
74 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 I E E E

NOTES FROM THE FIELD

A few years ago, a large language model (LLM)
was un unknown entity. Today, following
the introduction of ChatGPT1 by OpenAI in
November 2022, it is hard to find someone that

does not know conversational LLMs
as many have used them. The wide-
spread adoption of LLMs has fostered
the development of advanced models
and tools based on these models, such
as GPT42 by OpenAI, or Gemini3 by
Google and consisting of hundreds
of billions of parameters. Unfortu-
nately, these models are closed and
can only be accessed through the
user interfaces, tools, or application
programming interfaces provided
by the companies that developed the
models. Their parameters and imple-
mentation details are not publicly
available, and even if they were, their
huge size would make their execution
on commodity computing devices
unfeasible. A different approach has
been taken by some large compa-

nies such as Meta, that is, the code as well as the param-
eters or weights of LLMs such as LLaMa4 have been released
for public use. This approach has been followed by startups
such as Mistral releasing several open models, such as Mis-
tral-7B,5 01.AI with the Yi models and more recently Goo-
gle with the Gemma models; all of these models have been
publicly released.

Speed and
Conversational Large
Language Models:
Not All Is About
Tokens per Second
Javier Conde , Miguel González, and Pedro Reviriego , Universidad
Politécnica de Madrid

Zhen Gao , Tianjin University

Shanshan Liu , University of Electronic Science and Technology of China

Fabrizio Lombardi , Northeastern University

The speed of open-weights large language models

(LLMs) and its dependency on the task at hand, when run

on GPUs, is studied to present a comparative analysis of

the speed of the most popular open LLMs.

NOTES FROM THE FIELD

Digital Object Identifier 10.1109/MC.2024.3399384
Date of current version: 26 July 2024

https://orcid.org/0000-0002-5304-0626
https://orcid.org/0000-0003-2540-5234
https://orcid.org/0000-0001-9887-1418
https://orcid.org/0000-0001-6226-2880
https://orcid.org/0000-0003-3152-3245

 A U G U S T 2 0 2 4 75

These open LLMs provide all the pa-
rameters and code needed to run the
models locally, but they typically do
not disclose the data and procedures
used for training and may place some
restrictions on the use of the model,
so they are not strictly speaking open
source. Therefore, next we refer to
them as open-weights or simply open
LLMs. In any case, open LLMs create
new avenues for innovation and for de-
mocratizing access to LLMs.

Performance of LLMs in different
tasks is thoroughly evaluated using
benchmarks6 that test their knowl-
edge on a wide range of topics and
their ability to perform many different
tasks, like reasoning or problem solv-
ing in different areas.

There are even public arenas7 in
which users can compare models and
mark their preferences. These perfor-
mance comparisons can guide users
when selecting a model for a given
task or application; however, perfor-
mance on the task at hand is not the
only metric of interest; cost and speed
are also important.

In the case of closed commercial
models, the cost is determined by their
service rates typically charging per to-
ken; the speed depends on both their
capacity to serve many clients and the
limits of requests per unit of time set in
their user agreements. For open mod-
els, the cost depends on whether the
models are run locally or on the cloud.
In the first case, there is a one-time in-
vestment on the computing infrastruc-
ture and operating expenses related
for, example, to energy consumption
or technical support. For cloud deploy-
ments, the cost is typically related to
the amount of time that the allocated
computing resources are used.

In both cases, LLMs’ speed and mem-
ory usage are important factors because
they determine the hardware require-
ments and to some extent the energy
needed to support a given number of

requests per second which, in turn,
impact cost for both cloud and local
deployments. The memory needed by
LLMs is roughly proportional to the
number of parameters and the format
used to represent them. However, the
understanding of the speed of LLMs
is more complex because it depends
on different factors such as the tar-
get computing unit (that is, typically
a GPU), the model architecture, the
format of the parameters, and the
number of requests that are processed
at the same time. In this article, we

pursue the evaluation of the speed of
several open-weights LLMs of similar
sizes when run on GPUs. The results
suggest that existing token-based
speed metrics do not necessarily cor-
relate with the time needed to com-
plete different tasks.

THE OPEN-WEIGTHS LLM
ECOSYSTEM
The availability of powerful open LLMs
that can be modified, integrated with
other applications, and run locally has
spurred an ecosystem with hundreds
of LLMs of different sizes, parameter
formats, languages supported, and cus-
tomization for a given task. These LLMs
are readily available, and several tools
and libraries have been developed to
ease the execution of the models.

A common feature of most open-
weights LLMs is that they can be run
on a single computing unit, typically
a GPU. This enables their use on com-
modity hardware such as computers
with a GPU, or on single-GPU instances,
on the cloud. The main limitation to
running on a single unit is the memory;

low-end GPUs are typically equipped
with a few gigabytes of memory while
high-end GPUs have tens of gigabytes
of memory. Each parameter of an LLM
requires 2–4 bytes of memory when
using traditional formats such as half
and single precision floating-point rep-
resentations.9 Therefore, even when
using half precision floating point, a
7- billion parameter model such as Mis-
tral 7B requires approximately 14 GB of
memory. This makes running larger
models such as LlaMa-70B rather chal-
lenging because 140 GB of memory is

 required, a memory size that is not
available even in high-end GPUs. To ad-
dress this issue, the open source commu-
nity has proposed alternative formats10
for the parameters that require fewer
bits, typically 8 or 4 and even close to
1 bit.11 These formats enable for ex-
ample running LlaMa-70B with 4 bits
per parameter on a GPU that has only
40 GB of memory.

To evaluate the speed of executing
LLMs, the first step is to select a subset
of models. Evaluating all open models
is unfeasible and most of them are fine-
tuned versions of other models, so we
expect them to have similar speed as
the base model. In our investigation, we
focus on five models from four compa-
nies with similar sizes, around 7 billion
parameters. In this case, we can use the
same format, 16-bit floating-point, for
all of them so that comparisons are fair.
The first two are LLaMa-24 and LLaMa-3
models from Meta with sizes 7B and 8B;
a model from Mistral with 7B, another
from 01.AI with 6B, and the last one
from Google with 7B parameters (the
models were taken from Huggingface,

The results suggest that existing token-based
speed metrics do not necessarily correlate with

the time needed to complete different tasks.

76 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

NOTES FROM THE FIELD

their exact names are “Llama-2-7b-chat-
hf,” “Meta-Llama-3-8B-Instruct,” “Mistral-
7B-Instruct-v0.1,” “Yi-6B-Chat,” and “gemma-
7b-it,” respectively). The models selected
for evaluation are summarized in Table 1.
This selection covers a wide range of
models of a similar size that can be run
on a single GPU; they are models that
have been widely used as base to derive
fine-tuned models. Therefore, the re-
sults obtained can be to some extent ex-
trapolated to the derivative models.

As said, for the parameter format,
we have used floating-point formats
with 16 bits for all models. This enables
both running the models on a 40-GB
memory and making a fair comparison
among them. The results and insights
obtained would be similar when using
other formats, for example 8 or 4 bits.

Finally, in terms of computing plat-
form, we consider the use of GPUs be-
cause they are widely used and acces-
sible both locally and on the cloud. We
used a high-end GPU from NVIDIA:
the A100 with 40 GB of memory which
is enough memory to run all models in
Table 1 as discussed before.

Modern GPUs have a large amount
of processing units and when running a
single prompt for an LLM, only a small
fraction of those units is used. Since the

parameters of the LLM are already in
the GPU memory, they can be used to
run several prompts at the same time,
creating batches of prompts that are
run together. This can provide in many
cases a significant speedup. The use
of batches is possible when users run
sets of prompts rather than individual
prompts. For example, when creating
questions for a test we can ask the LLMs
to create questions on different topics,
using different prompts. Batches are
also used when the GPU serves many
users whose requests can be grouped.
Therefore, we evaluate the models with
different batch sizes to study the im-
pact of batch size on the speed.

EVALUATING LLM SPEED
The speed of LLMs is typically mea-
sured by the number of tokens gen-
erated per second, or the time needed
to generate a given number of tokens,
for example 256.8 These metrics are
easy to compute, but they have some
important limitations when we want
to compare LLMs. The first limitation
is that for two LLMs that have differ-
ent tokenizers, it is not a fair compar-
ison because the number of tokens for
the same text are different. A second
limitation is that even if two LLMs
use the same tokenizer, then they
may produce a different number of
output tokens for the same task, and
thus, measuring the tokens per sec-
ond does not fully capture the speed
seen by the user. These limitations
boil down to the fact that, as users,
we want to measure the speed of the
model when performing a task, not
the number of tokens generated.

To better understand the relative
speed of LLMs, instead of measuring
tokens, we measure the time needed to
complete different tasks. First, we se-
lect 660 miscellaneous questions from
a multiple-choice LLM benchmark6
and use them for three tasks:

1. Select the right choice for the mul-
tiple-choice questions: The LLM
only must generate the response
with the selected choice (a, b,
c, d). The model may produce
additional text to explain its
answer even though the prompt
explicitly asks to answer only
with the selected choice.

2. Paraphrase the multiple-choice
questions without the answers:
The LLM generates a text of
similar size to the input text.

3. Answer the questions providing an
explanation for the answer selected:
The LLMs generate a textual
answer with no constraints.

The overall approach is illustrated
in Figure 1. The first task is designed
to measure LLM speed when used to
answer questions that require almost
no text generation, just the option
selected and a few additional words.
The second task is designed to enable
a comparison of LLMs when produc-
ing a similar amount of text as para-
phrasing leaves little room for varia-
tions in text lengths. Finally, the third
task is designed for LLMs to generate
text freely to assess whether differ-
ent LLMs generate texts of different
lengths for the same prompts and its
effect on speed.

TABLE 1. Models evaluated.

Model Company Sizes

LLaMa-2/3 Meta 7B/8B

Gemma Google 7B

Mistral Mistral 7B

Yi 01.AI 6B

FIGURE 1. Overview of the evaluation procedure for the speed of an LLM.

Benchmark:

660

Miscellaneous

Multiple-Choice

Questions

Task 1:

Provide the Right Option

1) Time to Complete the Task

2) Average Time to Generate a Token

3) Number of Input and Output Tokens

Measure:

Task 2:

Paraphrase the Question

Task 3:

Explain the Answer

 A U G U S T 2 0 2 4 77

The results for the first task are
summarized in Figure 2. The plot on
the left shows the time needed on
average to generate a token (which
corresponds to the process by which
speed is commonly measured for
LLMs), and in the middle, the time
needed to answer all questions. The
number of output tokens is shown on

the right plot and is smaller than the
number of input tokens (as expected).
The two slowest models in terms of
time to generate a token (LLaMa3-8B
and Yi-6B) are among the fastest to
complete the task. This can be ex-
plained by looking at the number of
input and output tokens. The number
of input tokens depends only on the

tokenizer used by each model because
the input texts are the same for all
models, the differences are small with
LLaMa3-8B and Gemma using fewer
tokens. Instead, the output texts de-
pend on the responses of the models to
the questions, and there are large vari-
ations across models. The models that
produce fewer tokens are LLaMa3-8B

FIGURE 2. Results for task 1 answering 660 multiple choice questions: (a) time to generate a token, (b) time to complete the task,
(c) and number of input and output tokens.

Task 1

100

200

300

400

500

600

700

1 2 3 4
Batch Size

T
im

e
(s

)

5 6 7 8

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

Task 1

1

10

15

20

25

30

2 3 4
Batch Size

(b)

(c)

(a)

T
im

e
pe

r T
ok

en
 (

m
s/

To
ke

n)

5 6 7 8

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

Task 1

10,000

20,000

30,000

40,000

50,000

60,000

70,000

N
um

be
r

of
 T

ok
en

s

Llama–2–7b Llama–3–8b Mistral–7b Yi–6b Gemma–7b

Input Tokens
Output Tokens

78 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

NOTES FROM THE FIELD

and Yi-6B, so explaining the reasons
for completing the tasks in less time
than the other models. This clearly
shows that the speed in generating
tokens does not always correspond to
the speed observed by the user.

The results for the second task are
summarized in Figure 3. In this case,

looking at the right plot, the number
of tokens generated is rather similar to
the number of input tokens as the mod-
els are just paraphrasing the input. The
correlation between time per token
and time to complete the task is better
in this case, but there are still signifi-
cant differences. For example, Mistral

7B is significantly faster in terms of
time to complete the task than in gen-
erating tokens when compared to other
models. This can be explained again by
considering the number of tokens gen-
erated. The differences are still signif-
icant even for a task in which models
are asked to paraphrase the input text.

Task 2

200

400

600

800

1,000

1,200

1 2 3 4
Batch Size

T
im

e
(s

)

5 6 7 8

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

Task 2

Task 2

1

10

15

20

25

30

35

2 3 4
Batch Size

(b)

(c)

(a)

T
im

e
pe

r T
ok

en
 (

m
s/

To
ke

n)

5 6 7 8

Llama–2–7b Llama–3–8b Mistral–7b Yi–6b Gemma–7b
0

10,000

5,000

15,000

20,000

25,000

30,000

35,000

N
um

be
r

of
 T

ok
en

s

Input Tokens
Output Tokens

FIGURE 3. Results for task 2 paraphrasing 660 multiple choice questions: (a) time to generate a token, (b) time to complete the task,
and (c) number of input and output tokens.

 A U G U S T 2 0 2 4 79

Finally, the results for the third task
are summarized in Figure 4. Again, the
results in terms of token generation do not
correspond with those of the time needed
to complete the task. LLaMa-2-7B is fast
in generating tokens, but among the
slowest in completing the task. Instead,
the Gemma model is the fastest because
it generates substantially fewer tokens.

These results illustrate the complex-
ity of evaluating the speed of LLMs
(and thus also energy dissipation) un-
der a fair comparison; even when con-
sidering the same hardware, the same
prompts, and models of similar sizes,
the time needed to complete a given
task can be significantly different.
Additionally, the relative performance

of the models does not always cor-
relate with their speed in generating
tokens due to the use of different to-
kenizers, and different models generate
different number of tokens for the same
prompt; moreover, the time to com-
plete a task for the same model may be
different depending on its parameters,
such as temperature.

FIGURE 4. Results for task 3 open answers to 660 multiple choice questions: (a) time to generate a token, (b) time to complete the
task, (c) and number of input and output tokens.

Task 3

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4
Batch Size

T
im

e
(s

)

5 6 7 8

Task 3

1

10

0

15

20

25

30

2 3 4
Batch Size

(b)

(c)

(a)

T
im

e
pe

r T
ok

en
 (

m
s/

To
ke

n)

5 6 7 8

Task 3

20,000

0

40,000

60,000

80,000

100,000

120,000

N
um

be
r

of
 T

ok
en

s

Llama–2–7b Llama–3–8b Mistral–7b Yi–6b Gemma–7b

Input Tokens
Output Tokens

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

Llama–2–7b
Llama–3–8b
Mistral–7b
Yi–6b
Gemma–7b

80 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

NOTES FROM THE FIELD

Therefore, speed metrics in terms of
tokens per second or the time to gen-
erate a given number of tokens should
be very carefully taken into consider-
ation. A detailed evaluation per task is
needed to truly understand the speed
of different LLMs for a given scenario.
A potential alternative is to develop
speed benchmarks that are focused on
specific tasks to complement existing
per-token metrics. For example, the
definition of a set of input datasets and
tasks (such as translation, summariza-
tion, question answering, or essay writ-
ing) and the use of the time to complete

the tasks must be utilized as part of the
speed evaluation metrics in addition to
the number of tokens per second. The
availability of such benchmarks would
enable a more comprehensive evalua-
tion and comparison of the speed and
energy dissipation of LLMs.

A s LLMs are widely used, their
speed and energy dissipation
have become a key issue. Exist-

ing benchmarks for assessing the speed
of LLMs focus on the time needed to
generate several tokens, or the number
of tokens generated per second. How-
ever, the critical figures of merit are the
time and energy needed to complete a
given task. In this article, we have stud-
ied the performance of several widely
used open-weights LLMs when per-
forming three simple tasks. The results
show that the time needed to complete
each task does not necessarily correlate
to the number of tokens that the LLM
can generate per second. This is due to
the difference in the tokenizers, but
more importantly on the lengths of the
texts generated by each model for the
same task. It also shows the complexity

of evaluating LLM speed in realistic ap-
plications. To address this challenge,
an alternative approach is to develop
task-oriented benchmarks that are rep-
resentative of LLM used cases. Such
benchmarks could be more informative
as to the relative speed of LLMs when
performing a given task.

ACKNOWLEDGMENT
This work was supported by the Agen-
cia Estatal de Investigación (AEI)
(doi:10.13039/501100011033) under Grant
FUN4DATE (PID2022-136684OB-C22),
by the European Commission through

the Chips Act Joint Undertaking proj-
ect SMARTY (Grant 101140087), and by
NVIDIA with a donation of GPUs. Zhen
Gao was supported by the NSFC under
Grant 62171313. Zhen Gao is the corre-
sponding author.

REFERENCES
 1. T. Wu et al., “A brief overview of

ChatGPT: The history, status quo and

potential future development,” IEEE/
CAA J. Autom. Sin., vol. 10, no. 5, pp.
1122–1136, May 2023, doi: 10.1109/
JAS.2023.123618.

 2. OpenAI, “GPT-4 technical report,”
2023, arXiv:2303.08774.

 3. Gemini Team, “Gemini: A family of
highly capable multimodal models,”
2023, arXiv:2312.11805.

 4. H. Touvron et al., “Llama 2: Open
foundation and fine-tuned chat mod-
els,” 2023, arXiv:2307.09288.

 5. A. Q. Jiang et al., “Mistral 7B,” 2023,
arXiv:2310.06825.

 6. D. Hendrycks et al., “Measuring mas-
sive multitask language understand-
ing,” in Proc. Int. Conf. Learn. Repre-
sentations, 2021, pp. 1–27.

 7. L. Zheng et al., “Judging LLM-as-a-
judge with MT-bench and chatbot
arena,” 2023, arXiv:2306.05685.

 8. I. Moutawwakil and R. Pierrard,
LLM-Perf Leaderboard. Paris, France:
Hugging Face, 2023.

 9. IEEE Standard for Floating-Point
Arithmetic, IEEE Standard 754,
2019.

 10. J. Lin, “AWQ: Activation-aware
weight quantization for LLM com-
pression and acceleration,” 2023,
arXiv:2306.00978.

 11. S. Ma et al., “The era of 1-bit LLMs:
All large language models are in 1.58
bits,” 2024, arXiv:2402.17764.

These limitations boil down to the fact that, as
users, we want to measure the speed of the

model when performing a task, not the number
of tokens generated.

JAVIER CONDE is an assistant profes-
sor at the ETSI de Telecomunicación,
Universidad Politécnica de Madrid,
28040 Madrid, Spain. Contact him at
javier.conde.diaz@upm.es.

MIGUEL GONZÁLEZ is a researcher
at the ETSI de Telecomunicación,
Universidad Politécnica de Madrid,
28040 Madrid, Spain. Contact him at
miguel.gonsaiz@upm.es.

PEDRO REVIRIEGO is an associate pro-
fessor at the ETSI de Telecomunicación,
Universidad Politécnica de Madrid,
28040 Madrid, Spain. Contact him at
pedro.reviriego@upm.es.

ZHEN GAO is an associate professor
at Tianjin University, Tianjin 300072,
China. Contact him at zgao@tju.edu.cn.

SHANSHAN LIU is a professor at the
University of Electronic Science and
Technology of China, Chengdu 611731,
Sichuan, China. Contact her at ssliu@
uestc.edu.cn.

FABRIZIO LOMBARDI is a professor at
Northeastern University, Boston, MA
02115 USA. Contact him at lombardi@
ece.neu.edu.

http://dx.doi.org/10.1109/JAS.2023.123618
http://dx.doi.org/10.1109/JAS.2023.123618
mailto:javier.conde.diaz@upm.es
mailto:miguel.gonsaiz@upm.es
mailto:pedro.reviriego@upm.es
mailto:zgao@tju.edu.cn
mailto:ssliu@uestc.edu.cn
mailto:ssliu@uestc.edu.cn
mailto:lombardi@ece.neu.edu
mailto:lombardi@ece.neu.edu

	074_57mc08-notesfromthefield-3399384

