
140 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 1 E E E

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

SOFTWARE ENGINEERING

The software industry is in-
undated by industry reports,
a surge in publishing, and
breakneck growth in gen-

erative artificial intelligence (GAI)
models, including the models’ use in
software engineering. Social media
platforms contain additional evi-
dence of rapid production of content
through relentless opinions and ex-
periences. Recently, Gartner stated
that AI-assisted software engineer-
ing is at the apex of the hype cycle,
the “peak of inflated expectations,”
estimating two to five years to reach
productivity for production of via-
ble software.1 Clearly, the software
engineering domain is in the early
stages of experimentation with and
adoption of AI-assisted software en-
gineering tools.

This adoption marks a significant
shift from traditional human-centric

teams to integrated environments in which GAI does not
merely support but actively participates in the development

Infusing Artificial
Intelligence
Into Software
Engineering and
the DevSecOps
Continuum
Tracy (Trac) Bannon , MITRE Corporation

The emergence of new artificial intelligence (AI)

technologies, in particular, generative AI (GAI),

shows groundbreaking potential, but there are

challenges and limitations when evaluating GAI’s

applicability for software engineering.

SOFTWARE ENGINEERING

Digital Object Identifier 10.1109/MC.2024.3423108
Date of current version: 27 August 2024

https://orcid.org/0009-0002-7140-1664

EDITOR PHIL LAPLANTE
IEEE Fellow;

plaplante@psu.edu

 S E P T E M B E R 2 0 2 4 141

process. Today’s modern software prac-
tices have been optimized for humans
and are not yet fully equipped for the
addition of GAI tooling.

I lead a collaborative research effort to
address the emerging barriers to the adop-
tion of GAI tools by development teams,
understand the implications of team
composition when GAI is introduced, and
envision AI-driven software delivery plat-
forms of the future (Figure 1).

Before the software industry can
fully harness the potential of GAI in
software engineering, we must first es-
tablish a baseline of current practices.
This article explores the present state
of the industry by examining scholarly
publications and industry reports and
preprints and summarizing the experi-
ences of leading practitioners. By gain-
ing a clear picture of today’s practices,
practitioners can identify the gaps and
opportunities that pave the way for
effective integration and utilization
of GAI in software development. This
foundational understanding is crucial
to developing strategies that will drive
the successful adoption and optimiza-
tion of GAI tools, ultimately transform-
ing software engineering practices.

DRIVING THE HYPE:
ACCELERATED PUBLISHING
Stanford University reports that the
number of AI-related publications2
tripled from 2010 to 2022. In the late
fall of 2022, OpenAI released ChatGPT
to a broad user base, triggering a rapid

increase in experimentation and pub-
lishing. My team wanted to investi-
gate the rate of publication changes to
understand how fast this discipline is
accelerating.

I began by evaluating the counts of
scholarly and preprint publishing of
relevant articles. Since 2022, the pub-
lication of AI-related material, espe-
cially of preprint content, has acceler-
ated constantly. To get an initial sense
of the rate of publishing acceleration,
I queried arXiv.org, an open access re-
pository of preprint scholarly papers. In
2022, a total of 19 articles were submit-
ted to arXiv.org in the computer science
classification that included the term
“software engineering” and a least
one of the following “generative AI” or
“GPT” or “LLM” with “LLM” represent-
ing the technical abbreviation of large
language model. 2023 saw publication

of 312 such articles. In the first four
months of 2024, the number grew to
462 submitted (Table 1).

Data scientists are rapidly releas-
ing GAI in addition to publications.2
The release of 149 foundational mod-
els in 2023 marked an increase of over
100% from 2022. Regardless of a prac-
titioner’s career level or technical role,
the pace of information and model
publishing make it difficult to keep
abreast of new research, techniques,
discoveries, or models impacting orga-
nizational plans for experimentation.

THE EARLY DAYS OF GAI-
ASSISTED SOFTWARE
ENGINEERING
Software engineering teams have used
traditional AI and machine learning
(ML) in software engineering for sev-
eral decades. For example, they have
employed traditional AI techniques,
such as expert systems and rules-
based solutions, to improve code accu-
racy and analyze requirements since
at least the 1980s. Applied usage of AI
has been researched and studied for
decades pre-GPT,3 including the use of
multiagent and agent-oriented meth-
odologies. The practical application of
GAI, however, is a more recent devel-
opment, largely driven by the 2022 re-
lease of OpenAI’s ChatGPT.

Models tailored to software engi-
neering, such as Codex, PolyCoder, and
CodeBERT, are relatively new, with many
foundational models being designed

FIGURE 1. This image was generated by
me, the author, using the DALL-E model.

TABLE 1. AI-related scholarly papers posted to arXiv.org in the last three years.

Query
2022–
present

Calendar
year 2022

Calendar
year 2023

January–April
2024

Calendar
year 2024,
estimated

order: -announced_date_first; size: 50;
date_range: from 2022-01-01 to 2024-04-30;
classification: Computer Science (cs); include_
cross_list: True; terms: AND all=”Software
Engineering”; AND all=”Generative AI” OR GPT
OR LLM

793 19 312 492 1,384

142 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

and new techniques being explored to
improve the usability, repeatability, and
trustworthiness of GAI. Clearly, GAI-as-
sisted software engineering is only in its
infancy.

Preliminary findings from the
team’s systematic literature review of
published and preprint articles from
2022 through May 2024, augmented by
relevant industry studies, highlight that
the current state of the practice focuses
on evaluation of and experimentation
with individual software engineering
and software development lifecycle

(SDLC) tasks, such as code completion or
test case generation. Given the nature of
GAI to lack predictability, usability, and
trustworthiness, current industry and
academic interest focuses heavily on
addressing the accuracy, precision, pre-
dictability, and testability required for
software engineering.

Current usage techniques of GAI to
assist with software engineering fall
into three categories: via direct prompt-
ing of a model, integration of GAI into a
stand-alone software engineering tool,
or, more recently, incorporation of GAI
chatbots into the integrated develop-
ment environment (IDE). The landscape
becomes additionally complex given
the two predominant and opposing
techniques to access LLMs: externally
hosted subscription-based tool-as-a-ser-
vice solutions, such as Microsoft GitHub
Copilot, or self-hosted solutions. Both
access methods carry their own secu-
rity and operational challenges.

In May 2023, Stack Overflow,4 the on-
line collaborative question-and-answer
platform, conducted an industry survey
of 90,000 developers. The report high-
lighted the individual SDLC tasks in
which today’s software engineers and
developers have begun to leverage GAI
assistance. Of the survey subset of 37,700

software engineers and developers who
reported they are currently using GAI,
nearly 83% reported using it to assist
with writing code, 49% reported getting
help on debugging, and 34% reported us-
ing GAI to assist in documenting code.

In October 2023, the MITRE Corpo-
ration engaged via social media with
a group of renowned subject matter
experts (SMEs) in modern software en-
gineering practices. MITRE collected
engagement patterns, perspectives,
and emerging techniques for applying
AI (including traditional AI, ML, and

GAI), which highlighted the many in-
dividual SDLC tasks that may benefit
from AI.

From those expert opinions, MITRE
constructed Figure 2, showing the inte-
gration of AI across the DevSecOps con-
tinuum and showcasing various AI tech-
niques being applied at different stages
of the SDLC. The central visual element
is the infinity loop representing the con-
tinuous cycle of DevOps practices: plan,
code, build, test, release, deploy, operate,
and monitor. The DevOps symbol is an-
notated with potential AI-enabled soft-
ware engineering activities.

The team refreshed this AI tool use
study in March 2024, and the findings
validated the potential for AI inte-
gration across the DevSecOps contin-
uum. Of note, however, is that these
different applications of AI are at the
individual task level. The integration
of more tools into the SDLC adds both
complexity and promise. As of March
2024, researchers, such as Tufano et al.5
and Nghiem et al.,6 have contributed
a set of preprint articles that begin to
address more holistic concepts, such
as orchestration of AI-agents to knit
together SDLC workf lows. Figure 2
also provides a discussion mechanism
for identifying key areas in the SDLC

in which AI can have the greatest im-
pact, keeping in mind that adoption of
AI-driven practices must lead to more
secure and high-quality software. In-
dividual activities appear self-explan-
atory, and some are ready for deploy-
ment, but challenges and emerging
barriers demand further exploration.

CURRENT CHALLENGES AND
EMERGING BARRIERS
The explosion of GPT/software engi-
neering literature and models com-
plicates the extraction of valuable in-
sights. This abundance of research can
obscure significant findings and cre-
ate difficulties in identifying the most
relevant and impactful materials. I
have divided the myriad additional
challenges and emerging barriers into
four categories:

1. overfocus at the individual task
level

2. ill-defined needs and poorly
fitted measurements

3. quality and security of gener-
ated outputs

4. the absence of human/machine
recalibration.

These are discussed in the follow-
ing sections.

Overfocus at the
individual task level
The current landscape of GAI-pow-
ered tools in software engineering
emphasizes individual activities, di-
verting focus from teamwork. These
tools are often designed for use by
individual contributors, leading to
siloed operations within teams. Chal-
lenges in this category include the
following:

 › Task execution isolated to indi-
vidual contributors: GAI tools
are often designed for use by
individuals, which is known to
lead to siloed operations within
teams. This isolation hinders
collaborative efforts and high-
lights the need for tools that

The current landscape of GAI-powered tools
in software engineering emphasizes individual

activities, diverting focus from teamwork.

 S E P T E M B E R 2 0 2 4 143

support teamwork and collec-
tive problem solving. The Stack
Overflow report4 highlighted
the current focus on individual
versus organizational use and
experimentation.

 › No cohesive GAI tool integration:
The current landscape of GAI
tools in software engineering is
highly fragmented, with each
tool addressing specific tasks in
a unique way, without a unified
approach. This lack of standard-
ization complicates the seamless
integration of GAI tools into
existing workflows, reducing
overall efficiency.

 › Growing data and information
silos: The proliferation of AI
tools has led to the creation of
data silos, where information is
stored in isolated pockets within

an organization. These silos
necessitate improved data man-
agement strategies to ensure
effective sharing and utilization
of data across different teams
and tools.
 Human–GAI sessions are
not shared; they are individual
conversations. The recent in-
troduction of OpenAI ChatGPT
4o enterprise licensing has led
to a reported new capability to
define teams that may share
a GPT session. This capability
should be explored, tested, and
evaluated.

 › GAI contradicts some DevSec-
Ops principles: Traceability,
auditability, and explainability
are core principles of modern
software practices, but gener-
ated software assets lack lineage

and provenance. DevSecOps
is predicated on transparency
and repeatability of tests and
outcomes, whereas GAI often
invokes randomness, providing
users with multiple candidate
solutions. The addition of exter-
nal components, such as a rules
engine, retrieval-augmented
generation (RAG) components,
or vector stores and external
logic, increases the complexity
of the software development
toolchain.

Ill-defined needs and poorly
fitted measurements
Organizations should start by clearly
establishing the “why” and defining
how to measure success when using
GAI-empowered software engineer-
ing tools. It is essential to follow this

FIGURE 2. Infusing AI across the DevSecOps continuum.

Code
• Architectural Design
• GAI-Based Pair Programming
• Code and Unit Testing Generation
• IDE Secure Code Vulnerability
 Solution
• ML-Assisted Code Review

Selection
• Al-Assisted Code Review
• Al-Enabled Collaboration
• Suggestive Refactoring

Build
• Aggregated Merge Request

Impact Analysis
• GAI-Based Identification of

Security Vulnerabilities
• ML Algorithm Optimized

Build Times
• Al-Assisted Security

Vulnerability Detection
• Software Composition

Analysis

Test
• Natural Language Test Case
 Generation
• Test Data Generation
• Al-Enabled Test Effectiveness
 Predictions
• End-to-End Functional Test

Execution
• Intelligent Failure/Self Healing

Testing
• NLP-Based API-Based Contract

Definition
• Intelligent Test Execution

Plan
• Natural Language Requirements

Gathering
• NLP Requirements Analysis for

Inconsistency and Ambiguity
• GAI Epic and User Story Generation
• Effort Estimation Using Neural

Networks
• GAI-Assisted Threat Model Policy

Identification

Release
• Compliance Validation
• Reinforced Learning-Based

Models Generate Deployment
Scripts

• Al-Enabled Failure Analysis
• Release Risk/Success Prediction
• AI-Driven Cl/CD Workflow

Automation

Deploy
• Dynamic Environment

Provisioning and
Deployment Optimization

• Real-Time Rollback
• Al-Assisted Log

Aggregation
• ML Anomaly Detection
• GAI Deployment Scenario
 Simulations

AIOps Engines
Provide Correlation
and Predictive
Monitoring

Security
Is Infused into All
Actions and Activities

Monitor
• Event Correlation
• False Alarm Filtering
• Self-Healing Techniques
• Root Cause Analysis
• Observe System

Performance
• Usability Patterns
• Monitoring

Operate
• Deterministic Al-Based

Ticketing and Support
Allocation

• Al-Based Self Healing
Decision

• LLM Integration for Virtual
Assistance

• GAI/GPT-Powered
Knowledge Bases

Build

Release

Operate
M

onitor

D
ep

lo
y

Plan

Dev OpsC
o

d
e

Te
st

144 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

maxim to ensure meaningful and ef-
fective integration. Related concerns
include the following:

 › Lack of defined mission/business
need: Many organizations strug-
gle to clearly understand and
define the mission or business
need for integrating GAI into
their processes. The release of
ChatGPT to a broad consumer
base has driven a manufactured
focus on the immediate need
to incorporate GAI. This lack of
direction can result in missing
or misaligned goals as well as
over- or underutilization of the
technology.

 › Inability to measure value and
effectiveness: Establishing con-
sistent objectives and associ-
ated measures for evaluating
the value and effectiveness of
GAI-assisted software engineer-
ing tools poses significant diffi-
culties. The lack of standardized
approaches or frameworks
makes it hard to accurately
assess the performance and
benefits of these technologies
applied to the SDLC.

 › Ineffective productivity measure-
ments: Current productivity met-
rics do not adequately reflect the
contributions of GAI, leading to
skewed perceptions of its effec-
tiveness. Adapting these metrics
to better capture the unique im-
pact of AI tools is essential to ac-
curate performance evaluation.
Industry reports have focused
on individual productivity5, 6
as opposed to team or organiza-
tional measures and frequently
rely on subjective perceptions of
individual productivity.

Quality and security of
generated outputs
Garbage in, garbage out still applies
to GAI models and GAI-empowered
tools. Organizations must address
concerns regarding transparency and
assurance. This class of issues includes
the following:

 › Security vulnerabilities in gener-
ated code: GAI-generated code
can introduce security vulnera-
bilities, posing risks to software
integrity and safety.9, 10 Uphold-
ing rigorous testing and human
oversight is crucial to identify
and mitigate these potential
threats. An industry survey

of 537 developers by Synk,11 a
software vulnerability detec-
tion security platform provider,
found that 56% of respondents
reported commonly encounter-
ing security issues in GAI code
suggestions.

 › Accelerated pace of code develop-
ment: The volume of GAI-gener-
ated code is increasing, as are
the associated risk and costs.
Industry company GitClear12
analyzed roughly 153 million
changed lines of code in GitHub
repositories. The code changes
occurred between January 2020
and December 2023. GitClear’s
report found declines in the
overall quality of generated
code outputs, while the amount
of code generated has in-
creased, as has the frequency
and number of changes made
to a code base (“code churn”).
Organizations often use code
churn to assess the stability,
quality, and maintainability of
software, and measured code

churn is on target to double in
2024.12

Missing human/machine
recalibration
Integrating GAI-assisted tools into
software engineering necessitates a
recalibration of expectations and pro-
cesses to address the human impact.
The challenges posed by GAI lead to
the following concerns:

 › Adaptation of workflows and
creation of new value streams:
Today’s GAI-based solutions as
well as research and experimen-
tation are tailored for individual
SDLC tasks and not the dynamic
flow of software engineering.
Integrating AI-assisted tools re-
quires significant adaptation of
existing workflows and the cre-
ation of new value streams. Or-
ganizations must be prepared to
redesign their processes to fully
leverage the capabilities of GAI,
ensuring that their staff uses
these tools effectively. However,
these organizations often over-
look workflow adaptations and
are unprepared for the resulting
fluctuations in metrics during
adoption. Changes in tools,
processes, and methods result in
changes to metric baselines and,
often, in the need for new and/or
different measurements.

 › Human concerns on the trust-
worthiness of generated assets:
Software engineering, in its
purest form, should be scientific
and deterministic, and engi-
neers must be able to trust the
accuracy and security of the
tools they use. LLMs, central to
GAI, are subject to a phenom-
enon called hallucinations,13
where outputs are fictitious or
not trustworthy. These oc-
currences create a significant
mental challenge for software
engineers or developers at-
tempting to leverage GAI-as-
sisted tooling. Engineers must

The release of ChatGPT to a broad consumer base
has driven a manufactured focus on the immediate

need to incorporate GAI.

 S E P T E M B E R 2 0 2 4 145

be able to trust the accuracy and
security of the tools they use.
Stack Overflow4 reported that
55% of survey respondents using
AI are interested in using AI for
software testing, but only 3% say
they have high trust in AI tools.
For seasoned software engi-
neers, this means that use of AI
tooling requires more oversight
by the humans in the loop; for
new-in-career professionals,
it could mean decision fatigue
caused by lack of experience
and the need to check the tool
outputs.

 › Altered team communication
patterns: Communicating
with a GPT, chatbot, or GAI
interface capable of conver-
sation, such as via response,
changes the communication
patterns within a software
engineering team. Preliminary
observations and responses to
in-person testimonials sug-
gest a potential reduction in
human-to-human communi-
cations, although the overall
impact on software outcomes
remains undetermined.

 › Intellectual property and data
privacy challenges: Using GAI in
software development raises
significant concerns regarding
intellectual property (IP) and
data protection. The ownership
of GAI-generated outputs is often
ambiguous due to the reliance on
publicly sourced training data,
potentially infringing on exist-
ing copyrights. U.S. copyright
law mandates human interven-
tion for protection, highlighting
the necessity for human over-
sight in GAI-assisted creations.14
Additionally, using third-party
GAI services poses data privacy
risks, especially when sensi-
tive information is involved.
Maintaining data integrity and
transparency in GAI processes
is crucial. Organizations must
ask GAI service providers critical

questions about their safeguards
against security vulnerabilities
and data breaches.

A CALL TO ACTION
Based on the preliminary information
collected and assessment of practi-
tioner use, I recommend the follow-
ing actions for organizations seeking
to infuse GAI-enabled tools into the
SDLC, whether or not modern prac-
tices like DevSecOps are used:

 › Focus on AI assurance: MITRE
defines AI assurance as a process
for discovering, assessing, and
managing risk throughout the
lifecycle of an AI-enabled system

so that it operates effectively
for the benefit of its stakehold-
ers.15 Assuring the reliability of
GAI-assisted tools in software
engineering involves thoroughly
understanding the mission
problem and the GAI solution to
identify specific assurance needs
related to code quality, security,
and compliance. This proactive
approach helps predict and mit-
igate risks early. It is crucial to
document and prioritize techni-
cal, operational, and compliance
risks according to their impact
and likelihood, focusing on the
most critical ones first. Imple-
menting rigorous testing proto-
cols, such as automated testing
and code reviews, ensures that
GAI outputs meet quality and
performance standards. Effec-
tive risk management, which
includes refining AI models and
improving user training, facili-
tates the safe integration of GAI
tools into the SDLC, enhancing

productivity while maintaining
security and quality. Compre-
hensive documentation of the
risk management process helps
sustain trustworthiness and reli-
ability of the SDLC and resulting
software.

 › Include AI/GAI in enterprise
strategy: Be prepared to meet the
goals of the enterprise strategy
by conducting a needs assess-
ment. This can be an informal
discussion of types of software
engineering capabilities that
may benefit from GAI. Subse-
quently, identify a pilot program
with limited focus and mea-
surable outcomes. A consistent

monitoring and feedback loop is
crucial to initial experimenta-
tion. This approach will enable
an organization to observe and
plan for requisite skills develop-
ment while establishing initial
AI governance inclusive of data
protection and usage.

 › Deliberately plan for humans in
the loop and human ownership
of all generated assets: Regard-
less of the decisions necessary
when designing and delivering
software, humans have ultimate
accountability. That means hu-
mans should immediately verify
outputs of any content generated,
whether programming code,
documentation, or automation
scripts. The software engineering
workforce must be well prepared
to use GAI-assisted tools and
yet recognize their limitations.
Leading practices are to view the
GAI outputs as unverified and
potentially flawed. Humans can
adopt the mindset of treating GAI

Integrating GAI-assisted tools into software
engineering necessitates a recalibration

of expectations and processes to address
the human impact.

146 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

tools and GAI agents as novices or
young apprentices. The GAI-as-
sisted tools will provide some en-
ergy and inspiration but must be
under constant close supervision.

 › Adopt an assistive mentality: When
integrating GAI into the SDLC,
software engineers must adopt
an assistive mentality rather than
viewing GAI as a replacement. As
mentioned, they should view GAI
as an assistant or a creative muse
that enhances human capabili-
ties. This perspective emphasizes
collaboration between AI tools
and software engineers. GAI tools
can provide support by auto-
mating repetitive tasks, offering
insights, and suggesting solu-
tions; humans focus on strategic
decision making and creative
problem solving.

 › Enable safe insulated experimen-
tation: Enabling safe insulated
experimentation is crucial when
evaluating GAI-assisted tools
for the SDLC. This approach
involves creating controlled
environments in which poten-
tial impacts can be thoroughly
assessed without risking the
integrity of production systems.
Leveraging sandboxed envi-
ronments, AI red teaming, and
rigorous human-in-the-loop
testing can aid in identifying
vulnerabilities. An insulated
experimentation approach en-
ables thorough evaluation and
iterative improvement while fos-
tering trust and safety in GAI-as-
sisted software development.

 › Provide dedicated tracking of
thought leadership: Tracking
thought leadership on GAI in
software engineering is crucial
for maintaining competitive
advantage and fostering inno-
vation. However, organizations
must reduce overall churn and
cognitive overload of the em-
ployee population. To improve
the consumption of high-quality,
relevant, and viable information,

organizations should allocate re-
sources for continuous learning,
curate a central repository of GAI
knowledge, engage with industry
experts, conduct regular internal
workshops, and disseminate
information through summaries
and knowledge-sharing sessions.
They must implement feedback
loops with practitioners to
gauge learning and challenges.
Finally, tracking bleeding-edge
technology will benefit from
engaging with academic and
industry partners, for instance,
through an information sharing
and analysis center. These steps
will assist organizations to stay
informed, be nimble, and refine
their adoption strategies in this
rapidly evolving field.

 › Invest in prompt engineering and
prompt libraries: Today’s use of GAI
tooling for many software engi-
neering tasks requires prompt
engineering, but organizations
often overlook the critical role
this plays in the effective use of
GAI. Organizations must develop
specialized prompt repositories
tailored to software engineering
personas in order to maximize the
utility and accuracy of AI-gener-
ated outputs. They must also be
aware of emerging techniques
and tools to reduce the need for
excessive prompt engineering
using RAGs, knowledge graphs,
and vector components.

 › Make sure the organization and
SDLC are ready for GAI: Before
integrating GAI into the SDLC,
organizations must assess the
current state of their methods and
processes. If the existing SDLC of-
ten fails to meet quality, security,
and value objectives, introducing
GAI could exacerbate these issues.
Organizations should first stabi-
lize and optimize their SDLC to
handle the added complexity and
challenges that GAI presents. This
involves addressing any current
inefficiencies and establishing

robust practices to support assis-
tive tool integration.

 › Focus on code completion instead
of code generation: Software
engineering must focus on code
completion rather than full code
generation. Current GAI tools are
better at translating intentions
into precise code snippets and
explaining existing code than
generating complex code from
scratch. To leverage the transla-
tion capability, software engineers
should integrate GAI-powered
code completion tools, prioritize
code quality improvements, use
GAI for generating code explana-
tions and documentation, provide
clear task context, and regularly
review AI-suggested code to main-
tain standards and avoid errors.
This approach enhances produc-
tivity and code maintainability
while utilizing GAI’s strengths
effectively. It also addresses
the near-term challenge of GAI
models lacking full context for an
entire code base, which can pose
IP challenges.

THE ROAD AHEAD
GAI has groundbreaking potential
but also limitations and challenges.
Today, GAI is a tool designed for use
by humans who make up the software
value delivery stream. GAI inclusion
in the SDLC focuses on use of GAI-
assisted software engineering tools.
This requires full understanding of
the impacts of GAI tooling on human
trust; comprehensive, validated, and
accounted-for observation; and exper-
imentation. Further, the entire soft-
ware practice must recalibrate holistic
software team performance through-
out the evolution of GAI– human team-
ing. The following sections summarize
a set of projected imperatives based on
initial findings and research.

Humans first
Positioning humans first means con-
sidering the well-being of humans as an

 S E P T E M B E R 2 0 2 4 147

overall imperative. That said, it does not
preclude the evolution of roles, respon-
sibilities, and skills. The software in-
dustry must begin to focus on team and
organizational experimentation rather
than individual experimentation.

Trust
Human/machine trust extends beyond
human use of GAI-assisted tooling to a
concept called calibrated trust.16 Cali-
brated trust enables organizations to
measure appropriate trust of emerging
technologies, prevents under- or over-
trusting, and enables software-centric
organizations to make informed de-
cisions. It will be as important to soft-
ware engineering and delivery teams
as to the ultimate end users and recipi-
ents of software value.

From copilots to GAI agents
as team members
The evolution from GAI-assistive tool-
ing to GAI agents is currently still at the
experimental stage. As the efficacy be-
comes understood, the ability to infuse
the GAI agent autonomously will cre-
ate unique challenges. In essence, the
GAI agent may act as a team member of
sorts. Organizations must define spe-
cific team responsibilities for the GAI
agent; they must understand the hu-
man–machine teaming dynamics. In-
tegrating GAI as a team member in the
SDLC involves giving the GAI agent au-
tonomy and defining its role within the
team. GAI may be able to autonomously
handle tasks, which would allow it to
operate independently while collab-
orating with human team members.
This setup may maximize efficiency by
freeing human team members to focus
on complex problem solving and strate-
gic planning.

AI as the team
The next step in AI integration may be
the ultimate transition from GAI as a
team member to AI as the team, pos-
sibly achieved through agentic plat-
forms. These platforms employ auton-
omous AI agents capable of executing
end-to-end software development tasks

independently, from requirements
gathering to deployment. The transi-
tion to agentic platforms will require
addressing the challenges and incor-
poration of many of the recommenda-
tions identified in this article. Users of
tomorrow’s platforms must trust the
platforms, and the resulting software
must be secure and reliable and meet
the mission needs of the end users.

Recent articles and industry an-
nouncements for agentic platforms
that outline new architectural pat-
terns include AutoDev,5 OpenDevin,
and Nvidia’s inference microservices.
Emerging research by industry and ac-
ademia focuses on agentic orchestra-
tion platforms. Thus, the software in-
dustry is likely near the intersection of
no code, low code, and “pro code” (also
known as agentic delivery platforms.)

This article presented observa-
tions from top experts, show-
casing the rapid evolution and

immense potential of GAI in software
engineering. As both research and
excitement accelerate, these insights
will evolve, and differing opinions will
emerge due to the fast-paced changes
and the challenges in fully assessing the
state of the practice. Researchers, soft-
ware professionals, and organizations
may have contrary opinions given the
pace of change and inability to compre-
hensively assess the state of the practice.

Organizations must individually assess
and engage with their own SMEs to nav-
igate these developments.

ACKNOWLEDGMENT
This work was supported by the MITRE
Independent Research and Develop-
ment Program.

REFERENCES
 1. “Gartner hype cycles, explained.”

Gartner. Accessed: Mar. 9, 2024.
[Online.] Available: https://www.
gartner.com/en/articles/what-s
-new-in-the-2023-gartner-hype
-cycle-for-emerging-technologies

 2. AI Index Steering Committee, “AI
index report,” Stanford Institute for
Human-Centered AI, Stanford Univ.,
Stanford, CA, USA, 2024. [Online.]
Available: https://aiindex.stanford.
edu/report/

 3. J. Rech and K. D. Althoff, “Artificial
intelligence and software engineer-
ing: Status and future trends,” KI,
vol. 18, no. 3, pp. 5–11, 2004.

 4. “Stack overflow developer survey
2023.” Stack Overflow. Accessed: 12
Mar. 2024. [Online.] Available: https://
survey.stackoverflow.co/2023/#ai

 5. M. Tufano, A. Agarwal, J. Jang, R. Z.
Moghaddam, and N. Sundaresan,
“AutoDev: Automated AI-driven de-
velopment,” 2024, arXiv:2403.08299.

 6. N. Khanh, A. M. Nguyen, and N. D. Q.
Bui, “Envisioning the next-genera-
tion AI coding assistants:

CALL FOR PARTICIPATION

MITRE is leading a collaborative research effort with industry and academic

experts. Together, we are conducting further experiments to refine our un-

derstanding, implications, and research road map for broader GAI adoption. The

study will investigate how GAI affects team dynamics, integrates with workflows,

influences long-term sustainability, and affects human roles in software delivery.

To help us meet this goal, please consider participating in our industry-wide survey

(https://mitrefedramp.gov1.qualtrics.com/jfe/form/SV_d6m42nHCafJ9UGO), work-

shops, and/or hands-on team experiment events. Your contributions will be invaluable

in shaping the future of AI-driven software engineering. Please contact Tracy Bannon

at tbannon@mitre.org for more information and to join our collaborative efforts.

https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://aiindex.stanford.edu/report/
https://aiindex.stanford.edu/report/
https://survey.stackoverflow.co/2023/#ai
https://survey.stackoverflow.co/2023/#ai
https://mitrefedramp.gov1.qualtrics.com/jfe/form/SV_d6m42nHCafJ9UGO
mailto:tbannon@mitre.org

148 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

Insights & proposals,” 2024,
arXiv:2403.14592.

 7. S. Peng et al., “The impact of AI on devel-
oper productivity: Evidence from GitHub
Copilot,” 2023, arXiv:2302.06590.

 8. A. Ziegler, “Measuring GitHub
Copilot’s impact on productivity,”
Communications of the ACM, New
York, NY, USA, Feb. 15, 2024. [Online.]
Available: https://cacm.acm.org/
research/measuring-github-copilots
-impact-on-productivity

 9. N. Perry, M. Srivastava, D. Kumar,
and D. Boneh, “Do users write more
insecure code with AI assistants?”
in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), 2023, pp. 2785–
2799, doi: 10.1145/3576915.3623157.

 10. H. Pearce, B. Ahmad, B. Tan, B.
Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? Assessing the
security of GitHub Copilot’s code
contributions,” in Proc. IEEE Symp.
Secur. Privacy (SP), San Francisco, CA,

USA, 2022, pp. 754–768, doi: 10.1109/
SP46214.2022.9833571.

 11. “AI code, security, and trust in modern
development.” Snyk. Accessed: Mar.
1, 2024. [Online.] Available: https://
go.snyk.io/2023-ai-code-security
-report-dwn-typ.html

 12. W. Harding and M. Kloster. “Coding
on Copilot: 2023 data shows downward
pressure on code quality.” GitClear.
Accessed: Mar. 1, 2024. [Online.]
Available: https://www.gitclear.com/
coding_on_copilot_data_shows
_ais_downward_pressure_on_code
_quality

 13. M. Lee, “A mathematical investiga-
tion of hallucination and creativity
in GPT models,” Mathematics, vol. 11,
no. 10, May 2023, Art. no. 2320, doi:
10.3390/math11102320.

 14. “Federal court rules work generated
by artificial intelligence alone is not
eligible for copyright protection.”
K&L Gates. Accessed: Jun. 14, 2024.

[Online.] Available: https://www.
klgates.com/Federal-Court-Rules
-Work-Generated-by-Artificial
-Intelligence-Alone-Is-Not-Eligible
-for-Copyright-Protection-8-30-2023

 15. D. Robbins et al., “AI assurance,” The MI-
TRE Corporation, McLean, Virginia, USA,
2024. [Online.] Available: https://www.
mitre.org/sites/default/files/2024-06/
PR-24-1768-AI-Assurance-A
-Repeatable-Process-Assuring
-AI-Enabled-Systems.pdf

 16. “Calibrated trust | Calibrated trust
toolkit.” Available: https://www.
mitre.org/sites/default/files/2021-11/
prs-17-4208-human-machine-teaming
-systems-engineering-guide.pdf

TRACY (TRAC) BANNON is Sr.
Principal - Software Architecture
Leader & Researcher at the MITRE
Corporation, Bedford, MA 01730 USA.
Contact her at tbannon@mitre.org.

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MC.2024.3437463

https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity
https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity
https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity
http://dx.doi.org/10.1145/3576915.3623157
http://dx.doi.org/10.1109/SP46214.2022.9833571
http://dx.doi.org/10.1109/SP46214.2022.9833571
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
http://dx.doi.org/10.3390/math11102320
https://www.klgates.com/Federal-Court-Rules-Work-Generated-by-Artificial-Intelligence-Alone-Is-Not-Eligible-for-Copyright-Protection-8-30-2023
https://www.klgates.com/Federal-Court-Rules-Work-Generated-by-Artificial-Intelligence-Alone-Is-Not-Eligible-for-Copyright-Protection-8-30-2023
https://www.klgates.com/Federal-Court-Rules-Work-Generated-by-Artificial-Intelligence-Alone-Is-Not-Eligible-for-Copyright-Protection-8-30-2023
https://www.klgates.com/Federal-Court-Rules-Work-Generated-by-Artificial-Intelligence-Alone-Is-Not-Eligible-for-Copyright-Protection-8-30-2023
https://www.klgates.com/Federal-Court-Rules-Work-Generated-by-Artificial-Intelligence-Alone-Is-Not-Eligible-for-Copyright-Protection-8-30-2023
https://www.google.com/search?sca_esv=040257bbd66c8725&sca_upv=1&q=McLean,+Virginia&stick=H4sIAAAAAAAAAONgVuLUz9U3MDTINTV9xGjCLfDyxz1hKe1Ja05eY1Tl4grOyC93zSvJLKkUEudig7J4pbi5ELp4FrEK-Cb7pCbm6SiEZRalZ-ZlJgIAEKf5HVcAAAA&sa=X&ved=2ahUKEwjY27XhjJeHAxXOSmwGHdYSD2kQzIcDKAB6BAg4EAE
https://www.mitre.org/sites/default/files/2024-06/PR-24-1768-AI-Assurance-A-Repeatable-Process-Assuring-AI-Enabled-Systems.pdf
https://www.mitre.org/sites/default/files/2024-06/PR-24-1768-AI-Assurance-A-Repeatable-Process-Assuring-AI-Enabled-Systems.pdf
https://www.mitre.org/sites/default/files/2024-06/PR-24-1768-AI-Assurance-A-Repeatable-Process-Assuring-AI-Enabled-Systems.pdf
https://www.mitre.org/sites/default/files/2024-06/PR-24-1768-AI-Assurance-A-Repeatable-Process-Assuring-AI-Enabled-Systems.pdf
https://www.mitre.org/sites/default/files/2024-06/PR-24-1768-AI-Assurance-A-Repeatable-Process-Assuring-AI-Enabled-Systems.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-17-4208-human-machine-teaming-systems-engineering-guide.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-17-4208-human-machine-teaming-systems-engineering-guide.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-17-4208-human-machine-teaming-systems-engineering-guide.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-17-4208-human-machine-teaming-systems-engineering-guide.pdf
mailto:tbannon@mitre.org

	140_57mc09-softwareengineering-3423108

