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NOTES FROM THE FIELD

A few years ago, a large language model (LLM) 
was un unknown entity. Today, following 
the introduction of ChatGPT1 by OpenAI in 
November 2022, it is hard to find someone that 

does not know conversational LLMs 
as many have used them. The wide-
spread adoption of LLMs has fostered 
the development of advanced models 
and tools based on these models, such 
as GPT42 by OpenAI, or Gemini3 by 
Google and consisting of hundreds 
of billions of parameters. Unfortu-
nately, these models are closed and 
can only be accessed through the 
user interfaces, tools, or application 
programming interfaces provided 
by the companies that developed the 
models. Their parameters and imple-
mentation details are not publicly 
available, and even if they were, their 
huge size would make their execution 
on commodity computing devices 
unfeasible. A different approach has 
been taken by some large compa-

nies such as Meta, that is, the code as well as the param-
eters or weights of LLMs such as LLaMa4 have been released 
for public use. This approach has been followed by startups 
such as Mistral releasing several open models, such as Mis-
tral-7B,5 01.AI with the Yi models and more recently Goo-
gle with the Gemma models; all of these models have been 
publicly released.
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These open LLMs provide all the pa-
rameters and code needed to run the 
models locally, but they typically do 
not disclose the data and procedures 
used for training and may place some 
restrictions on the use of the model, 
so they are not strictly speaking open 
source. Therefore, next we refer to 
them as open-weights or simply open 
LLMs. In any case, open LLMs create 
new avenues for innovation and for de-
mocratizing access to LLMs.

Performance of LLMs in different 
tasks is thoroughly evaluated using 
benchmarks6 that test their knowl-
edge on a wide range of topics and 
their ability to perform many different 
tasks, like reasoning or problem solv-
ing in different areas.

There are even public arenas7 in 
which users can compare models and 
mark their preferences. These perfor-
mance comparisons can guide users 
when selecting a model for a given 
task or application; however, perfor-
mance on the task at hand is not the 
only metric of interest; cost and speed 
are also important.

In the case of closed commercial 
models, the cost is determined by their 
service rates typically charging per to-
ken; the speed depends on both their 
capacity to serve many clients and the 
limits of requests per unit of time set in 
their user agreements. For open mod-
els, the cost depends on whether the 
models are run locally or on the cloud. 
In the first case, there is a one-time in-
vestment on the computing infrastruc-
ture and operating expenses related 
for, example, to energy consumption 
or technical support. For cloud deploy-
ments, the cost is typically related to 
the amount of time that the allocated 
computing resources are used. 

In both cases, LLMs’ speed and mem-
ory usage are important factors because 
they determine the hardware require-
ments and to some extent the energy 
needed to support a given number of 

requests per second which, in turn, 
impact cost for both cloud and local 
deployments. The memory needed by 
LLMs is roughly proportional to the 
number of parameters and the format 
used to represent them. However, the 
understanding of the speed of LLMs 
is more complex because it depends 
on different factors such as the tar-
get computing unit (that is, typically 
a GPU), the model architecture, the 
format of the parameters, and the 
number of requests that are processed 
at the same time. In this article, we 

pursue the evaluation of the speed of 
several open-weights LLMs of similar 
sizes when run on GPUs. The results 
suggest that existing token-based 
speed metrics do not necessarily cor-
relate with the time needed to com-
plete different tasks.

THE OPEN-WEIGTHS LLM 
ECOSYSTEM
The availability of powerful open LLMs 
that can be modified, integrated with 
other applications, and run locally has 
spurred an ecosystem with hundreds 
of LLMs of different sizes, parameter 
formats, languages supported, and cus-
tomization for a given task. These LLMs 
are readily available, and several tools 
and libraries have been developed to 
ease the execution of the models.

A common feature of most open-
weights LLMs is that they can be run 
on a single computing unit, typically 
a GPU. This enables their use on com-
modity hardware such as computers 
with a GPU, or on single-GPU instances, 
on the cloud. The main limitation to 
running on a single unit is the memory; 

low-end GPUs are typically equipped 
with a few gigabytes of memory while 
high-end GPUs have tens of gigabytes 
of memory. Each parameter of an LLM 
requires 2–4 bytes of memory when 
using traditional formats such as half 
and single precision floating-point rep-
resentations.9 Therefore, even when 
using half precision floating point, a 
7- billion parameter model such as Mis-
tral 7B requires approximately 14 GB of 
memory. This makes running larger 
models such as LlaMa-70B rather chal-
lenging because 140 GB of  memory is 

 required, a memory size that is not 
available even in high-end GPUs. To ad-
dress this issue, the open source commu-
nity has proposed alternative formats10 
for the parameters that require fewer 
bits, typically 8 or 4 and even close to 
1  bit.11 These formats enable for ex-
ample running LlaMa-70B with 4 bits 
per parameter on a GPU that has only 
40 GB of memory. 

To evaluate the speed of executing 
LLMs, the first step is to select a subset 
of models. Evaluating all open models 
is unfeasible and most of them are fine-
tuned versions of other models, so we 
expect them to have similar speed as 
the base model. In our investigation, we 
focus on five models from four compa-
nies with similar sizes, around 7 billion 
parameters. In this case, we can use the 
same format, 16-bit floating-point, for 
all of them so that comparisons are fair. 
The first two are LLaMa-24 and LLaMa-3 
models from Meta with sizes 7B and 8B; 
a model from Mistral with 7B, another 
from 01.AI with 6B, and the last one 
from Google with 7B parameters (the 
models were taken from Huggingface, 

The results suggest that existing token-based 
speed metrics do not necessarily correlate with 

the time needed to complete different tasks.
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their exact names are “Llama-2-7b-chat- 
hf,” “Meta-Llama-3-8B-Instruct,” “Mistral- 
7B-Instruct-v0.1,” “Yi-6B-Chat,” and “gemma- 
7b-it,” respectively). The models selected 
for evaluation are summarized in Table 1. 
This selection covers a wide range of 
models of a similar size that can be run 
on a single GPU; they are models that 
have been widely used as base to derive 
fine-tuned models. Therefore, the re-
sults obtained can be to some extent ex-
trapolated to the derivative models. 

As said, for the parameter format, 
we have used floating-point formats 
with 16 bits for all models. This enables 
both running the models on a 40-GB 
memory and making a fair comparison 
among them. The results and insights 
obtained would be similar when using 
other formats, for example 8 or 4 bits.

Finally, in terms of computing plat-
form, we consider the use of GPUs be-
cause they are widely used and acces-
sible both locally and on the cloud. We 
used a high-end GPU from NVIDIA: 
the A100 with 40 GB of memory which 
is enough memory to run all models in 
Table 1 as discussed before. 

Modern GPUs have a large amount 
of processing units and when running a 
single prompt for an LLM, only a small 
fraction of those units is used. Since the 

parameters of the LLM are already in 
the GPU memory, they can be used to 
run several prompts at the same time, 
creating batches of prompts that are 
run together. This can provide in many 
cases a significant speedup. The use 
of batches is possible when users run 
sets of prompts rather than individual 
prompts. For example, when creating 
questions for a test we can ask the LLMs 
to create questions on different topics, 
using different prompts. Batches are 
also used when the GPU serves many 
users whose requests can be grouped. 
Therefore, we evaluate the models with 
different batch sizes to study the im-
pact of batch size on the speed.

EVALUATING LLM SPEED
The speed of LLMs is typically mea-
sured by the number of tokens gen-
erated per second, or the time needed 
to generate a given number of tokens, 
for example 256.8 These metrics are 
easy to compute, but they have some 
important limitations when we want 
to compare LLMs. The first limitation 
is that for two LLMs that have differ-
ent tokenizers, it is not a fair compar-
ison because the number of tokens for 
the same text are different. A second 
limitation is that even if two LLMs 
use the same tokenizer, then they 
may produce a different number of 
output tokens for the same task, and 
thus, measuring the tokens per sec-
ond does not fully capture the speed 
seen by the user. These limitations 
boil down to the fact that, as   users, 
we want to measure the speed of the 
model when performing a task, not 
the number of tokens generated.

To better understand the relative 
speed of LLMs, instead of measuring 
tokens, we measure the time needed to 
complete different tasks. First, we se-
lect 660 miscellaneous questions from 
a multiple-choice LLM benchmark6 
and use them for three tasks:

1. Select the right choice for the mul-
tiple-choice questions: The LLM 
only must generate the response 
with the selected choice (a, b, 
c, d). The model may produce 
additional text to explain its 
answer even though the prompt 
explicitly asks to answer only 
with the selected choice.

2. Paraphrase the multiple-choice 
questions without the answers: 
The LLM generates a text of 
similar size to the input text.

3. Answer the questions providing an 
explanation for the answer selected: 
The LLMs generate a textual 
answer with no constraints.

The overall approach is illustrated 
in Figure 1. The first task is designed 
to measure LLM speed when used to 
answer questions that require almost 
no text generation, just the option 
selected and a few additional words. 
The second task is designed to enable 
a comparison of LLMs when produc-
ing a similar amount of text as para-
phrasing leaves little room for varia-
tions in text lengths. Finally, the third 
task is designed for LLMs to generate 
text freely to assess whether differ-
ent LLMs generate texts of different 
lengths for the same prompts and its 
effect on speed.

TABLE 1. Models evaluated.

Model Company Sizes

LLaMa-2/3 Meta 7B/8B

Gemma Google 7B

Mistral Mistral 7B

Yi 01.AI 6B

FIGURE 1. Overview of the evaluation procedure for the speed of an LLM.
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The results for the first task are 
summarized in Figure 2. The plot on 
the left shows the time needed on 
average to generate a token (which 
corresponds to the process by which 
speed is commonly measured for 
LLMs), and in the middle, the time 
needed to answer all questions. The 
number of output tokens is shown on 

the right plot and is smaller than the 
number of input tokens (as expected). 
The two slowest models in terms of 
time to generate a token (LLaMa3-8B 
and Yi-6B) are among the fastest to 
complete the task. This can be ex-
plained by looking at the number of 
input and output tokens. The number 
of input tokens depends only on the 

tokenizer used by each model because 
the input texts are the same for all 
models, the differences are small with 
LLaMa3-8B and Gemma using fewer 
tokens. Instead, the output texts de-
pend on the responses of the models to 
the questions, and there are large vari-
ations across models. The models that 
produce fewer tokens are LLaMa3-8B 

FIGURE 2. Results for task 1 answering 660 multiple choice questions: (a) time to generate a token, (b) time to complete the task,  
(c) and number of input and output tokens.
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and Yi-6B, so explaining the reasons 
for completing the tasks in less time 
than the other models. This clearly 
shows that the speed in generating 
tokens does not always correspond to 
the speed observed by the user.

The results for the second task are 
summarized in Figure 3. In this case, 

looking at the right plot, the number 
of tokens generated is rather similar to 
the number of input tokens as the mod-
els are just paraphrasing the input. The 
correlation between time per token 
and time to complete the task is better 
in this case, but there are still signifi-
cant differences. For example, Mistral 

7B is significantly faster in terms of 
time to complete the task than in gen-
erating tokens when compared to other 
models. This can be explained again by 
considering the number of tokens gen-
erated. The differences are still signif-
icant even for a task in which models 
are asked to paraphrase the input text.
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FIGURE 3. Results for task 2 paraphrasing 660 multiple choice questions: (a) time to generate a token, (b) time to complete the task, 
and (c) number of input and output tokens.
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Finally, the results for the third task 
are summarized in Figure 4. Again, the 
results in terms of token generation do not 
correspond with those of the time needed 
to complete the task. LLaMa-2-7B is fast 
in generating tokens, but among the 
slowest in completing the task. Instead, 
the Gemma model is the fastest because 
it generates substantially fewer tokens.

These results illustrate the complex-
ity of evaluating the speed of LLMs 
(and thus also energy dissipation) un-
der a fair comparison; even when con-
sidering the same hardware, the same 
prompts, and models of similar sizes, 
the time needed to complete a given 
task can be significantly different. 
Additionally, the relative performance 

of the models does not always cor-
relate with their speed in generating 
tokens due to the use of different to-
kenizers, and different models generate 
different number of tokens for the same 
prompt; moreover, the time to com-
plete a task for the same model may be 
different depending on its parameters, 
such as temperature. 

FIGURE 4. Results for task 3 open answers to 660 multiple choice questions: (a) time to generate a token, (b) time to complete the 
task, (c) and number of input and output tokens.
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Therefore, speed metrics in terms of 
tokens per second or the time to gen-
erate a given number of tokens should 
be very carefully taken into consider-
ation. A detailed evaluation per task is 
needed to truly understand the speed 
of different LLMs for a given scenario. 
A potential alternative is to develop 
speed benchmarks that are focused on 
specific tasks to complement existing 
per-token metrics. For example, the 
definition of a set of input datasets and 
tasks (such as translation, summariza-
tion, question answering, or essay writ-
ing) and the use of the time to complete 

the tasks must be utilized as part of the 
speed evaluation metrics in addition to 
the number of tokens per second. The 
availability of such benchmarks would 
enable a more comprehensive evalua-
tion and comparison of the speed and 
energy dissipation of LLMs.

A s LLMs are widely used, their 
speed and energy dissipation 
have become a key issue. Exist-

ing benchmarks for assessing the speed 
of LLMs focus on the time needed to 
generate several tokens, or the number 
of tokens generated per second. How-
ever, the critical figures of merit are the 
time and energy needed to complete a 
given task. In this article, we have stud-
ied the performance of several widely 
used open-weights LLMs when per-
forming three simple tasks. The results 
show that the time needed to complete 
each task does not necessarily correlate 
to the number of tokens that the LLM 
can generate per second. This is due to 
the difference in the tokenizers, but 
more importantly on the lengths of the 
texts generated by each model for the 
same task. It also shows the complexity 

of evaluating LLM speed in realistic ap-
plications. To address this challenge, 
an alternative approach is to develop 
task-oriented benchmarks that are rep-
resentative of LLM used cases. Such 
benchmarks could be more informative 
as to the relative speed of LLMs when 
performing a given task. 
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