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Multiple scoring systems (MSSs) have been 
used widely in a variety of different settings 
including multiple regression, multiple clas-
sifier systems, multiple expert systems, mul-

tiple neural networks, ensemble methods, machine learn-
ing (ML) and artificial intelligence (AI), multiple criterion 
decision making (MCDM), multimodal biometric systems, 
preference and deep learning, data and information fusion, 
and multiple large language models (LLMs).8,13 In the past 
decades, combining MSSs has achieved numerous suc-
cesses across many domain applications, but these settings, 
algorithms, and approaches vary widely, and better under-
standing of MSS remains an area of active investigation.

Combinatorial fusion analysis (CFA), pro-
posed by Hsu, Chung, and Kristal,8 provides 
methods and workflows for combining MSSs 
in the process of converting raw data to ac-
tionable knowledge (through informatics) 
and the design and development of efficient 
and effective intelligent systems. CFA char-
acterizes each scoring system with a score 
function, a rank function, and a function that 

relates normalized scores to ranks, termed a rank-score char-
acteristic (RSC) function.8,10 CFA uses the RSC function to 
measure the diversity between two scoring systems so as to 
help specify system selection and algorithm combinations.  
A unique and critical feature of this diversity metric is that it 
is independent of the associations between observations and 
variables. As such, CFA has its antecedents in the works of 
Hsu, Shapiro, and Taksa11,12 and Yang et al.21 The differences 
and complementarity among scores and ranks, defined by 
the RSC function, were further explored and operationalized 
by Hsu, Kristal, and Schweikert in 201010, where, by analogy 
with biological systems, we termed it cognitive diversity (CD; 
note that it has also been referred to as rank-score diversity).

Using the RSC function and CD, CFA offers a robust com-
bination algorithm for both score combination in Euclid-
ean space and rank combination in Kemeny space.8,10,12,14 
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Multilayer combinatorial fusion (MCF), as 
an extension of CFA, has recently been 
established to perform reinforcement 
learning and deep learning.13,18,22 CFA 
and MCF were developed and shown to 
be useful in a variety of domains. These 
include information retrieval, virtual 
screening and drug discovery, protein 
structure prediction, chromatin immu-
noprecipitation sequencing (ChIP-Seq) 
peak detection, target tracking and ro-
botics, microarray gene expression anal-
ysis and motif detection, information 
and cybersecurity, data and information 
fusion, visual informatics, cognitive neu-
roscience, decision making, equity rank-
ing, and portfolio management.8,12,13,18

This article provides an introduc-
tion to critical aspects of CFA including 
the general combination algorithm and 
global working space, beginning with 
the characterization of and diversity 
among the scoring systems through 
the lens of the RSC function and CD. 
Second, the working space of learning, 
modeling, and decision making for 
combining MSSs in informatics and in-
telligent systems is established through 
a sequence of mathematical constructs: 
group, graph, and geometry. Third, var-
ious combination algorithms are con-
sidered to facilitate robust and efficient 
computational learning and modeling. 
We note five specific advantages of the 
CFA framework relative to other existing 
tools. Then, we illustrate the advantage 
of the CFA framework using a recent 
example in drug discovery and contrast 
it with diversity of ranks and accuracy 
(DIRAC), another system-level fusion 
method we have developed.19,20 Finally, 
we summarize the article and offers a 
few remarks for future consideration.

RSC FUNCTION AND 
COGNITIVE DIVERSITY
MSSs exist at both the data/attribute/
feature level and the information/
algorithm/model level. Due to space con-
straints, we focus this article on the latter.

As proposed,11,12 scoring system 
A on the dataset D = {d1, d2, …, dn} 
consists of a score function sA and a 
derived rank function rA. Sorting the 
score value in sA: D→R, the set of real 
numbers, in descending order using 
the data items in D as the key, a rank 
function rA: D→N, where N = {1, 2, …, n},  
is obtained. The RSC function fA:  
N→R is defined as fA(i) = sA(rA

−1(i)) = 
(sA ° rA

−1)(i). For scoring systems A 
and B, CD between A and B, CD(A, 
B), is computed as the difference 
between fA and fB

8,9,10: CD(A, B) =  

d(fA,fB) = ∑ − −
=

f i f i n(( ( ) ( )) / ( 1).i
n

A B1
2

CFA’s unique paradigm for combin-
ing MSS using RSC and CD has the fol-
lowing advantages.

Advantage 1. The scoring system A so 
defined on the dataset D = {d1 , d2 , …, dn}  
with score function sA and rank func-
tion rA is analogous to the variable  
xA on the data points in D with score 
values sA(di) and rank values rA(di).13

Advantage 2. The RSC function fA of 
the scoring system A in informatics is 
analogous to, but different from, the cu-
mulative distribution function FA(x) in 
statistics.8,10,13 However, fA is rank-cen-
tric, while FA(x) is score-centric.9,10,13

Advantage 3. CD is analogous to, but 
different from, 1) statistical correla-
tions such as Pearson’s r, Spearman’s 
rho, and Kendall’s tau and 2) compu-
tational information diversity such as 
the Q statistic, KW variance, and dou-
ble fault.9,10,13 However, CD is data, 
distribution, and domain independent 
since it is measured between two RSC 
functions, which are rank-centric.

GLOBAL WORKING SPACE: 
FROM EUCLIDEAN SPACE TO 
THE KEMENY SPACE
A scoring system A on the dataset 
D = {d1, d2, …, dn} consists of a score 

function sA: D→R and a derived rank 
function rA: D→N. The score values 
of the score function sA(di) are in Eu-
clidean space. The rank values rA(di) 
constitute a permutation of the set of 
natural numbers N = {1, 2, …, n} if the 
score function sA is a 1–1 function. That 
means the rank values rA(di) are all dif-
ferent in N. The set of all permutations 
is a group, the symmetric group Sn of or-
der n, where the composition πA ° πB is 
a binary operation between permuta-
tions πA and πB.2

Let Tn be the set of all n − 1 adja-
cent transpositions in Sn. The Cayley 
graph Cay(Sn, Tn) is defined to be the 
graph with vertex set Sn and edge set =  
{(α, α ° t) | α in Sn and t ∈ Tn} and de-
noted by Bn with Kendall’s tau correla-
tion distance as the distance between 
two points. The graph Bn = Cay(Sn, 
Tn) is also called the bubble sort Cayley 
graph since any two vertices A1 and A2  
are connected by a path of distance 
equal to the number of adjacent inter-
changes (swaps) using bubble sort. It 
has several combinatorial properties 
including being (n − 1)- connected, 
bipartite, and (n − 1)- regular and con-
sisting of (n − 1) mutually independent 
Hamiltonian cycles.13,14

If the score function sA of the scoring 
system A is not a one-to-one function, 
the number of score values 

=
S d( )i

n
A i1  

is strictly less than n. In this case, “tie 
rankings” would occur. Since Kendall’s 
tau correlation distance does not apply 
to tie rankings, Kemeny and Snell15 
proposed a distance metric dk that can 
handle ties. Although dk satisfies all 
the axioms of a metric, it is not practi-
cal, as it is the sum of absolute values. 
Emond and Mason defined a new rank 
correlation Tx between two weak order 
(rank order with ties) A and B values as 
the inner product of their score matri-
ces.3 This leads to an efficient calcula-
tion of dk(A, B) as a function of Tx(A, B).

The vertex set V(Kn) of the Kemeny 
rank space Kn includes more vertices 
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than the vertex set of the bubble sort 
Cayley graph V(Bn), which is the set Sn of 
all permutations of N = {1, 2, …, n}. The 
Kemeny space Kn has been used widely 
in information retrieval, MCDM, ML, 
and computational social science.1 The 
cardinality kn = |V(Kn)| of V(Kn) was cal-
culated as ∑ ∗

=
b S n b( , ),i

n
i1  where S(n, b) is 

the Stirling number of the second kind.5 
This number kn was also studied in 
terms of preferential arrangements on 
n distinct decisions or objects, allowing 
indifference, and obtained as a recur-
sive formula: kn = 1  + ∑ ∗

=
−

−i
n k( ) .i

n
n i1

1 6 

This number kn is approximately equal 
to (0.5)n!(1.4)n+1, where n is the num-
ber of data items in D, which is much 
larger than n! = #(V(Bn)).1,5

The flexibility of extending rank-
ing with or without ties from Bn to Kn 
gives rise to the issue of complexity. 
This is one of the reasons why most 
of the results related to the Kemeny 
metric focus on optimization in find-
ing the median ranking.1 Here we 
would like to point out the advan-
tage of using both the score function 
in the Euclidean space and the rank 
function in the Kemeny space, in par-
ticular from the information theory 
perspective.

Advantage 4. Let A be a scoring system 
on the dataset items D = {d1, d2, …, dn}. 
Converting the score function sA(di) to 
a rank function rA(di) may seem to lose 
information about the data items. How-
ever, the information entropy of the 
working space Bn (or Kn) has log2(n!) bits 
of information, which is bigger than 
log2kn = n log2k with k score functions, 
where n is the number of data items in 
D. The rank function rA(di) on Bn (or Kn) 
carries more information across all n 
data items than that by a score function 

sA(di) on Euclidean space w.r.t. each of 
the n data items.

GENERAL COMBINATION 
ALGORITHM
Given m scoring systems A1, A2, …, Am 
on the dataset items D = {d1, d2, …, dn}, 
there are 2m − 1 − m possible combina-
tions. Each of these combinations may 
be a score or a rank combination (SC or 
RC), as well as one of the three types of 
combinations: an average combina-
tion (AC), a weighted combination by 
performance (WCP), and a weighted 

combination by diversity strength 
(WCDS) where the diversity strength 
of a scoring system Aj*, ds(Aj*) is the 
average of the CD between Aj* and all 
other values of Aj, where j ∈ [1, m] but 
j ≠ j*. As such, we are able to generate  
3(2m − 1 − m) new scoring systems by 
score combination in the Euclidean 
space and the same number of scoring 
systems by rank combination in the Ke-
meny space. Here we illustrate the ad-
vantages w.r.t. the combinatorial fusion 
algorithm and the dual working space.

Advantage 5. Since the rank values in 
the rank space do not follow a distribu-
tion pattern and CD between two scor-
ing systems is domain independent, 
weighted rank or score combination 
by diversity strength provides a useful 
potentially nonlinear combination of 
scoring systems.14

RECENT DRUG DISCOVERY 
EXAMPLE
Successful drug approval requires op-
timizing and predicting the five core 
pharmacokinetic properties: absorp-
tion, distribution, metabolism, excre-
tion, and toxicity (ADMET). Existing 
computational models and methods 

in informatics, however, often lack 
generalization and robustness. Re-
cent work by Jiang et al.14 uses CFA to 
deploy an ML/AI system (CFA4DD), 
which enhances ADMET model per-
formance. The CFA4DD model utilizes 
the 22 ADMET benchmark datasets 
on Therapeutics Data Commons (TDC) 
and outperforms many traditional and 
individual state-of-the-art models. It 
uses five algorithms as base models 
with three encoding schemes.

CFA4DD employs three encoding 
techniques to generate molecular fea-
tures for the representation of the com-
pounds in these 22 datasets: Morgan 
circular fingerprints, RDKit 2D molecu-
lar descriptors, and MCFP, an encoding 
scheme using fingerprinting. It uses 
five ML/AI models, A, B, C, D, and E (ex-
tended gradient boosted decision trees, 
random forest, support vector machines 
with linear kernel, AdaBoost, and con-
volutional neural networks). Following 
the guidelines of TDC, CFA4DD uses ei-
ther score or rank combination14 each 
with the three types of combinations 
noted above (AC, WCP, and WCDS).

CFA4DD achieved very high rankings 
in many of the 22 datasets. These data-
sets range from data size as small as 475 
to data sizes as big as 13,130. It is worth 
noting that due to the CD among the 
five base models, CFA4DD achieved very 
good results in datasets E1 and E2, which 
use Spearman’s rho to evaluate the per-
formance of the modeling results on the 
rank space using WCDS.

CFA VERSUS DIRAC
It is not surprising that in a field that 
seeks to address such a broad spectrum 
of challenges, CFA is one of many ap-
proaches with different strengths and 
weaknesses. CFA is not, for example, as 
deterministic as multiple regression 
and has fewer tuning options com-
pared with ensemble classifiers, but 
it is more flexible than the former and 
requires fewer data and is less likely 
to overfit than the latter. In our own 
work, Sniatynski et al.19,20 established 
the DIRAC framework using a combi-
nation of empirical and theoretical 

It is not surprising that in a field that seeks to 
address such a broad spectrum of challenges, 
CFA is one of many approaches with different 

strengths and weaknesses.
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arguments; we showed that DIRAC ac-
curately predicts the utility of score fu-
sions of binary classifiers, and DIRAC 
has 100% accuracy in predicting the 
outcomes of fusions within rank-based 
binary classifiers or ranking systems. 
Moreover, the DIRAC framework is a 
precise geometric representation of 
diversity and accuracy as angle-based 
distances within rank-based combi-
natorial structures (permutahedra), 
which is analogous to the bubble sort 
Cayley graph Bn. As such, the certainty 
of the DIRAC framework provides a 
general working solution that is do-
main and distribution independent in 
critical real-world applications such as 
biomarker development, personalized 
health, and clinical trial enrollments. 
Notably, however, in contrast to CFA, 
DIRAC cannot directly leverage score–
rank interrelationships, and DIRAC 
relies on the specific observation–vari-
able linkages, while CFA does not con-
sider this information. 

In summary, CFA provides a global 
working space and general combi-
nation algorithms for combining 

MSS in computational learning and 
modeling, informatics, and intelligent 
systems. The working space consists 
of the Euclidean space Rn and the Ke-
meny space Kn; the latter is an exten-
sion of the bubble sort Cayley graph 
space Bn that is useful for working al-
gorithms of learning, modeling, and 
decision making in domain and distri-
bution-independent applications. Ad-
vantage 4 further suggests that learn-
ing and modeling algorithms on the 
working space Bn can be more robust 
and efficient due to information gain 
from nlog2k bits to log2(n!) bits, where 
k is the number of scoring systems 
and n is the number of dataset items. 
Although the Kemeny space Kn con-
tains a working space with more than 
log2(n!) information bits, most of the 
work done on Kn focuses on rank ag-
gregation.1 Recent results using MCF 
on the working space Kn in deep learn-
ing beyond the neural network model 

have demonstrated the viability of de-
signing intelligent general ML/AI sys-
tems on the working space Kn.13,18,22

Here we offer some perspectives on 
the future use of CFA in informatics 
and intelligent systems.

Remark A. AI-driven drug design 
and discovery, especially for bioactive 
small molecules, has been a major/
growing area of research.7,16 CFA4DD 
was competitive in the TDC ADMET 
benchmark leaderboard and provides 
an example of generative AI that is 
different from and much more energy 
efficient than the LLM approach.14,17

Remark B. MCF, used in preference de-
tection18 and combining multiple rank-
ing systems22 on the Kemeny space Kn, 
provides examples of a general algo-
rithm for deep learning on the work-
ing space Kn that is different from and 
much more energy efficient than the 
neural network model (see also Fürnk-
ranz and Hüllermeier4).

Remark C. CFA uses a global working 
space that includes both a Euclidean 
space for score combination and a Ke-
meny space for rank combination. The 
RSC function fA provides a crucial link 
between the Euclidean space and the 
Kemeny space for a scoring system A. 
Converting a score function sA(di) to a 
rank function rA(di) is similar to nor-
malization of the scoring system A in 
the rank space Kn so that two scoring 
systems A and B can be compared and 
the distance between these two points 
in the Kemeny space can be calculated 
regardless of its application domain or 
their distribution.1,2,13,14

Remark D. As stated in Advantage 3 
and described in Remark C, CD(A, B) is 
data independent and distribution free. 

Hsu, Shapiro, and Taksa11,12 showed 
that if the diversity between two scor-
ing systems exhibits a certain degree of 
difference, the rank combination RC(A, 
B) is better than the score combination 
SC(A, B) of scoring systems A and B. 
Given this, we can say that two highly 
diverse scoring systems are expected 
to fuse more beneficially by ranks than 
by scores. Coupled with evidence that 
we can, in some cases, further improve 
performance by weighting the models, 
we can then say that it is likely that 
weighted rank models may be optimal 
for systems that begin with individual 
models displaying high CD.13,14,19,20

Remark E. As stated in Advantage 3 
and described in Remark C, CD is data 
and domain independent. This is useful 
for unsupervised learning and can help 
identify and manage a variety of biases 
in AI including statistical, computa-
tional, human, and systemic biases.17 

ACKNOWLEDGMENT
All authors, in alphabetical order, con-
tributed to this article equally. The study 
was supported in part by the USDA Ag-
ricultural Research Service under Co-
operative Agreement 58-8050-9-004. 
Any opinions, findings, conclusions, 
or recommendations expressed in this 
publication are those of the authors and 
do not necessarily reflect the views of 
the USDA.

REFERENCES
	 1.	 S. Akbari and A. R. Escobedo, 

“Beyond Kemeny rank aggregation: 
A parameterizable-penalty frame-
work for robust ranking aggregation 
with ties,” Omega, vol. 119, Sep. 
2023, Art. no. 102893, doi: 10.1016/j.
omega.2023.102893.

	 2.	 P. Diaconis, Group Representations 
in Probability and Statistics (Lecture 

Given this, we can say that two highly diverse 
scoring systems are expected to fuse more 

beneficially by ranks than by scores.

http://dx.doi.org/10.1016/j.omega.2023.102893
http://dx.doi.org/10.1016/j.omega.2023.102893


100	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

ARTIFICIAL INTELLIGENCE/MACHINE LEARNING

Notes-Monograph Series). Beach-
wood, OH, USA: Institute of Mathe-
matical Statistics, 1988.

	 3.	 E. J. Emond and D. W. Mason, “A 
new rank correlation coefficient with 
application to the consensus ranking 
problem,” J. Multi-Criteria Decis. 
Anal., vol. 11, no. 1, pp. 17–28, 2002, 
doi: 10.1002/mcda.313.

	 4.	 J. Fürnkranz and E. Hüllermeier, 
Eds., Preference Learning. New York, 
NY, USA: Springer-Verlag, 2010, 
pp. 1–466. 

	 5.	 I. J. Good, “The number of orderings 
of n candidates when ties are permit-
ted,” Fibonacci Quart., vol. 13, no. 1, 
pp. 11–18, 1975. 

	 6.	 O. A. Gross, “Preferential arrange-
ments,” Amer. Math. Monthly, 
vol. 69, no. 1, pp. 4–8, 1962, doi: 
10.2307/2312725.

	 7.	 C. Hasselgren and T. I. Oprea, 
“Artificial intelligence for drug 
discovery: Are we there yet?” Annu. 
Rev. Pharmacol. Toxicol., vol. 64, 
no. 1, pp. 527–550, 2024, doi: 
10.1146/annurev-pharmtox 
-040323-040828. 

	 8.	 D. F. Hsu, Y. S. Chung, and B. S. 
Kristal, “Combinatorial fusion anal-
ysis: Methods and practice of com-
bining multiple scoring systems,” in 
Advanced Data Mining Technologies 
in Bioinformatics, Hsu H. H. Ed., Cal-
gary, AB, Canada: Idea Group, 2006, 
pp. 1157–1181. 

	 9.	 D. F. Hsu, B. S. Kristal, Y. Hao, and 
C. Schweikert, “Cognitive diversity: 
A measurement of dissimilarity 
between multiple scoring systems,” J. 
Interconnection Netw., vol. 19, no. 01, 
2019, Art. no. 1940001, doi: 10.1142/
S0219265919400012.

	10.	 D. F. Hsu, B. S. Kristal, and 
C. Schweikert, “Rank-score char-
acteristics (RSC) function and 
cognitive diversity,” in Brain 
Informatics, Y. Yao, R. Sun, T. Poggio, 
J. Liu, N. Zhong, and J. Huang, Eds., 
Berlin, Germany: Springer-Verlag, 
2010, pp. 42–54. 

	 11.	 D. F. Hsu, J. Shapiro, and I. Taksa, 
“Methods of data fusion in information 
retrieval: Rank vs. score combination,” 

Piscataway, NJ, USA, DIMACS Tech. 
Rep. 2002-58, 2002. 

	12.	 D. F. Hsu and I. Taksa, “Comparing 
rank and score combination meth-
ods for data fusion in information 
retrieval,” Inf. Retrieval, vol. 8, no. 
3, pp. 449–480, 2005, doi: 10.1007/
s10791-005-6994-4.

	13.	 L. Hurley, B. S. Kristal, S. Sirimulla, 
C. Schweikert, and D. F. Hsu, “Multi-
layer combinatorial fusion using 
cognitive diversity,” IEEE Access, vol. 
9, pp. 3919–3935, 2021, doi: 10.1109/
ACCESS.2020.3047057. 

	14.	 N. Jiang, M. Quazi, C. Schweikert, 
D. F. Hsu, T. Oprea, and S. Sirimulla, 
“Enhancing ADMET property models 
performance through combinatorial 
fusion analysis,” 2023. [Online]. 
Available: https://doi: 10.26434/
chemrxiv-2023-dh70x

	15.	 J. G. Kemeny and J. L. Snell, “Pref-
erence rankings: An axiomatic 
approach,” in Mathematical Models  
in the Social Sciences. Cambridge,  
MA, USA: Ginn Company; Blais-
dell Publishing Company, 1962, 
pp. 9–23. 

	16.	 D. Merk, L. Friedrich, F. Grisoni, and 
G. Schneider, “De Novo design of bio-
active small molecules by artificial 
intelligence,” Mol. Inform., vol. 37, 
nos. 1–2, 2018, Art. no. 1700153, doi: 
10.1002/minf.201700153.

	 17.	 R. Schwartz, A. Vassilev, K. Greene, 
L. Perine, A. Burt, and P. Hall, 
“Towards a standard for identifying 
and managing bias in artificial intel-
ligence,” National Institute of Stan-
dards and Technology, Gaithersburg, 

MD USA, Special Publication (NIST SP) 
1270, 2022. 

	18.	 C. Schweikert, L. Gobin, S. Xie, S. 
Shimojo, and D. F. Hsu, “Preference 
prediction based on eye movement 
using multi-layer combinatorial fu-
sion,” in Brain Informatics, vol. 11309, 
S. Wang, Ed., Cham, Switzerland: 
Springer-Verlag, 2018, pp. 282–293.

	19.	 M. J. Sniatynski, J. A. Shepherd, 
T. Ernst, L. R. Wilkens, D. F. Hsu, 
and B. S. Kristal, “Ranks underlie 
outcome of combining classifiers: 
Quantitative roles for diversity and 
accuracy,” Patterns, vol. 3, no. 2, 
2022, Art. no. 100415, doi: 10.1016/j.
patter.2021.100415.

	20.	 M. J. Sniatynski, J. A. Shepherd, 
L. R. Wilkens, D. F. Hsu, and B. S. 
Kristal, “The DIRAC framework: 
Geometric structure underlies roles of 
diversity and accuracy in combining 
classifiers,” Patterns, vol. 5, no. 3, 
2024, Art. no. 100924, doi: 10.1016/j.
patter.2024.100924.

	21.	 J.-M. Yang, Y.-F. Chen, T.-W. Shen, B. 
S. Kristal, and D. F. Hsu, “Consen-
sus scoring criteria for improving 
enrichment in virtual screening,” 
J. Chem. Inf. Model, vol. 45, no. 4, 
pp. 1134–1146, 2005, doi: 10.1021/
ci050034w.

	22.	 X. Zhong, L. Hurley, S. Sirimulla, C. 
Schweikert, and D. F. Hsu, “Com-
bining multiple ranking systems on 
the generalized permutation rank 
space,” in Proc. IEEE 5th Int. Conf. 
Big Data Intell. Comput. (DATACOM), 
2019, pp. 123–129, doi: 10.1109/
DataCom.2019.00027. 

D. FRANK HSU is the Clavius 
Distinguished Professor of Science and 
a professor of computer and informa-
tion science at Fordham University, 
New York, NY 10023 USA. Contact him 
at hsu@fordham.edu.

BRUCE S. KRISTAL is a senior scientist 
at the Jean Mayer U.S. Department of 
Agriculture Human Nutrition Research 

Center on Aging, Tufts University, 
Boston, MA 02111  USA. Contact him at 
bruce.kristal@tufts.edu.

CHRISTINA SCHWEIKERT is an asso-
ciate professor of computer science 
and the program director for the M.S. 
in data science program at St. John’s 
University, Queens, NY 11439 USA. 
Contact her at schweikc@stjohns.edu.

http://dx.doi.org/10.1002/mcda.313
http://dx.doi.org/10.2307/2312725
http://dx.doi.org/10.1142/S0219265919400012
http://dx.doi.org/10.1142/S0219265919400012
http://dx.doi.org/10.1007/s10791-005-6994-4
http://dx.doi.org/10.1007/s10791-005-6994-4
http://dx.doi.org/10.1109/ACCESS.2020.3047057
http://dx.doi.org/10.1109/ACCESS.2020.3047057
https://doi:10.26434/chemrxiv-2023-dh70x
https://doi:10.26434/chemrxiv-2023-dh70x
http://dx.doi.org/10.1002/minf.201700153
http://dx.doi.org/10.1016/j.patter.2021.100415
http://dx.doi.org/10.1016/j.patter.2021.100415
http://dx.doi.org/10.1016/j.patter.2024.100924
http://dx.doi.org/10.1016/j.patter.2024.100924
http://dx.doi.org/10.1021/ci050034w
http://dx.doi.org/10.1021/ci050034w
http://dx.doi.org/10.1109/DataCom.2019.00027
http://dx.doi.org/10.1109/DataCom.2019.00027
mailto:hsu@fordham.edu
mailto:bruce.kristal@tufts.edu
mailto:schweikc@stjohns.edu
http://dx.doi.org/10.1146/annurev-pharmtox-040323-040828
http://dx.doi.org/10.1146/annurev-pharmtox-040323-040828

	096_57mc09-artificialintellmachlearn-3406058

