
104 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 1 E E E

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

SOFTWARE ENGINEERING

A lgorithmic artists are those who use code and
programming as their medium of choice for
artistic expression.1 They create images, films,
sculpture, and music with code. When those

creative algorithms make use of randomness, this is called
“generative art.” There is a fundamental difference between
enterprise coding and creative coding. For enterprise appli-
cations, a computer monitor suffices. For creative coding,
there is an intense desire for physicalization, for transmut-
ing the digital code of the art piece into a tangible object
in the physical world. In this column, we give an introduc-
tion of algorithmic artistry and deep dive into the favorite

physicalization machine: the pen
plotter (Figure 1).

ALGORITHMIC ART
PRIMEUR
Algorithmic artists write code. In
Figure 2 we illustrate how code can
let artists develop a cohesive practice
across the digital and the physical
worlds. In Figure 2(a) we show an ex-

cerpt of a program written by an artist; it produces the digi-
tal version of the artwork. This program is implemented in
Javascript with the p5.js library,a which powers millions of
digital artworks on platforms such as fxhashb or feral files.c
This function draws five different parts of the artwork, in a
circular shape. The different random choices indicate that
the artist has let the randomness decide the rendering of
some parts of the artwork. This makes the artwork gener-
ative by nature: every time the program executes, it pro-
duces a piece that is unique, and yet, all pieces are part of
a cohesive series as they all follow the same algorithm and

Programming
Art With Drawing
Machines
Benoit Baudry , Université de Montréal and KTH Royal
Institute of Technology
Martin Monperrus , KTH Royal Institute of Technology

Algorithmic artists master programming to create

art. Specialized libraries and hardware devices

such as pen plotters support their practice.

SOFTWARE ENGINEERING

Digital Object Identifier 10.1109/MC.2024.3385049
Date of current version: 26 June 2024

ahttps://p5js.org/.
bhttps://www.fxhash.xyz/.
chttps://feralfile.com/.

https://orcid.org/0000-0002-4015-4640
https://orcid.org/0000-0003-3505-3383
https://p5js.org/
https://www.fxhash.xyz/
https://feralfile.com/

 J U LY 2 0 2 4 105

EDITOR PHIL LAPLANTE
IEEE Fellow;

plaplante@psu.edu

the same structure. This program al-
lows the art to exist in the digital world,
rendered on some display. For example,
collectors can see it on their laptops,
phones, or a wall screen in a gallery.

Some artists wish to distribute the
same generative artwork in the phys-
ical world. For that they need another
form of rendering of the artwork, pos-
sibly a machine that will physically
draw the piece in real space-time. Such
a drawing machine, holding a real pen,
is called a pen plotter.

PHYSICALIZATION OF
EXECUTION
The physicalization of execution is as
old as programming. In fact, before
the invention of the computer monitor,
rendering the execution of a generative
procedure had to involve a physical
procedure. In the early 19th century,
Jacquard designed and created the
Jacquard loom,2 one of the oldest pro-
grammable machines, meant to draw
patterns. These mechanical machines
were controlled by punched cards (the
input program) in order to weave com-
plex patterns into textile (the output).
Fast forwarding to the 1950s, Desmond
Paul Henry repurposed a bombsight
computer from World War II into a
drawing machine that leveraged the
computer’s internal moving parts.3

Through the 1950s and 1960s, the
execution of early computer programs

was physicalized through typewriters
or pen plotters4 (Figure 3). A pen plot-
ter is a machine on which a pen is fixed
and that can be controlled to move on
a 2D space, to draw on a sheet of paper.
In these days, drawing machines were
essential for designers, architects,
and artists because monitors were
too small or too primitive. For exam-
ple, the visualizations of early digital

animations were created by plotting
on a microfilm.5

While the pen plotter industry was
active in the 1960s and onward, virtu-
ally all pen plotter manufacturers dis-
appeared when laser printers became
cheap and precise enough in the 1990s.
However, pen plotters and drawing
machines have enjoyed a renaissance
since the 2010s, entirely driven by

FIGURE 2. Programming for digital and physical art. (a) Programming a generative,
digital artwork (with p5.js). (b) An image rendering one instance of the generative
art program in (a). (c) Programming the drawing machine to physicalize the artwork
(G-code) in (a). (d) Output on the drawing machine.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

random

random

random

random

random

random

(a) (b)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) (d)

FIGURE 1. An early pen plotter (Calcomp
565). (Source: Amy Goodchild, https://
www.amygoodchild.com/blog/computer
-art-50s-and-60s.)

https://www.amygoodchild.com/blog/computer-art-50s-and-60s
https://www.amygoodchild.com/blog/computer-art-50s-and-60s
https://www.amygoodchild.com/blog/computer-art-50s-and-60s

106 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

artists. Figure 2(d) shows an example of
a modern pen plotter. Modern electron-
ics drive fine servomotors, which sup-
port the creativity of makers who can
draw a wide range of art genres. Such
electronics power more exotic drawing
machines. For example, sand machines
move a ball on a sand surface, drawing
patterns that can be forever erased and
regenerated.6 A spectacular recent ex-
ample of interaction among program-

ming, machines, and drawing can be
seen in the art practice of Sougwen
Chung7: she programs robots to per-
form collaborative live painting, where
she and the robot collaborate to create
an artwork together.

Why do algorithmic artists love
drawing machines? First, it frees art-
ists from the tedious task of crafting
a physical piece, letting them fully
concentrate on creativity.8 Second,
programmable machines equipped
with state-of-the-art electronics and
motors can draw with a precision that
cannot be reached by human oper-
ators. Third, drawing machines can

work for dozens and even hundreds of
hours, tirelessly, to create extremely
sophisticated pieces. Finally, there is
pure enjoyment in the act of watching
a machine perform aesthetically ap-
pealing tasks with high precision and
diligence (see https://www.youtube.
com/watch?v=VpApU07VTV0).

Drawing machines, which phys-
icalize code execution, also provide
an excellent opportunity to engage

with beginner programmers.9 St u-
dents share the same enjoyment as
artists when they see a machine ex-
ecuting their program. The presence
of a computer bug can be felt phys-
ically, with a wrong drawing. The
notion of a loop can be understood
visually, by looking at the drawing
machine arms making the same pat-
tern again and again.

PROGRAMMING
ABSTRACTIONS
Drawing with machines usually relies
on multiple levels of programming
abstractions.10 Artists use high-level
languages to design the artwork, its
geometry, and its overall design and
texture. A low-level language, on the
side of the stack, is needed to control
the drawing machine. Depending on
the choice of abstractions, the refine-
ment from one level to the other
will go through different intermedi-
ate representations.

Algorithmic artists can rely on a
wide variety of software libraries for
making art. Processing in Java, open-
Frameworks in C++, p5 in Javascript,
and nannou in Rust all provide APIs
to support artists with the program-
ming of generative artworks. They
provide primitive functions to draw
basic geometric shapes, such as circles
and quadrilaterals, as well as more

complex objects such as polygons and
Bezier curves. Their API includes the
essential mathematical functions to
compose and distribute objects on
the canvas, such as sine, distance, or
vectors. At the core of generative art,
randomness plays a key role, and these
libraries provide various ways of gen-
erating and controlling randomness,
from pure random generators to more
elaborate noise functions such as sim-
plex or Perlin noise.

On the other hand, the drawing ma-
chine does not speak Java or any high-
level programming language. Draw-
ing machines require low-level code.
This code is about precise control of the
pen’s position, about tuning the speed
for the motors, about fine-grained
synchronization among the motors.
One of the most popular languages at
this level is called G-code.11 This pro-
gramming language was originally de-
signed for computer numerical control
(CNC), and its application has expanded
to 3D printing, additive manufactur-
ing,12 and pen plotting. It defines an
instruction set that can be interpreted
by a machine controller to orchestrate
the velocity and movements of the mo-
tors. For example, let us consider again
the image in Figure 2(b), which is gen-
erated by the program in Figure 2(a).
Figure 2(c) shows the low-level code
that steers the drawing machine to
create the artwork.

Essentially, there is a need to trans-
late high-level languages used by the
artists into the low-level language
used to control the drawing machine.
For example, one needs to transform
the p5 program of Figure 2(a) into the
G-code of Figure 2(c). One standard
method is to use scalable vector graph-
ics (SVG), an image format in XML for
defining 2D graphics, as an interme-
diate language between the high- and
low-level representations of the draw-
ing. In our context, this means a gen-
erative art program in a high-level lan-
guage such as p5 is first translated into
an SVG file, and then the SVG is trans-
lated into G-code, which is sent to the
pen plotter. Libraries support artists

FIGURE 3. Early programming art from
1969, rendered on a line printer. (Source:
Department of Computer Science at the
University of Regina, https://ur50.cs.
uregina.ca/?p=176.)

The notion of a loop can be understood visually, by
looking at the drawing machine arms making the

same pattern again and again.

https://www.youtube.com/watch?v=VpApU07VTV0
https://www.youtube.com/watch?v=VpApU07VTV0
https://ur50.cs.uregina.ca/?p=176
https://ur50.cs.uregina.ca/?p=176

 J U LY 2 0 2 4 107

for that translation step, such as the
state-of-the-art juicy-G-code.13 Those
libraries can also optimize the G-code
before plotting, in order to remove re-
dundancies, simplify the paths to be
drawn, optimize the curves, etc.

Notably, drawing the execution on
a physical medium moves away from
pixel-perfect art pieces that we see on
screen. The amount and direction of
the ink deposited on the paper varies
depending on the speed, direction, and
type of the drawing pen. This means
that the compiler and optimizers used
to transform the high-level language
into low-level G-code have an influ-
ence on the final rendering and texture
of the art piece. More than this, various
glitches result from the machines’ mo-
tors, from the texture of the surface on
which the machine draws, or from the
viscosity of the ink used to draw. Cer-
tain artists love this part, considering
these hard to predict variations as an-
other source of valuable randomness
for the piece. Here the physicalization
procedure becomes an integral part of
the art itself. When fully embraced,
this is even called “glitch art.”

OTHER USAGES
The frontiers of drawing machines
lie in the very meaning of “drawing.”
In the world of machinery, CNC ma-
chines can automate drilling, milling
or carving. Originally made to create
mechanical pieces for further assem-
bly, artists have also incorporated
CNC machines as part of their prac-
tice for the physicalization of algo-
rithmic art works, yielding generative
sculptures or engravings. From a pro-
gramming perspective, controlling
the laser or the spline in a 2D space is
strictly equivalent to controlling the
pen. As a matter of fact, the G-code
language to control the machine is
the same, and drawing and control
libraries are reused across domains,
with extensions from art to manufac-
turing and vice versa.

Light installations are made of mul-
tiple programmable light fixtures and
lasers. By lighting them up in sequence,

moving them in space, and chang-
ing their color, light artists “draw” in
space and create visual emotions. The
programming tools for light and pen
plotter control are different, yet the
conceptual alphabet of different kinds
of repetition and randomization is pro-
foundly similar.

Also based on light, drone art con-
sists of drawing shapes in the sky with
thousands of programmable drones.
For example, one can drone-paint an
eerily moving picture in the sky of
Central Park (https://www.youtube.
com/watch?v=Dpgy02OB4zE). The pro-
gramming of drone art is heavyweight,
requiring the programming of multi-
ple trajectories in 3D, while handling
caveats related to wind and synchro-
nization, which typically do not occur
with a pen plotter.

The space of programming to phys-
icalize algorithmic art is open ended.
As a final example, imagine 504 ana-
log small clocks with two programma-
ble hands each. This means that one
can control 1,008 angle values at each
point in time. With very small time
steps and medical precision motors,
this allows for programming mesmer-
izing evolving patterns. This is the
core expertise and profitable business
of the Stockholm design studio Hu-
mans since 1982. The core of this high-
end design product is definitely a pro-
gram, while the drawing machine is a
specially crafted for a unique physi-
cal experience.

In this column, we tied the worlds of
art, programming, and machines
together. We shed light onto the

software technology (programming
languages, libraries, and runtime) that
fuels algorithmic art. We showed that
the physicalization of algorithmic art
creates unique challenges and rare op-
portunities for unprecedented artis-
tic emotions. The growing interest of
art institutions and private collectors
for algorithmic art is the invaluable
energy to support further develop-
ment of this technology. Undoubtedly,

computer programs and drawing ma-
chines will continue to augment the
artists’ visions and abilities.

REFERENCES
 1. V. Molnar, “Toward aesthetic guide-

lines for paintings with the aid of a
computer,” Leonardo, vol. 8, no. 3, pp.
185–189, 1975, doi: 10.2307/1573236.

 2. P. E. Ceruzzi, “Jacquard’s web: How
a hand-loom led to the birth of the
information age,” Technol. Culture,
vol. 47, no. 1, pp. 197–198, 2006, doi:
10.1353/tech.2006.0061.

 3. E. O’Hanrahan, “The contri-
bution of Desmond Paul Henry
(1921–2004) to twentieth-century
computer art,” Leonardo, vol. 51, no.
2, pp. 156–162, 2018, doi: 10.1162/
LEON_a_01326. [Online]. Avail-
able: https://direct.mit.edu/leon/
article-pdf/51/2/156/1578147/
leon_a_01326.pdf

 4. H. W. Franke, Computer Graphics—
Computer Art. Berlin, Germany:
Springer Science & Business
Media, 2012. [Online]. Avail-
able: https://link.springer.com/
book/10.1007/978-3-642-70259-4

 5. F. Dietrich, “Visual intelligence: The
first decade of computer art (1965–
1975),” Leonardo, vol. 19, no. 2, pp.
159–169, 1986, doi: 10.2307/1578284.
[Online]. Available: https://muse.
jhu.edu/article/600927.

 6. S. Türk and K. Müller, “Kinetic art
table: Polar sand plotter,” BSc thesis,
KTH Royal Inst. Technol., Stockholm,
Sweden, 2021. [Online]. Available:
https://www.diva-portal.org/smash/
get/diva2:1559481/FULLTEXT01.pdf

 7. C. M. Fang et al., “Machines as
collaborators for art and rituals: An
interview with Sougwen Chung,” MIT
Libraries, Cambridge, MA, USA,
2023. [Online]. Available: https://
dspace.mit.edu/bitstream/handle/
1721.1/151089/3596928.pdf

 8. R. Verostko, “Epigenetic painting:
Software as genotype,” Leonardo,
vol. 23, no. 1, pp. 17–23, 1990,
doi: 10.2307/1578459. [Online].
Available: https://muse.jhu.edu/
article/601786/pdf

https://www.youtube.com/watch?v=Dpgy02OB4zE
https://www.youtube.com/watch?v=Dpgy02OB4zE
http://dx.doi.org/10.2307/1573236
http://dx.doi.org/10.1353/tech.2006.0061
https://direct.mit.edu/leon/article-pdf/51/2/156/1578147/leon_a_01326.pdf
https://direct.mit.edu/leon/article-pdf/51/2/156/1578147/leon_a_01326.pdf
https://direct.mit.edu/leon/article-pdf/51/2/156/1578147/leon_a_01326.pdf
https://www.google.com/search?client=firefox-b-d&sca_esv=959a59c8beda7f19&sca_upv=1&sxsrf=ACQVn0-FaGSlGUS015Zm2pEQ269Qqp8qyg:1712244482146&q=Berlin&si=AKbGX_paaCugDdYkuX2heTJMr0_FGRox2AzKVmiTg2eQr2d-riGNFQ0_8N401j3YV8vHNRaZjdMWztupYUuikNunoyp-ZrESGgbxVZbH5aPE7fm0MXogxPJAwCTCalaWFJrjmMozDQRi-QFd1LmBDYeVv3_zgt164qfpfo3GKhmUzI9HJhg8CHVMb31sDQCujdN1k9pfKUcU&sa=X&ved=2ahUKEwj60YHh76iFAxVzSGcHHf4jCzUQmxMoAXoECEoQAw
https://link.springer.com/book/10.1007/978-3-642-70259-4
https://link.springer.com/book/10.1007/978-3-642-70259-4
https://muse.jhu.edu/article/600927
https://muse.jhu.edu/article/600927
https://www.diva-portal.org/smash/get/diva2:1559481/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1559481/FULLTEXT01.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/151089/3596928.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/151089/3596928.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/151089/3596928.pdf
https://muse.jhu.edu/article/601786/pdf
https://muse.jhu.edu/article/601786/pdf
http://dx.doi.org/10.1162/LEON_a_01326
http://dx.doi.org/10.1162/LEON_a_01326
http://dx.doi.org/10.2307/1578284
http://dx.doi.org/10.2307/1578459

108 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

 9. S. He and J. Jones, “Collaborative
creative coding through drawing
robots,” in Proc. 16th Int. Conf.
Tangible, Embedded, Embodied
Interaction, 2022, pp. 1–4, doi:
10.1145/3490149.3503667.

 10. N. N. M. Peek, “Making machines that
make: Object-oriented hardware
meets object-oriented software,”
Ph.D. dissertation, Massachusetts
Inst. Technol., Cambridge, MA,
USA, 2016. [Online]. Available:
https://dspace.mit.edu/bitstream/
handle/1721.1/107578/974648092
-MIT.pdf

 11. G. Bowers, “Machine tool control via a
minicomputer,” Oak Ridge, TN, USA,
Tech. Rep. Y-1870, 1973.

 12. A. Gleadall, “FullControl GCode
 designer: Open-source software for
unconstrained design in additive
manufacturing,” Additive Manuf., vol.
46, Oct. 2021, Art. no. 102109, doi:
10.1016/j.addma.2021.102109.
[Online]. Available: https://www.
sciencedirect.com/science/article/
pii/S2214860421002748

 13. “Juicy-GCode.” GitHub. Accessed: Feb.
12, 2024. [Online]. Available: https://
github.com/domoszlai/juicy-gcode

BENOIT BAUDRY is a professor of
software engineering at Université
de Montréal, Montréal, QC H3T 1J4,
Canada, and KTH Royal Institute
of Technology, 10044 Stockholm,
Sweden. Contact him at benoit.
baudry@umontreal.ca.

MARTIN MONPERRUS is a professor
of software technology at KTH Royal
Institute of Technology, 100 44
Stockholm, Sweden. Contact him at
monperrus@kth.se.

Publish your work in the IEEE Computer
Society’s flagship journal, IEEE Transactions
on Computers. The journal seeks papers on
everything from computer architecture and
software systems to machine learning and
quantum computing.

Learn about calls for papers
and submission details at
www.computer.org/tc.

Call for Papers:
IEEE Transactions
on Computers

Digital Object Identifier 10.1109/MC.2024.3408525

http://dx.doi.org/10.1145/3490149.3503667
https://dspace.mit.edu/bitstream/handle/1721.1/107578/974648092-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/107578/974648092-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/107578/974648092-MIT.pdf
https://www.sciencedirect.com/science/article/pii/S2214860421002748
https://www.sciencedirect.com/science/article/pii/S2214860421002748
https://www.sciencedirect.com/science/article/pii/S2214860421002748
https://github.com/domoszlai/juicy-gcode
https://github.com/domoszlai/juicy-gcode
mailto:benoit.baudry@umontreal.ca
mailto:benoit.baudry@umontreal.ca
mailto:monperrus@kth.se
http://dx.doi.org/10.1016/j.addma.2021.102109

	104_57mc07-softwareengineering-3385049

