetostriction, primary damping, resonant circuit.

I. INTRODUCTION

W ITH the increasing number of structures such as
bridges and buildings, manual inspection of those

engineering structures has become progressively challeng-
ing. Monitoring structures with sensors enables efficient and
objective safety assessments, thus gaining attention with the
development of the Internet of Things and artificial intelli-
gence. However, external power supply for sensors involves
installation constraints or periodic battery replacement. Hence
the principles and mechanisms of energy harvesting (i.e., cap-
ture and conversion of low-level ambient energy into electrical
energy) have been actively studied [1], [2].

Vibration is the most ubiquitous energy source. Thus, vibra-
tion energy harvesting has a wide potential application area
compared to other forms of environmental energy such as ther-
mal or solar power, and has been expected to be embedded into
monitoring systems. In recent years, frequency up-converting
energy harvesters that can be applied to low-frequency envi-
ronments have been developed [3], [4]. They convert the
low-frequency excitation vibrations into impacts which in turn
allow the energy-harvesting devices to oscillate at their natu-
ral frequencies often several times the excitation bandwidth.
Priya [5] proposed a frequency up-converting piezoelectric
wind turbine utilizing multiple piezoelectric cantilever har-
vesters. The rotational movement of the wind turbine is
converted into oscillatory motion through a cam-shaft gear
mechanism. Power is generated as the tips of the piezoelectric
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cantilever harvesters experience continuous impacts. Lin and
Zhang [6] applied the frequency up-conversion to a wave
energy conversion device. The device consists of a cylindrical
buoy with teeth, and a strut that is mounted on the seabed
and bears a box with an array of cantilever harvesters inside.
As the buoy is excited by waves, the teeth slide along the strut
and pluck the cantilever harvesters. Tan et al. [7] developed
a frequency up-converting magnetostrictive energy harvester
that harnesses power from human walking. A multi-leaf cam
rotated by human footsteps through a gear rack repeatedly
plucks the tip of the magnetostrictive cantilever harvester, thus
coercing them to freely vibrate at their natural frequency.

Magnetostrictive energy harvesting utilizes the property of
magnetostrictive materials in which the magnetic flux varies
due to the applied mechanical force. This phenomenon is
called the Villari effect. In contrast, the phenomenon where
strain occurs when the magnetic flux within the material
changes is known as the Joule effect, and it can be utilized for
precise actuator mechanisms. Fe–Ga alloy is known as one of
the giant magnetostrictive materials that exhibit large Villari
effect and Joule effect. Fe–Ga alloy is frequently employed in
magnetostrictive energy harvester mechanisms due to its high
energy-harvesting efficiency, machinability, and environmental
durability [8], [9], [10].

Many studies have been conducted on the optimization
of vibration energy harvesters. Lefeuvre et al. [11] demon-
strated that the rectifier with a buck-boost converter exhibits
constant impedance. They modeled the charging circuit as a
resistive load and optimized a piezoelectric energy harvester
subject to harmonic excitation. Zuo and Cui [12] proposed an
energy-harvesting tuned mass damper. They maximized the
output power of the device subject to white-noise excitation.
Palumbo et al. [13] experimentally investigated the optimal
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magnetic bias and optimal prestress with which the Fe–Ga
alloy exhibits the largest magnetostrictive effect. We analyti-
cally derived the optimal resistance, optimal capacitance, and
corresponding maximized output power of a magnetostrictive
harvester subject to harmonic excitation [14]. We demonstrated
that when the magnetostrictive harvester is connected to a
resonant circuit, the output power is greater than that of
a pure resistive circuit. Furthermore, we presented an ana-
lytical method for modeling cantilever-type magnetostrictive
harvesters under mechanical impacts [15]. In the modeling,
the shape function which is generally obtained by solving a
complex frequency equation [16] was derived in a simple way
based on the continuity of the magnetic flux inside the Fe–Ga
alloy. Using the derived shape function, the algebraic optimal
resistance to maximize the energy-harvesting efficiency was
derived. However, the efficacy of a magnetostrictive energy
harvester coupled with a resonant circuit subjected to mechani-
cal impacts has not been elucidated. In addition, the magnetic
flux leakage occurring in the harvester is neglected by the
use of a closed magnetic circuit. An approach that takes into
account the magnetic flux leakage is essential for general
magnetostrictive energy harvesters.

In this article, we present a practical and generalized
modeling method for a magnetostrictive energy harvester
considering magnetic flux leakage and demonstrate that the
magnetic flux leakage does not need to be considered by using
the proposed experimental parameter identification method.
Since this study directly identifies the parameters of the
magnetostrictive energy harvester from experiments, the ana-
lytical modeling does not require the derivation of the shape
function which involves strong approximations and complex
calculations [15], [16]. The energy-harvesting efficiencies of
the magnetostrictive energy harvesters with a series- and a
parallel-resonant circuit are, respectively, derived. The opti-
mal non-dimensional parameters, the corresponding optimal
resistances, and the optimal capacitances to maximize the
energy-harvesting efficiencies are proposed. In addition to
the experimental parameter identification, experiments were
conducted to validate the proposed method and optimal param-
eters.

II. MODELING METHOD

Fig. 1 shows the magnetostrictive energy harvester investi-
gated in this study. The cantilever is composed of a Fe–Ga
alloy laminated to an aluminum strip. Two magnets are
attached to the fixed end and the free end of the cantilever
to provide magnetic bias. A copper pickup coil is wound
around the cantilever through a plastic bobbin for converting
the energy of mechanically induced variations of the magnetic
flux into electrical energy and thus achieve energy harvesting.
In the charging circuit, a capacitor is connected in series with a
load resistor to make a resonance in the circuit. The proposed
method in this study relies on three assumptions which will
be discussed in the following paragraphs.

A. Assumptions

The first assumption is that the induced oscillation is small
enough for the magnetostrictive constitutive equations to be

Fig. 1. Configuration of magnetostrictive energy harvester with resonant
circuit.

linear

Hi = νS
i j B j − hi jk S jk

Ti j = −hki j Bk + sB
i jkl Skl (1)

where H , T , B, and S are the variations of the magnetic
field vector, stress tensor, magnetic flux density vector, and
strain tensor in the Fe–Ga alloy, respectively. νS, sB, and h
are the magnetic reluctivity tensor at constant strain, elastic
compliance tensor at constant magnetic flux density, and
magnetostrictive constant tensor, respectively. The indices i , j ,
k, and l follow Einstein’s summation convention. This assump-
tion is often employed in analytical studies of magnetostrictive
energy harvesters [14], [15], [16].

The second assumption is that the non-fundamental eigen-
modes of the cantilever are negligible. In such cases, the
displacement W of the cantilever, magnetic flux density B,
and strain S can, respectively, be represented with separation
of variables

W (x, y, z, t) = ψW (x, y, z)Wmag(t)

Bi (x, y, z, t) = ψBi (x, y, z)Bmag(t)

Si j (x, y, z, t) = ψSi j (x, y, z)SFe-Ga(t) (2)

where the shape function ψW of the displacement W is nor-
malized in such a way that the general displacement becomes
equal to the displacement Wmag at the tip magnet. The shape
function vector ψB is normalized in such a way that the general
magnetic flux density becomes equal to the average magnetic
flux density from the tip magnet, which satisfies the following
relation:

φmag(t) = Amag Bmag(t) (3)

where φmag and Amag are the magnetic flux from the tip magnet
and the cross-sectional area of the tip magnet, respectively.
The shape function tensor ψS is normalized so that the general
strain becomes equal to the average strain in the Fe–Ga alloy.

Finally, we assume the linear assumption between the
general displacement Wmag and the general strain SFe-Ga

Wmag(t) = zW SFe-Ga(t) (4)

where zW is a constant. It is noteworthy to mention that
this assumption includes the Euler–Bernoulli beam assump-
tion which is generally employed in the analytical modeling
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of cantilever-type energy harvesters [15], [16], [17]. There-
fore, this assumption is a less restrictive condition than the
Euler–Bernoulli beam assumption.

B. System of Equations

The governing equations of the magnetostrictive energy
harvester can be obtained from Euler–Lagrange equation

d
dt

(
∂L

∂q̇gen(t)

)
−

∂L
∂qgen(t)

+
∂D

∂q̇gen(t)
= 0 (5)

where L, D, and qgen are Lagrangian, Rayleigh’s dissipation
function, and generalized coordinate, respectively. For an
electromagnetic-mechanically coupled system, the Lagrangian
L is represented with the kinetic energy K , energy of the
inductor Ke, energy of the pickup coil Kcoil, potential energy
U , energy of the capacitor Ue, and magnetic energy Um in the
magnetostrictive energy harvester

L = K + Ke + Kcoil−U − Ue − Um. (6)

The kinetic energy of the harvester is obtained as follows:

K =
1
2

∫
v

ρ(x, y, z)ψ2
W (x, y, z)dvẆ 2

mag(t)

=
1
2

mẆ 2
mag(t) (7)

where v, ρ, and m are the volume, mass density, and general-
ized mass of the cantilever including the pickup coil and tip
magnet, respectively. The potential energy U is the sum of the
strain energies of the Fe–Ga alloy UFe-Ga and the aluminum
strip UAl

U = UFe-Ga + UAl. (8)

The strain energies of the Fe–Ga alloy and aluminum strip are
then expressed as

UFe-Ga

=
1
2

∫
v

Ti j Si j dv

=
1
2

∫
v

(
−hki j Bk + s B

i jkl Skl
)
Si j dv

=
1
2

∫
v

sB
i jklψSkl(x, y, z)ψSi j (x, y, z)dvS2

Fe-Ga(t)

−
1
2

∫
v

hki jψBk(x, y, z)ψSi j (x, y, z)dvBmag(t)SFe-Ga(t)

=
1
2

∫
v

sB
i jklψSkl(x, y, z)ψSi j (x, y, z)

z2
W

dvW 2
mag(t)

−
1
2

∫
v

hki jψBk(x, y, z)ψSi j (x, y, z)
AmagzW

dvφmag(t)Wmag(t)

=
1
2

kFe-GaW 2
mag(t)−

1
2
θφmag(t)Wmag(t)

UAl

=
1
2

kAlW 2
mag(t) (9)

where θ is the magneto-mechanical coupling coefficient, and
kFe-Ga and kAl are the generalized spring constants of the
Fe–Ga alloy and aluminum strip, respectively.

To facilitate the understanding of the magnetic energy Um,
the magnetic fluxes appearing in the magnetostrictive energy
harvester are shown in Fig. 2. The leakage flux φleak1 is the
magnetic flux leaking from the Fe–Ga alloy without passing
through the pickup coil. The other leakage flux φleak2 is the
magnetic flux generated from the pickup coil which does
not pass through the Fe–Ga alloy. In this case, the magnetic
flux passing through both the Fe–Ga alloy and pickup coil is
represented as φmag − φleak1. The combined reluctances corre-
sponding to the magnetic fluxes φmag −φleak1, φleak1, and φleak2
are defined as R, R1, and R2, respectively. The reluctance
of the magnet at the fixed end is included in the combined
reluctance R. Defining the magnetic energy of the Fe–Ga
and the reluctance of the tip magnet as Um,Fe-Ga and Rmag,
respectively, the magnetic energy Um of the magnetostrictive
energy harvester is represented as follows:

Um = Um,Fe-Ga +
1
2
R

(
φmag(t)− φleak1(t)

)2

+
1
2
R1φ

2
leak1(t)+

1
2
R2φ

2
leak2(t)+

1
2
Rmagφ

2
mag(t) (10)

where

UFe-Ga =
1
2

∫
v

Hi Bi dv

=
1
2

∫
v

(
νS

i j B j − hi jk S jk
)
Bi dv

=
1
2

∫
v

νS
i jψB j (x, y, z)ψBi (x, y, z)dvB2

mag(t)

−
1
2

∫
v

hi jkψBi (x, y, z)ψS jk(x, y, z)dvBmag(t)SFe-Ga(t)

=
1
2

∫
v

νS
i jψB j (x, y, z)ψBi (x, y, z)

A2
mag

dvφ2
mag(t)

−
1
2

∫
v

hi jkψBi (x, y, z)ψS jk(x, y, z)
AmagzW

dvφmag(t)Wmag(t)

=
1
2
RFe-Gaφ

2
mag(t)−

1
2
θφmag(t)Wmag(t) (11)

where RFe–Ga is the generalized reluctance of the Fe–Ga alloy.
The energy of the pickup coil is given as follows [15]:

Kcoil = N
(
φmag(t)− φleak1(t)+ φleak2(t)

)
q̇(t) (12)

where N and q are the number of turns in the pickup coil and
the electric charge flowing in the pickup coil, respectively.
Fig. 3 shows the small-signal magnetic circuit diagram of
the magnetostrictive energy harvester. In small-signal analysis,
the magnetomotive forces of the magnets are canceled out
with the static components of the magnetic fluxes by the super-
position theorem, thus they are omitted from the magnetic
circuit diagram.

The energies in the electric circuit vary depending on
whether it is series- or parallel-resonant. This section takes the
series-resonant configuration as an example. In this case, the
energies of an inductor and a capacitor are given as follows:

Ke =
1
2

Lq̇2(t)

Ue =
1

2C
q2(t) (13)
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Fig. 2. Magnetic fluxes appearing in magnetostrictive energy harvester.

Fig. 3. Small-signal magnetic circuit diagram of magnetostrictive energy
harvester.

where L and C are the external inductance and capacitance,
respectively. In this study, there is no additional inductor in
the circuit, and thus this inductance L is zero. However, for
generality, this study considers the additional inductance.

The damping elements of the magnetostrictive energy har-
vester in this study are the primary damping with damping
coefficient c, resistance Rcoil of the pickup coil, and load
resistance R. Thus, the Rayleigh’s dissipation function D is
given as follows:

D =
1
2

cẆ 2
mag(t)+

1
2

Rcoilq̇2(t)+
1
2

Rq̇2(t). (14)

From (5)–(14), the governing equations of the magnetostrictive
energy harvester can be obtained as follows:

d
dt

(
∂L

∂Ẇ mag(t)

)
−

∂L
∂Wmag(t)

+
∂D

∂Ẇ mag(t)
= mẄ mag(t)+ cẆ mag(t)+ (kFe-Ga + kAl)Wmag(t)

− θφmag(t) = 0
d
dt

(
∂L

∂φ̇mag(t)

)
−

∂L
∂φmag(t)

+
∂D

∂φ̇mag(t)
= −θWmag(t)+

(
RFe-Ga +Rmag

)
φmag(t)

+R
(
φmag(t)− φleak1(t)

)
−Nq̇(t) = 0

d
dt

(
∂L

∂φ̇leak1(t)

)
−

∂L
∂φleak1(t)

+
∂D

∂φ̇leak1(t)
= −R

(
φmag(t)− φleak1(t)

)
+R1φleak1(t)+ Nq̇(t) = 0

d
dt

(
∂L

∂φ̇leak2(t)

)
−

∂L
∂φleak2(t)

+
∂D

∂φ̇leak2(t)
= R2φleak2(t)−Nq̇(t) = 0

d
dt

(
∂L
∂ q̇

)
−
∂L
∂q

+
∂D
∂q̇

= N
(
φ̇mag(t)− φ̇leak1(t)+ φ̇leak2(t)

)
+ Lq̈(t)+ (Rcoil + R)q̇(t)+

1
C

q(t) = 0. (15)

Eliminating the leakage magnetic fluxes φleak1 and φleak2
from (15) yields the following system of equations:

mẄ mag(t)+ cẆ mag(t)+ (kFe-Ga + kAl)Wmag(t)

− θφmag(t) = 0[
RFe-Ga +Rmag +R

(
1 −

R
R+R1

)]
φmag(t)

− θWmag(t)−N
(

1 −
R

R+R1

)
q̇(t) = 0

N
(

1 −
R

R+R1

)
φ̇mag(t)+

(
L +

N 2

R+R1
+

N 2

R2

)
q̈(t)

+ (Rcoil + R)q̇(t)+
1
C

q(t) = 0. (16)

For the parallel-resonant configuration, the governing equa-
tions are obtained as follows:

mẄ mag(t)+ cẆ mag(t)+ (kFe-Ga + kAl)Wmag(t)

− θφmag(t) = 0[
RFe-Ga +Rmag +R

(
1 −

R
R+R1

)]
φmag(t)

− θWmag(t)−N
(

1 −
R

R+R1

)
q̇(t) = 0

N
(

1 −
R

R+R1

)
φ̇mag(t)+

(
L +

N 2

R+R1
+

N 2

R2

)
q̈(t)

+ Rcoilq̇(t)+
1
C
(q(t)− qR(t)) = 0

−
1
C
(q(t)− qR(t))+ Rq̇R(t) = 0 (17)

where qR is the charge flowing through the resistive load.
Equations (16) and (17) take the same form as the governing

equations for the model without considering magnetic flux
leakage [15], and it can be seen that the leakage flux from
the magnetostrictive material reduces the effective number
of turns in the pickup coil, while the magnetic flux leakage
from the pickup coil increases the inductance of the electric
circuit. Fig. 4(a) and (b) shows the equivalent mechanical
models of the magnetostrictive energy harvesters connected
to a series-resonant circuit and a parallel-resonant circuit,
respectively. Henceforth, the following substitutions are made
for simplicity:

k ′
= kFe-Ga + kAl

R′
= RFe-Ga +Rmag +R

(
1 −

R
R+R1

)
N ′

= N
(

1 −
R

R+R1

)
L ′

= L +
N 2

R+R1
+

N 2

R2
. (18)

III. ENERGY-HARVESTING EFFICIENCY OF
MAGNETOSTRICTIVE ENERGY HARVESTER

This section demonstrates the method to derive the
energy-harvesting efficiency of the magnetostrictive energy
harvester connected to a resonant circuit.
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Fig. 4. Equivalent mechanical model of magnetostrictive energy harvester
connected to a resonant circuit. (a) Series-resonant circuit. (b) Parallel-
resonant circuit.

A. Series-Resonant Configuration

The dissipated energy Q from the load resistance R
can be considered as harvestable energy [11], thus the
energy-harvesting efficiency E can be defined as follows:

E =
Q

Qin
(19)

where

Q =

∫
∞

0
q̇2(t)Rdt

Qin =
1
2

mẆ 2
mag(0)+

1
2

(
k ′

−
θ2

R′

)
W 2

mag(0)

+
1
2

(
L ′

+
N ′2

R′

)
q̇2(0)+

1
2C

q2(0). (20)

In (19), Qin is the initial state of energy given by impact.
For energy-harvesting purposes, this study considers the
energy-harvesting efficiency with respect to a given mechani-
cal impact energy. Therefore, there is no energy in the inductor
and capacitor at the initial state of the harvester (q̇(0) =

q(0) = 0).
The current q̇ appearing in (20) can be obtained by solving

the eigenvalue problem of (16) which can be represented as a
matrix equation as

Ax = 0 (21)

where

A =

 mλ2
+ cλ + k ′ θ 0
θ R′

−N ′λ

0 N ′λ L ′λ2
+ (Rcoil + R)λ +

1
C


x =

[
Wmag(t) φmag(t) q(t)

]T (22)

where λ is the complex eigenvalue. The complex eigenval-
ues can be obtained by solving the following characteristic
equation:

det A = a0λ
4
+ a1λ

3
+ a2λ

2
+ a3λ + a4 = 0 (23)

where

a0 = L ′R′m + N ′2m

a1 = L ′R′c + N ′2c + RR′m + RcoilR′m

a2 = L ′R′k ′
− L ′θ2

+ N ′2k ′
+ RR′c + RcoilR′c +

R′m
C

a3 = RR′k ′
−Rθ2

+ RcoilR′k ′
− Rcoilθ

2
+
R′c
C

a4 =
R′k ′

C
−
θ2

C
. (24)

Using the complex eigenvalues λ1, λ2, λ3, and λ4, the current
q̇ can be represented as follows:

q̇(t) = X1λ1 exp(λ1t)+ X2λ2 exp(λ2t)

+ X3λ3 exp(λ3t)+ X4λ4 exp(λ4t) (25)

where

X1 =
N ′θ

L ′R′ + N ′2

λ1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
Ẇ mag(0)

−
N ′θC
R′

λ1λ2λ3λ4

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
Wmag(0)

X2 =
N ′θ

L ′R′ + N ′2

λ2

(λ2 − λ3)(λ2 − λ4)(λ2 − λ1)
Ẇ mag(0)

−
N ′θC
R′

λ1λ2λ3λ4

(λ2 − λ3)(λ2 − λ4)(λ2 − λ1)
Wmag(0)

X3 =
N ′θ

L ′R′ + N ′2

λ3

(λ3 − λ4)(λ3 − λ1)(λ3 − λ2)
Ẇ mag(0)

−
N ′θC
R′

λ1λ2λ3λ4

(λ3 − λ4)(λ3 − λ1)(λ3 − λ2)
Wmag(0)

X4 =
N ′θ

L ′R′ + N ′2

λ4

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
Ẇ mag(0)

−
N ′θC
R′

λ1λ2λ3λ4

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
Wmag(0). (26)

The harvestable energy Q from the series-resonant circuit can
be obtained as follows:

Q =

∫
∞

0
q̇2 Rdt

=
RN ′2θ2

2R2
(
L ′R′ + N ′2

)2

b3

b2
1b4 − b1b2b3 + b2

3
Ẇ 2

mag(0)

+
RN ′2θ2C2

2R′2

b1b2
4

b2
1b4 − b1b2b3 + b2

3
W 2

mag(0) (27)
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where b1, b2, b3, and b4 are the elementary symmetric poly-
nomials

b1 = λ1 + λ2 + λ3 + λ4

b2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

b3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

b4 = λ1λ2λ3λ4. (28)

Equations (28) can be linked with (24) by Vieta’s formulas

b1 = −
a1

a0

b2 =
a2

a0

b3 = −
a3

a0

b4 =
a4

a0
. (29)

From (27) and (29), the harvestable energy Q can finally be
obtained as

Q =
1
2

m
NumK

Den
Ẇ 2

mag(0)+
1
2

(
k ′

−
θ2

R′

)
NumU

Den
W 2

mag(0)

(30)

where

NumK = κν3ζ1ζ2 + κν2ζ 2
2 + κνζcoilζ2

NumU = κνζ1ζ2 + κν2ζ 2
2 + κνζcoilζ2

Den = 4 ν4ζ1
2ζ2

2
+ ν5 ζ1 ζ2 + 4 ν3ζ1

3 ζ2

+ 8 ν3 ζ1
2ζcoil ζ2 + 4 ν3ζ1ζ2

3
+ κ ν3ζ1 ζ2

+ ν4ζ1 ζcoil + 4 ν2 ζ1
3ζcoil + 4 ν2ζ1

2ζ2
2

+ 4 ν2ζ1
2ζcoil

2
+ 12 ν2ζ1 ζcoil ζ2

2
+ κν2ζ1

2

+ κ ν2ζ1 ζcoil + κν2ζ2
2
− 2ν3 ζ1 ζ2

+ 8 ν ζ1
2ζcoil ζ2 + 12 ν ζ1 ζcoil

2ζ2 + κ ν ζ1 ζ2

+ 2 κν ζcoil ζ2 − 2 ν2 ζ1 ζcoil + 4 ζ1
2ζcoil

2

+ 4 ζ1ζcoil
3
+ κ ζ1 ζcoil + κζcoil

2
+ ν ζ1 ζ2 + ζ1ζcoil.

(31)

The non-dimensional parameters in (31) are defined as follows:
Electromagnetic-mechanical spring constant ratio

κ =
N ′2θ2

R′2
(

k ′ −
θ2

R′

)(
L ′ +

N ′2

R′

)
Natural frequency ratio: ν =

ω2

ω1

Primary damping ratio: ζ1 =
c

2mω1

Damping ratio of coil resistance: ζcoil =
Rcoil

2
(

L ′ +
N ′2

R′

)
ω1

Damping ratio of load resistance: ζ2 =
R

2
(

L ′ +
N ′2

R′

)
ω2

(32)

where ω1 and ω2 are the undamped natural frequency of the
mechanical-magnetic system and the electromagnetic system,

respectively,

ω1 =

√
k ′

−
θ2

R′

m

ω2 =
1√(

L ′ +
N ′2

R′

)
C
. (33)

When impact vibration is induced only by either initial poten-
tial energy or initial kinetic energy, the energy-harvesting
efficiency (19) is represented as follows:

EU =
Q

Qin

∣∣∣∣
Ẇ mag(0)=0

=
NumU

Den

EK =
Q

Qin

∣∣∣∣
Wmag(0)=0

=
NumK

Den
(34)

where EU and EK are the energy-harvesting efficiency to
potential energy input and kinetic energy input, respectively.

B. Parallel-Resonant Configuration

In the parallel-resonant circuit configuration, output energy
Q and input energy Qin are given as follows:

Q =

∫
∞

0
q̇2

R(t)Rdt

Qin =
1
2

mẆ 2
mag(0)+

1
2

(
k ′

−
θ2

R′

)
W 2

mag(0)

+
1
2

(
L ′

+
N ′2

R′

)
q̇2(0)+

1
2C
(q(0)− qR(0))2. (35)

In the initial state, there is no energy in the inductor and
capacitor of the harvester (q̇(0) = q(0) − qR(0) = 0).
The current q̇R can be obtained by solving the eigenvalue
problem (21) with

A

=


mλ2

+ cλ + k ′ θ 0 0
θ R′

− N ′λ 0

0 N ′λ L ′λ2
+ Rcoilλ +

1
C

−
1
C

0 0 −
1
C

Rλ +
1
C


x

=
[

Wmag(t) φmag(t) q(t) qR(t)
]T
. (36)

The characteristic equation of (36) is given as

det A = a0λ
4
+ a1λ

3
+ a2λ

2
+ a3λ + a4 = 0 (37)

where

a0 = L ′ RR′m + N ′2 Rm

a1 = L ′ RR′c + N ′2 Rc + R RcoilR′m +
L ′R′m

C
+

N ′2m
C

a2 = L ′ RR′k ′
− L ′ Rθ2

+ N ′2 Rk ′
+ R RcoilR′c +

L ′R′c
C

+
N ′2c

C
+

RR′m
C

+
RcoilR′m

C

a3 = R RcoilR′k ′
−R Rcoilθ

2
+

L ′R′k ′

C
−

L ′θ2

C
+

N ′2k ′

C
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+
RR′c

C
+

RcoilRc
C

a4 =
RR′k ′

C
−

Rθ2

C
+

RcoilR′k ′

C
−

Rcoilθ
2

C
. (38)

Using the complex eigenvalues λ1, λ2, λ3, and λ4, the current
q̇R can be represented as follows:

q̇R(t) = X1λ1 exp(λ1t)+ X2λ2 exp(λ2t)

+ X3λ3 exp(λ3t)+ X4λ4 exp(λ4t) (39)

where

X1

=
N ′θ

RC
(
L ′R′ + N ′2

) 1
(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)

Ẇ mag(0)

−
N ′θ

R′(Rcoil + R)
λ2λ3λ4

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
Wmag(0)

X2

=
N ′θ

RC
(
L ′R′ + N ′2

) 1
(λ2 − λ3)(λ2 − λ4)(λ2 − λ1)

Ẇ mag(0)

−
N ′θ

R′(Rcoil + R)
λ1λ3λ4

(λ2 − λ3)(λ2 − λ4)(λ2 − λ1)
Wmag(0)

X3

=
N ′θ

RC
(
L ′R′ + N ′2

) 1
(λ3 − λ4)(λ3 − λ1)(λ3 − λ2)

Ẇ mag(0)

−
N ′θ

R′(Rcoil + R)
λ1λ2λ4

(λ3 − λ4)(λ3 − λ1)(λ3 − λ2)
Wmag(0)

X4

=
N ′θ

RC
(
L ′R′ + N ′2

) 1
(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

Ẇ mag(0)

−
N ′θ

R′(Rcoil + R)
λ1λ2λ3

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
Wmag(0).

(40)

The harvestable energy Q from the parallel-resonant circuit
can be obtained as follows:

Q =

∫
∞

0
q̇2

R Rdt

=
N ′2θ2

2RC2
(
L ′R′ + N ′2

)2

b1

b2
1b4 − b1b2b3 + b2

3
Ẇ 2

mag(0)

+
RN ′2θ2

2R′2(Rcoil + R)2
b4(b1b2 − b3)

b2
1b4 − b1b2b3 + b2

3
W 2

mag(0). (41)

Using Vieta’s formulas (29) to (41), the harvestable
energy (30) and energy efficiencies (34) for the parallel-
resonant circuit configuration are obtained in which (31) is
replaced with

NumK = 4 κ ν4ζcoilζ2
3
+ κ ν5ζ2

2
+ 4 κ ν3ζ1 ζcoilζ2

2

+ 4 κ ν3ζcoil
2ζ2

2
+ κ ν4ζ1 ζ2 + κ ν4 ζcoilζ2

NumU = 4 κ ν4ζ1 ζ2
3
+ 4 κ ν4ζcoilζ2

3
+ κ ν5ζ2

2

+ 4 κ ν3ζ1
2ζ2

2
+ 8 κ ν3ζ1ζcoil ζ2

2

+ 4 κ ν3ζcoil
2ζ2

2
+ κ ν4 ζcoilζ2 + 4 κ ν2ζ1

2 ζcoilζ2

+ 4 κ ν2ζ1 ζcoil
2 ζ2 + κ2ν2ζ1 ζ2 + κ2ν2 ζcoilζ2

+ κ ν2ζ1 ζ2

Den = 64 ν3ζ1
2ζcoil

2ζ2
4
+ 64 ν3ζ1 ζcoil

3ζ2
4

+ 16 κ ν3ζ1 ζcoilζ2
4
+ 16 κ ν3ζcoil

2ζ2
4

+ 32 ν4ζ1
2ζcoilζ2

3
+ 48 ν4ζ1 ζcoil

2ζ2
3

+ 64 ν2ζ1
3ζcoil

2ζ2
3
+ 128 ν2ζ1

2ζcoil
3ζ2

3

+ 64 ν2ζ1 ζcoil
4ζ2

3
+ 4 κ ν4ζ1 ζ2

3

+ 8 κ ν4ζcoilζ2
3
+ 16 κ ν2ζ1

2ζcoilζ2
3

+ 32 κ ν2ζ1 ζcoil
2ζ2

3
+ 16 κ ν2ζcoil

3ζ2
3

+ 4 ν5ζ1
2ζ2

2
+ 12 ν5ζ1 ζcoilζ2

2

+ 32 ν3ζ1
3ζcoilζ2

2
+ 64 ν3ζ1

2ζcoil
2ζ2

2

+ 16 ν3ζ1 ζcoilζ2
4
+ 48 ν3ζ1 ζcoil

3ζ2
2

+ 64 ν ζ1
3ζcoil

3ζ2
2
+ 64 ν ζ1

2ζcoil
4ζ2

2

+ κ ν5ζ2
2
+ 4 κ ν3ζ1

2ζ2
2
+ 8 κ ν3ζ1 ζcoilζ2

2

+ 8 κ ν3ζcoil
2ζ2

2
+ 32 κ ν ζ1

2ζcoil
2ζ2

2

+ 32 κ ν ζ1 ζcoil
3ζ2

2
+ ν6ζ1 ζ2 + 4 ν4ζ1

3ζ2

+ 8 ν4ζ1
2 ζcoilζ2 + 4 ν4ζ1 ζ2

3
+ 12 ν4ζ1 ζcoil

2 ζ2

+ 32 ν2ζ1
3 ζcoil

2ζ2 + 16 ν2ζ1
2ζcoilζ2

3

+ 32 ν2ζ1
2 ζcoil

3ζ2 + 16 ν2ζ1 ζcoil
2ζ2

3

+ 4 κ2ν ζ1 ζcoilζ2
2
+ 4 κ2ν ζcoil

2ζ2
2

+ κ ν4 ζcoilζ2 + 12 κ ν2ζ1
2 ζcoilζ2

+ 12 κ ν2ζ1 ζcoil
2 ζ2 + ν5ζ1 ζcoil + 4 ν3ζ1

3ζcoil

+ 4 ν3ζ1
2ζ2

2
+ 4 ν3ζ1

2ζcoil
2
− 4 ν3ζ1 ζcoilζ2

2

+ 32 ν ζ1
2ζcoil

2ζ2
2
+ 16 ν ζ1 ζcoil

3ζ2
2

+ κ2ν2ζ1 ζ2 + κ2ν2 ζcoilζ2 + κ ν3ζ1
2

+ κ ν3ζ1 ζcoil + 8 κ ν ζ1 ζcoilζ2
2
+ 4 κ ν ζcoil

2ζ2
2

− 2 ν4ζ1 ζ2 + 8 ν2ζ1
2 ζcoilζ2 − 4 ν2ζ1 ζcoil

2 ζ2

+ 16 ζ1
2 ζcoil

3ζ2 + 16 ζ1 ζcoil
4 ζ2 + 2 κ ν2ζ1 ζ2

+ κ ν2 ζcoilζ2 + 4 κ ζ1 ζcoil
2 ζ2 + 4 κ ζcoil

3 ζ2

− 2 ν3ζ1 ζcoil + 4 ν ζ1
2ζcoil

2
+ 4 ν ζ1ζcoil ζ2

2

+ 4 ν ζ1 ζcoil
3
+ κ ν ζ1 ζcoil + κ ν ζcoil

2

+ ν2ζ1 ζ2 + 4 ζ1 ζcoil
2 ζ2 + ν ζ1 ζcoil (42)

where the damping ratio ζ2opt of the load resistance is redefined
as

ζ2 =

(
L ′

+
N ′2

R′

)
ω2

2R
(43)

for the parallel-resonant circuit.

IV. EFFICIENCY MAXIMIZATION

Among the non-dimensional parameters present in (32),
the larger the κ is, the higher the energy-harvesting effi-
ciencies become as shown in (34), while larger values of
ζ1 and ζcoil result in lower efficiencies. The remaining two
non-dimensional parameters, natural frequency ratio ν and
damping ratio of the load resistance ζ2, have optimal values for
maximizing the energy-harvesting efficiency. These optimal
parameters can be obtained by solving the following system
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Fig. 5. Optimal parameters and maximized energy-harvesting efficiency to
kinetic energy (solid line) and potential energy (dashed line) of magnetostric-
tive energy harvester connected to a series-resonant circuit with a variation
of primary damping ratio ζ1 (ζcoil = 0.4656). (a) Optimal natural frequency.
(b) Optimal damping ratio of load resistance. (c) Maximized energy-harvesting
efficiency.

of equations:

∂E
∂ν

= 0

Fig. 6. Optimal parameters and maximized energy-harvesting efficiency
to kinetic energy (solid line) and potential energy (dashed line) of mag-
netostrictive energy harvester connected to a series-resonant circuit with a
variation of damping ratio ζcoil of coil resistance (ζ1 = 0.0072). (a) Optimal
natural frequency. (b) Optimal damping ratio of load resistance. (c) Maximized
energy-harvesting efficiency.

∂E
∂ζ2

= 0. (44)
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Fig. 7. Optimal parameters and maximized energy-harvesting efficiency to
kinetic energy (solid line) and potential energy (dashed line) of magnetostric-
tive energy harvester connected to a parallel-resonant circuit with a variation
of primary damping ratio ζ1 (ζcoil = 0.4656). (a) Optimal natural frequency.
(b) Optimal damping ratio of load resistance. (c) Maximized energy-harvesting
efficiency.

A. Maximized Efficiency of Magnetostrictive Energy Harvester
With a Series-Resonant Circuit

Figs. 5 and 6 show the (a) optimal natural frequency ratio
νopt, (b) optimal damping ratio ζ2opt of the load resistance,

Fig. 8. Optimal parameters and maximized energy-harvesting efficiency
to kinetic energy (solid line) and potential energy (dashed line) of magne-
tostrictive energy harvester connected to a parallel-resonant circuit with a
variation of damping ratio ζcoil of coil resistance (ζ1 = 0.0072). (a) Optimal
natural frequency. (b) Optimal damping ratio of load resistance. (c) Maximized
energy-harvesting efficiency.

and (c) maximized energy-harvesting efficiency of the mag-
netostrictive energy harvester connected to a series-resonant
circuit with a variation of the primary damping ratio ζ1 and the
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damping ratio ζcoil of the coil resistance, respectively. While
the optimal parameters to maximize the energy-harvesting effi-
ciency to potential energy are solved numerically, the optimal
parameters to maximize the energy-harvesting efficiency to
kinetic energy can be obtained in the form of simple algebraic
solutions as follows:

νopt = 1

ζ2opt =

√
ζ1(ζ1 + ζcoil)(4ζ1ζcoil + κ)

2ζ1
. (45)

B. Maximized Efficiency of Magnetostrictive Energy Harvester
With Parallel-Resonant Circuit

Figs. 7 and 8 show the numerically solved (a) optimal
natural frequency ratio νopt, (b) optimal damping ratio ζ2opt
of the load resistance, and (c) maximized energy-harvesting
efficiency of the magnetostrictive energy harvester connected
to a parallel-resonant circuit with a variation of the primary
damping ratio ζ1 and the damping ratio ζcoil of the coil
resistance, respectively. Comparing the series- and parallel-
resonant configurations, there is almost no difference between
their maximized energy-harvesting efficiencies while their
optimal design parameters take substantially different values.
In addition, in each configuration, the optimal design param-
eters for kinetic and potential energy input are approximately
equal for small κ and deviate from each other as κ increases.
This means that, in series configuration, the algebraic optimal
parameters (45) for kinetic energy input can approximately
optimize the harvester even when the free vibration is induced
by potential energy input. Therefore, even though the two
configurations do not significantly differ in their harvestable
energy, the series configuration is superior to the parallel
configuration for the reason that the optimal design parameters
of the series configuration are available as simple algebraic
solutions.

V. EXPERIMENTAL PARAMETER IDENTIFICATION

Fig. 9 shows the magnetostrictive energy harvester designed
and built for experiments. The cantilever is composed of a
1.0 × 6.0 × 60 mm Fe–Ga strip and an aluminum strip of
equal dimensions laminated together by superglue. A pickup
coil is built from enameled copper wire with a diameter
of 0.10 mm and is wound around a plastic bobbin with a
thickness of 1.0 mm. The number of turns in the coil and the
resistance of the coil are 2000 and 142 �, respectively. A 10-
mm cubic neodymium magnet is mounted 6 mm from the free
end of the cantilever. A 6.0-mm cubic neodymium magnet is
attached to the fixed end of the cantilever and clamped together
with the cantilever by a vise.

As seen from (32), (33), and (43), to obtain the analytical
energy-harvesting efficiency with known Rcoil, R, and C , the
natural frequency ω1 and damping ratio ζ1 of the cantilever,
inductance L ′

+ (N ′2/R′), and electromagnetic-mechanical
spring constant ratio κ need to be identified from experiments.
The natural frequency ω1 and damping ratio ζ1 of the can-
tilever were measured by the free vibration experiment shown
in Fig. 10(a). A 100 g weight was hung on the magnet at

Fig. 9. Magnetostrictive energy harvester for experiments.

Fig. 10. Free vibration experiment to measure natural frequency ω1 and
damping ratio ζ1 of cantilever. (a) Experimental setup. (b) Open-circuit free
voltage response.

the free end by a copper wire with a diameter of 0.05 mm.
When the copper wire breaks, free vibration is induced due to
the potential energy given by the weight. The induced voltage
between the pickup coil was measured by a data acquisition
device (NI USB-6251 from National Instruments). Fig. 10(b)
shows the obtained open-circuit free voltage response. From
the period of the damped oscillation and the logarithmic decre-
ment, ω1 = 1502 rad s−1 and ζ1 = 0.0072 were calculated,
respectively.
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Fig. 11. Frequency response measurements to identify inductance L ′
+

(N ′2/R′). (a) Experimental setup. (b) Circuit diagram. (c) Frequency
responses of voltage at resistive load.

The inductance L ′
+ (N ′2/R′) was identified from fre-

quency response measurements. Fig. 11(a) and (b) shows
the experimental setup and its circuit diagram, respectively.
A series-resonant circuit was made by connecting a resistive
load (R = 99.4 �), a capacitor (C = 1.00 µF), and an ac
voltage supply with 5 V to the pickup coil of the magne-
tostrictive energy harvester. In this series-resonant circuit, the
amplitude of the voltage VR at the load resistance is given

Fig. 12. Energy-harvesting efficiency measurement to estimate
electromagnetic-mechanical spring constant ratio κ . (a) Free voltage response.
(b) Analytical relationship between energy-harvesting efficiency EU and
electromagnetic-mechanical spring constant ratio κ based on (34).

as follows:

|VR| =
R√[

1
ωC −

(
L ′ +

N ′2

R′

)
ω

]2
+ (Rcoil + R)2

|V | (46)

where V and ω are the voltage from the ac voltage supply
and its frequency. From (46), it can be seen that regardless
of the resistance values of the pickup coil and resistive load,
the resonant frequency ωn of the series-resonant circuit is
determined by the values of the inductance and capacitance

ωn =
1√(

L ′ +
N ′2

R′

)
C
. (47)

Therefore, the inductance can be obtained by measuring
the resonant frequency ωn. Fig. 11(c) shows the two types
of frequency responses of the voltage VR at the resistive
load. The frequency responses were measured for two cases:
One with the tip of the cantilever mechanically fixed to
avoid the interaction with mechanical vibration, and the other
without fixing the tip. Even though there is a clear difference
between the two frequency responses around the resonance of
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Fig. 13. Changes in energy-harvesting efficiency of magnetostrictive energy
harvester with a pure resistive circuit.

Fig. 14. Changes in energy-harvesting efficiency of magnetostrictive energy
harvester with a series-resonant circuit. (a) Variation in load resistance R
(C = 4.50 × 10−6 F. (b) Variation in capacitance C (R = 229 �).

the cantilever, both frequency responses show the electrical
resonance at ωn = 3142 rad s−1. Therefore, the inductance
of the magnetostrictive energy harvester can be estimated as
follows:

L ′
+

N ′2

R′
=

1
ω2

nC
= 0.101 H. (48)

Fig. 15. Changes in energy-harvesting efficiency of magnetostrictive energy
harvester with a parallel-resonant circuit. (a) Variation in load resistance R
(C = 1.35 × 10−6 F. (b) Variation in capacitance C (R = 328 �).

The electromagnetic-mechanical spring constant ratio κ

was estimated from the energy-harvesting efficiency of the
magnetostrictive energy harvester connected to a pure resistive
circuit with R = 140 �. The free vibration was induced by
the 100 g weight. In the experiment, the energy-harvesting
efficiency EU was obtained as follows:

EU =

∫ τ
0

V 2
R

R dt

1
2

(
k ′ −

θ2

R′

)
W 2

mag(0)
(49)

where the spring constant is determined from the equilibrium
of the forces (

k ′
−
θ2

R′

)
Wmag(0) = Mg (50)

where M and g are the mass of the weight and gravity
acceleration, respectively. τ is the finite time until the induced
free voltage response is sufficiently damped. In this study,
the free voltage response was integrated for τ = 5 s. The
initial displacement Wmag(0) = 0.034 mm was measured by
a laser displacement sensor (optoNCDT 1900 from Micro-
Epsilon). Fig. 12(a) shows the obtained free voltage response.
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Fig. 16. Analytical and experimental free voltage responses with maximum
energy-harvesting efficiencies. (a) Resistive. (b) Series. (c) Parallel.

From (49), EU = 0.188 was calculated. The energy-harvesting
efficiency EU is a monotonically increasing function with
respect to the electromagnetic-mechanical spring constant
ratio κ , thus there is only one κ corresponding to EU = 0.188.
Fig. 12(b) shows the analytical relationship between EU and
κ based on (34). From (34), κ = 0.021 was estimated.

VI. EXPERIMENTAL VALIDATION

The experimental validation was conducted by measuring
the changes in the energy-harvesting efficiency (49) due to
variations in the load resistance R and capacitance C , and
comparing them with the analytical results. Fig. 13 shows the
changes in energy-harvesting efficiency of the magnetostrictive
energy harvester with a pure resistive circuit. The experimental
results closely match the analytical results. According to the
impedance matching, the optimal resistance value is expected
to be equal to the coil resistance Rcoil = 142 �. However, both
experimental and analytical results in this study revealed that
the optimal resistance value is greater than the coil resistance.
The analytical energy-harvesting efficiency at the optimal
resistance Ropt = 273 � is EU = 0.211. Fig. 14(a) and (b)
shows the changes in energy-harvesting efficiency of the
magnetostrictive energy harvester with a series-resonant circuit
due to variations in the load resistance R and capacitance C ,
respectively. There is a good agreement between the analytical
results and experimental results, and the analytical results can
estimate the optimal resistance and capacitance. The analytical
maximum energy-harvesting efficiency of the series-resonant
configuration is EU = 0.230. Fig. 15(a) and (b) shows the
changes in energy-harvesting efficiency of the magnetostrictive
energy harvester with a parallel-resonant circuit due to varia-
tions in the load resistance R and capacitance C , respectively.
Similar to the case of the series-resonant circuit, the analytical
results and experimental results have a good agreement. The
analytical maximum energy-harvesting efficiency of this
circuit configuration is EU = 0.231. Fig. 16(a)–(c) shows
the analytical and experimental free voltage responses with
the maximum energy-harvesting efficiencies. The analytical
responses were calculated based on (25) and (39). In addition
to the voltage amplitudes, their dampings show good agree-
ment in all the configurations. Especially in the series-resonant
configuration (Fig. 16(b)), the analytical response accurately
produced the voltage drop in the initial wave of the response,
which also strengthen the validity of the proposed analytical
method.

VII. CONCLUSION

This article presented a method to maximize the
energy-harvesting efficiency of the magnetostrictive energy
harvester connected to a resonant circuit based on the linear
and fundamental oscillation assumptions. The leakage mag-
netic flux from the coil acts as inductance, while the leakage
flux from the magnetostrictive material acts to reduce the
effective number of turns in the coil. Therefore, regardless of
the presence of the magnetic flux leakage, energy-harvesting
efficiency is uniquely described with five non-dimensional
parameters that can be obtained from experiments. As a
result, the magnetic flux leakage does not need to be
considered.

This study investigated the optimal design parameters to
maximize the energy-harvesting efficiency for two cases: one
where the harvester is excited solely by kinetic energy and the
other by potential energy. From the results, it was figured out
that the optimal design parameters vary depending on the ratio
of kinetic energy and potential energy within the given energy.
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However, these optimal design parameters are approximately
equal when the electromagnetic-mechanical spring constant
ratio κ is sufficiently small.

In the magnetostrictive energy harvester connected to a
series-resonant circuit, the design parameters to maximize
the energy-harvesting efficiency to given kinetic energy were
derived in extremely simple algebraic forms while the other
optimal parameters are highly complex to be solved alge-
braically, and thus obtained numerically. It is noteworthy that
the derived optimal natural frequency ratio νopt = 1 is also
the optimal value in several criteria [18], [19] for vibration
suppression when the electromagnetic-mechanically coupled
system is utilized as a dynamic vibration absorber, also known
as a tuned mass damper.

The obtained analytical experimental results have shown
that the magnetostrictive harvester connected to a resonant
circuit is superior to the harvester connected to a pure resistive
circuit regardless of whether a series or parallel configuration
is used. The maximized energy-harvesting efficiencies of the
series- and parallel-resonant configurations were 23.0% and
23.1%, respectively. Although the analytical calculations show
a slightly higher efficiency for the parallel-resonant configu-
ration, this study concludes that the magnetostrictive energy
harvester with a series-resonant circuit is the best among the
three circuit configurations considering its energy efficiency
and simple algebraic optimal parameters.
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