
66	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y �

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/

COVER FEATURE ATTRIBUTES OF QUALITY

Manuel de Castro , University of Valladolid

David L. Vilariño , University of Santiago de Compostela

Yuri Torres and Diego R. Llanos , University of Valladolid

Reconfigurable hardware circuits, such as field-

programmable gate arrays, have gained popularity in the

high-performance computing (HPC) community in recent

years. Nevertheless, their real contribution to accelerating

HPC workloads is unclear in both potential and extent.

In the early 2000s, the increment in single-core CPU
performance slowed down significantly with respect
to previous decades. This caused new techniques and
design paradigms, such as parallel (multicore) or vec-

torial processing, to emerge as alternatives to further
increase CPU performance. Scientists also started inves-
tigating the potential use of GPUs as high-performance
computational units for floating-point intensive computa-
tions. That encouraged the main GPU vendors to develop

frameworks, languages, and runtime environments to ease
the programming of GPUs for purposes beyond graphic
processing. Consequently, general-purpose computing on
GPUs was born. This entailed a paradigm shift for the
high-performance computing (HPC) community, as het-
erogeneous systems including regular CPUs and spe-
cialized hardware accelerators became the standard for
supercomputers, and data parallelism took the spotlight.

As a consequence of this shift toward heterogeneous
systems, different kinds of hardware accelerators, from
GPUs to field-programmable gate arrays (FPGAs) to appli-
cation-specific integrated circuits (ASICs), have appeared

The Role of Field-
Programmable Gate
Arrays in the Acceleration
of Modern High-
Performance Computing
Workloads

Digital Object Identifier 10.1109/MC.2024.3378380
Date of current version: 26 June 2024

https://orcid.org/0000-0003-3080-5136
https://orcid.org/0000-0002-4405-2924
https://orcid.org/0000-0002-3037-3567
https://orcid.org/0000-0001-6240-9109

	 J U LY 2 0 2 4 � 67

during the last two decades. Among
them, FPGAs have recently gained
interest in the literature as a prom-
ising HPC platform. However, there
exists a sharp contrast between this
increasing research interest in FPGAs’
theoretical capabilities and their low
general adoption. This situation begs
some questions: Are current data cen-
ter FPGAs well suited for accelerating
modern HPC workloads? When and
how is it advisable to leverage FPGA
devices to accelerate scientific compu-
tations? Let us discuss these topics in
more detail by first putting heteroge-
neous accelerators in perspective and,
later, analyzing the characteristics,
advantages, and drawbacks of FPGAs,
including their programmability and
the portability of their code, to offer an
answer to these questions.

GPUs: THE STANDARD HPC
ACCELERATOR
As efforts to increase processing per-
formance since the early 2000s have
focused on parallel computing and its
many forms, GPUs have revolution-
ized the field, due to their massively
parallel architectures. GPUs include
thousands of processing cores, simpler
than the ones used for CPUs, which
are designed so that all of them per-
form the same computations (that is,
instructions) on different and inde-
pendent datasets. Even though each
individual GPU core is considerably
less computationally powerful than
a CPU core, the sheer number of them
that a single device can contain makes
GPUs superior to CPUs when it comes
to data-parallel processing, both in raw
performance and energy efficiency.

The high interest in GPUs mani-
fested by the HPC community from
the beginning has greatly influenced
the industry. We highlight here two

main consequences. First, GPU ven-
dors started assembling what we may
call “general-purpose versions” of their
cards, adding error-correcting code mem-
ory and other features to better suit
HPC needs. More recently, mainly due
to the artificial intelligence (AI) mar-
ket (and its convergence with HPC),
GPU vendors also started to develop

GPUs with scientific/AI computations
in mind. Second, programming lan-
guages, frameworks, and models for
heterogeneous computing mainly tar-
geting GPUs have been created. Thus,
their design philosophy has been GPU
centric, or at least data parallelism cen-
tric. For example, OpenCL, SYCL, and
Data Parallel C++ include program-
ming constructs that map particularly
well to GPU architectures, even though
all of them are designed to work with a
wide range of computing devices, not
only GPUs. CPUs can easily translate
these constructs to their own archi-
tectural resources and efficiently work
with them, but this is not the case for all
computing devices supported by these
models (for example, FPGAs).

To maintain GPU dominance, ven-
dors have recently started includ-
ing more specific hardware in their
devices, which further accelerate tasks
of high current interest. For example,
since 2018, Nvidia GPUs include dedi-
cated tensor cores for the acceleration
of deep learning workloads.

ASICs: SPECIFIC-PURPOSE
ACCELERATORS
Some computational algorithms only
moderately benefited from conven-
tional GPU architectures, while others
needed to be accelerated even further.
In these cases, ASICs came to the res-
cue. ASICs are designed and built solely
to solve the particular task of interest,

with both increased performance and
better energy efficiency as compared
to those achievable by a CPU or GPU.
This is another form of heterogeneous
computing, although the adoption of
ASICs is often limited to certain market
niches, due to their specific nature. In
research contexts, one of the most cur-
rently used ASICs is the tensor process-
ing unit (TPU), developed by Google for
neural network machine learning accel-
eration.1 Another example is the use of
ASICs in the context of bitcoin mining.2

FPGAs: RECONFIGURABLE
HARDWARE ACCELERATORS
FPGAs are reconfigurable hardware
devices. They can be used to synthesize
different hardware designs or architec-
tures over and over again. FPGAs were
introduced in mid-1980 by Xilinx (now
AMD) as a natural evolution of pro-
grammable logic devices. They were
initially intended to serve as glue logic
and a prototype of small digital circuits.

Since the beginning of the premul-
ticore CPUs era, FPGAs appeared as an

THE DECLINE OF FPGAs WAS NOT JUST
AN ISSUE OF COMPUTING PERFORMANCE
OR EFFICIENCY BUT ALSO A PROBLEM OF

PRODUCTIVITY.

68	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ATTRIBUTES OF QUALITY

excellent proof-of-concept device to
shorten the software development cycle
for ASICs, as this development was
allowed to start before any test chip
had been manufactured. The increase
in the available logic cells, together with
large random-access memory blocks,
digital signal processor (DSP) arithme-
tic units, and even embedded micro-
processors, moved FPGA usage beyond
proof-of-concept prototyping to final
production on their own. Thus, in the

2000s, high-performance FPGA-based
architectures were developed. At that
time, FPGAs already exhibited high effi-
ciency as accelerators of applications in
a wide variety of areas, such as cryptog-
raphy, signal processing, genomics, or
pattern recognition, to name just a few.
As a consequence, they were adopted as
accelerator devices in some supercom-
puting clusters.3

In the mid-2000s, GPUs came into the
game as a serious rival of FPGAs. Even if
FPGAs were initially competitive against
GPUs, the fast development of the latter,
and, more importantly, the support of
Nvidia delivering the CUDA platform
in 2007, restricted FPGAs to embedded
application domains where energy effi-
ciency was critical, and GPUs took their
place as accelerators in HPC clusters.4

In fact, the decline of FPGAs was
not just an issue of computing perfor-
mance or efficiency but also a problem

of productivity. The programming of
FPGAs required working at the register
transfer level (RTL) with intricate hard-
ware description languages (HDLs),
such as VHDL or Verilog, which are
rather less user-friendly than high-level
programming languages and models.
As in the case of GPUs, which were first
programmed using clever tricks to take
advantage of their capabilities, with
their vendors later to develop friend-
lier programming environments, the

main FPGA vendors have made efforts
to provide high-level synthesis (HLS)
tools, such as AMD’s Vitis, which allow
FPGA applications to be developed from
a software perspective, viewing pro-
grammable logic as a computational
resource instead of a hardware system.5

However, this improvement comes
at the cost of increased compilation
time. The translation of HLS code to
RTL, and from there to the desired
FPGA configuration, involves multiple
optimization steps to map the design
onto the target FPGA architecture, and
it usually takes a significant amount of
time, on the order of hours.

Progress in the computing capabil-
ities of FPGA technology has also been
made so that these kinds of devices
might be leveraged in research facili-
ties, data centers, computing centers,
and other similar environments. Sev-
eral projects were also conducted in

this regard, such as, for example, the
Horizon 2020 Future and Emerging
Technologies–HPC EuroEXA project
(https://euroexa.eu/) and the Hetero-
geneous Accelerated Compute Clusters
project (https://www.amd-haccs.io/),
which remains ongoing. Regarding the
integration of FPGAs in data centers,
an overview of different developments
is provided in Alonso and Bailis.6

Concerning vendors, there are cur-
rently two main FPGA vendors devel-
oping device models that target HPC
contexts: Xilinx (property of AMD)
and Intel (formerly Altera). Exam-
ples of HPC or data center accelerator
FPGAs are Xilinx’s Alveo and Versal
FPGA families and Intel’s Stratix 10 and
Agilex FPGA family. However, even
though data center FPGAs have been
available for a few years now, interest
among researchers has increased sig-
nificantly, and although the prospect of
near-future FPGA-powered supercom-
puters has existed since at least 2013,7,8
there has not been significant adoption
of FPGA devices as general-purpose
accelerators in the industry. For exam-
ple, many of the TOP500 list’s newest
entries are multi-CPU-and-GPU super-
computers. One of the few FPGA-pow-
ered supercomputers found in the
latest TOP500 list is Noctua 2, inaugu-
rated in 2022, in Paderborn, Germany.

This situation leads us to the fol-
lowing question: Are FPGAs really
useful to accelerate HPC workloads,
where absolute performance is the
ultimate goal? To try to answer this
question, we should first understand
why FPGA architecture and program-
mability are so special.

SPECIAL CHARACTERISTICS
OF FPGAs
Reconfigurability is the main prop-
erty of FPGAs. They contain an array

AS FPGAs ALLOW THE PROGRAMMER
TO IMPLEMENT CUSTOM HARDWARE

ARCHITECTURES, THEY, AT FIRST
GLANCE, SEEMED TO BE WELL SUITED

FOR HPC COMPUTATIONS.

https://euroexa.eu/
https://www.amd-haccs.io/

	 J U LY 2 0 2 4 � 69

of programmable logic blocks as well
as reconfigurable interconnections to
link these blocks together, which allows
them to implement complex logic func-
tions. FPGAs can implement any logi-
cal function that an ASIC can perform.
Most FPGAs also include memory ele-
ments, such as flip-flops, and modern
FPGAs even include logic blocks for
the fast execution of common low-level
computations, such as DSPs for float-
ing-point operations. Although FPGAs
are designed to be able to implement
(synthesize) arbitrary logic functions,
they are limited by their quantity of
resources and their clock speed. Thus,
high-complexity functions might not
be synthesizable into a given FPGA.
Nevertheless, the resource amount
present in FPGA models has greatly
increased over time.

As FPGAs allow the programmer to
implement custom hardware architec-
tures, they, at first glance, seemed to
be well suited for HPC computations.
While common CPU execution must
dedicate a significant amount of time
and energy fetching and decoding every
instruction to execute,9 these steps and
their cost can be avoided in custom
hardware designs, where the compu-
tations to perform are known before-
hand. Moreover, CPU instruction sets
are composed mainly of simple opera-
tions that are combined to make more
complex computations; however, FPGAs
can potentially implement those com-
plex computations directly, saving clock
cycles in their execution. This includes
the implementation of data- or task-par-
allel computations in hardware. By
allowing specific computational tasks to
be executed directly in hardware, FPGAs
are highly power-efficient devices,
reducing the need for general-purpose
processor overheads. This direct execu-
tion path can significantly lower power

consumption, especially for tasks that
can be highly parallelized or require
specialized processing. However, FPGAs
offer lower clock speeds than CPUs. To
overcome their limitations, engineers
exploit the main strengths of FPGAs:
fine- and coarse-grain parallelism as
well as the previously mentioned low
overhead in computations.

Overall, recent improvements in FPGA
technology (both in device design and
the software stack) have made the use
of these devices seemingly viable as
accelerators for HPC workloads. They
are known for being able to success-
fully accelerate workloads composed
of irregular data types and algorithms
when compared to CPU executions as
well as for achieving a considerably
higher energy efficiency.10,11 Addition-
ally, FPGAs present a certain innate
characteristic that cannot be replicated
by any ASIC: reconfigurability. This is
a crucial advantage in environments
where multiple distinct applications
need to be accelerated over different
periods of time. Moreover, FPGAs can
leverage dynamic partial reconfigu-
ration to modify their behavior on the
fly.12 This possibility increases the
accelerator’s f lexibility further and
enables it to widen the number of tasks
it can serve without requiring a com-
plete reconfiguration (which incurs
higher overheads).

Nevertheless, as devices for hetero-
geneous computing, it would be more
appropriate to compare them with
other accelerators used for hetero-
geneous computing. After all, mod-
ern general-purpose supercomputers
rarely include only CPUs but, rather,
a combination of CPUs and GPUs. This
comparison should not only be carried

out in terms of absolute performance
and energy efficiency but also taking
into account programmability and
portability issues.

FPGA PROGRAMMABILITY
AND PORTABILITY ISSUES
As we stated above, FPGAs are often
programmed using HDLs, such as
Verilog or VHDL, which provide deep
low-level control over the electronic
components or behavior of the devices.
Although the use of these languages
maximizes FPGA performance and
minimizes resource utilization, from
an HPC perspective, these languages
are cumbersome and error prone and
incur high development times. The
reason is that they are too low level,
and HPC engineers are not usually very
familiar with the constructs on which
they are based. Trying to program HPC
kernels entirely with an HDL leads to
very high development costs, even
more so if the user has to program
the entire logic to communicate the

THE COMPILATION OF FPGA CODES IS A
TIME-CONSUMING PROCESS, ESPECIALLY

WHEN HIGH-LEVEL LANGUAGES ARE
USED TO DESCRIBE SOPHISTICATED

ALGORITHMS.

70	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ATTRIBUTES OF QUALITY

FPGA (device) with the CPU (host) for
data movement and task dispatch-
ing, which is architecture dependent.
Thus, using HDL languages is deemed
unfeasible in HPC contexts.

To alleviate these issues, HLS lan-
guages and frameworks have been
developed, which leverage high-level
software programming languages
(mainly C based) for hardware design.

HLS has succeeded in several areas,
including deep learning, video transcod-
ing, graph processing, and genome
sequencing.13 Examples of these lan-
guages are Vitis HLS (for Xilinx FPGAs
only) and OpenCL (commonly used for
Intel FPGAs). OpenCL is one of the most
popular ones for Intel FPGAs and previ-
ously for Xilinx ones too. OpenCL was
designed from the beginning to tar-
get heterogeneous systems and allow
all their resources to be efficiently
exploited, and it has been extensively
used for programming CPU + GPU
applications. Its design philosophy is
to enable code portability across many
different computing devices, that is, to
be able to write a single device-agnos-
tic code and execute it on any Open-
CL-supported device (including CPUs,
GPUs, and FPGAs). This, in theory, is
perfect for heterogeneous computing,
especially for FPGAs. Not only does the
language make the complex low-level
details of hardware design abstract by

using a popular software programming
language but it also allows any code
written targeting any other accelerator
(namely, GPUs) to execute on an FPGA.

Nevertheless, theory and reality are
often known to differ. While it is true
that OpenCL provides code portability
across supported devices, it does not
guarantee performance portability.
Moreover, its high verbosity and the lack

of support from important vendors (for
example, Nvidia) have made it less com-
monly used lately. In the particular case
of FPGA accelerators, although they
are able to properly execute device-
agnostic or GPU-optimized OpenCL
code, the performance they achieve
with such codes is, in general, con-
siderably low.14,15 Some optimization
techniques are known to alleviate this
situation (see “FPGA-Specific Optimiza-
tion Techniques”). Although we centered
our discussion on OpenCL capabilities,
it is worth noting that these conclusions
may be extended to any programming
model or framework targeting different
kinds of accelerators (namely, GPUs and
FPGAs), such as SYCL and all its derived
implementations, although their actual
performance depends on the particular
application considered and the inter-
nal compiler optimizations available.
Other pragma-based languages, such as
OpenACC and OpenMP, are also used for
this purpose.

Other languages and frameworks
used for high-level synthesis use C prag-
mas to target particular devices. For
example, Vitis HLS uses pragmas to tar-
get AMD Xilinx FPGAs. The use of prag-
mas allows the code to be annotated
with different pragmas to target several
architectures at the same time. On the
other hand, the use of OpenCL forces the
rewriting of the code to take advantage
of architectures whose vendors do not
support OpenCL. Consequently, the use
of C pragmas leads to an FPGA-centric
design philosophy, which might result
in fewer efforts and complexities to
optimize naive or device-agnostic codes
for FPGA execution. However, this opti-
mization step is still unavoidable.

Overall, concerning the programma-
bility of FPGAs for HPC applications, as
of today, it seems unfeasible to rely only
on compiler optimizations to efficiently
execute device-agnostic code on FPGAs.
Therefore, HPC researchers and engi-
neers are expected to have some knowl-
edge of the underlying architecture
when trying to maximize performance
for FPGA devices.

Moreover, the compilation of FPGA
codes is a time-consuming process, espe-
cially when high-level languages are used
to describe sophisticated algorithms that
lead to complex hardware descriptions.
HPC kernels for FPGAs are known to take
several hours to compile, which further
adds to the development costs associated
with these devices. Overlay architectures
for FPGAs show potential in reducing the
long compilation and reconfiguration
times traditionally associated with FPGA
deployment. By providing a higher-level
abstraction, overlays can simplify FPGA
programming, making it more accessible
and quicker to adapt to different appli-
cations.16 This approach allows for rapid
prototyping and iteration, which is crucial
in research and development settings.

MOST BANDWIDTH LIMITS ON FPGAs
COME FROM THE USE OF DOUBLE DATA

RATE 4 TECHNOLOGY, WHILE GPUs
HAVE BEEN USING FASTER MEMORY

TECHNOLOGY FOR SOME YEARS NOW.

	 J U LY 2 0 2 4 � 71

CURRENT HARDWARE
LIMITATIONS OF FPGA
DEVICES
In addition to the programmability
and portability issues described previ-
ously, current FPGA technology pres-
ents some significant limitations that
hinder achieving high performance,
no matter how thoughtf ul of the
underlying architecture the program-
ming might be.

Lower clock frequency
FPGA devices present considerably lower
working clock frequencies than other
kinds of accelerators. For example, Cong
et al.17 studied the main performance
differences between FPGAs and GPUs.
The authors claim that the lower clock
frequencies are partially alleviated by
the fact that FPGAs are able to achieve
a higher number of operations per
cycle in each computing pipeline than

GPUs. However, FPGAs still present a
lower effective parallel factor, which
makes GPUs the winner in terms of the
absolute performance achievable.

Lower memory
bandwidth and size
Cong et al. also state that the lower
parallel factor presented by FPGAs,
described previously, is largely caused
by the FPGAs’ far lower of f-chip

FPGA-SPECIFIC OPTIMIZATION TECHNIQUES
To achieve high performance on FPGA devices, specific
code optimizations are needed. These optimizations
often differ considerably from CPU or GPU optimizations
and require the programmer to be aware of the under-
lying architecture to a certain degree. The importance of
optimizing the code for FPGAs is such that it can make
the difference between underperforming and outper-
forming CPU executions of the same applications. There
exist several particular optimization techniques that are
known to considerably increase performance for FPGA
executions of HPC workloads:

»» Pipeline single-threaded versus ND-range kernels:
Single-threaded loop-pipelined kernels usually achieve
higher performance and allow for more FPGA-spe-
cific optimizations than multithreaded (also known
as ND-range) kernels, which are commonly used for
GPU and CPU execution. This is usually true even when
the single-threaded kernels achieve a lower work-
ing frequency than the multithreaded ones since the
further optimizations available to the single-threaded
kernels enable a much higher number of computations
per cycle to be achieved. FPGAs especially benefit from
deep pipeline kernels, as executing every independent
stage of the pipeline simultaneously on every single
clock cycle achieves a computations-per-cycle rate
proportional to the number of pipeline stages. Thus,
algorithmic refactoring of a kernel might be needed to
achieve the highest performance on FPGAs.

»» Memory hierarchy usage: The memory hierarchy of FP-
GAs differs significantly from traditional general-pur-
pose accelerators, and the user should take this into
account when designing optimized kernels. Among
others, the usage of the restrict C keyword, which is
used in pointer declarations to indicate to the com-
piler that no other pointer will be used to access the
object to which it points, usually provides a noticeable
performance improvement. Some other well-known
constructs, such as the use of shift registers and sliding
window strategies, are able to efficiently exploit the
FPGA resources and achieve high performance.

»» Other manual optimizations: In general, automatic
compiler optimizations do not achieve perfor-
mance increments comparable to those of manual
optimizations. In particular, manual loop unrolling
and manual vectorization often result in increased
performance.

More advanced optimizing transformations, including
pipelining, data reuse, and resolving interface conten-
tion, are discussed in de Fine Licht et al.S1

REFERENCE
S1.	 J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler,

“Transformations of high-level synthesis codes for
high-performance computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, May 2021,
doi: 10.1109/TPDS.2020.3039409.

http://dx.doi.org/10.1109/TPDS.2020.3039409

72	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ATTRIBUTES OF QUALITY

memory bandwidth. Low memory band-
width is the other most important lim-
itation of current FPGA devices, and it
probably constitutes the main limiting
factor for FPGAs to achieve high per-
formance in numerous applications.
Most bandwidth limits on FPGAs come
from the use of Double Data Rate 4 tech-
nology, while GPUs have been using
faster memory technology for some
years now. This limitation is even more
relevant when considering that avail-
able FPGA boards do not support the
memory sizes available in GPUs, and
getting data in and out of these cards
is expensive and can easily destroy
any potential benefit in the computa-
tion. FPGAs are designed for flexibil-
ity and programmability, with their
architecture consisting of an array of
programmable logic blocks and rout-
ing. This flexibility comes at the cost

of not being optimized for high mem-
ory bandwidth in the same way GPUs
are since GPUs are designed with par-
allelism and high-bandwidth memory
interfaces from the outset.

Zohouri et al.18 present a compre-
hensive analysis of the memory control-
ler and memory bandwidth efficiency of
Intel FPGAs, concluding that to achieve
high memory performance, FPGA ker-
nels must meet multiple and strict
requirements related to access pat-
terns, alignment, and memory hierar-
chy usage. These requirements are hard
to meet in real-world applications, and
thus, for many applications, it might not
be possible to achieve more than 70% of
the peak memory bandwidth. Overall,
the low off-chip memory bandwidth
compared to CPUs and GPUs, as well as
the difficulties to efficiently exploit that
bandwidth, put FPGA accelerators at a

disadvantage against other accelerators
for many applications.

The cited works conducted their
research using older FPGA and GPU
models, so their conclusion might not
seem representative of the current
state of the art. To provide some insight
into how the state of the art might have
changed since those works were pub-
lished, Table 1 provides a comparison of
clock frequencies and memory band-
widths among different Intel FPGA and
Nvidia GPU models, including recent
ones. Comparing FPGAs and GPUs just in
terms of maximum clock frequency is an
oversimplification based on theoretical
hard limits and should be taken lightly. It
is worth noting that FPGA working clock
frequencies depend on the specific hard-
ware design synthesized and rarely come
close to the reported theoretical maxima
(shown in the table), especially when

TABLE 1. A comparison of the clock frequency and peak memory bandwidth of several
Xilinx and Intel FPGAs and Nvidia GPU models, sorted by release date.

Release date
Processing clock
frequency

Peak memory
bandwidth

Virtex UltraScale+ First quarter 2016 Up to 819 MHz 76.8 GB/s

Nvidia Tesla V100 GPU First quarter 2017 1,245 MHz (base),
1,380 MHz (boost)

900 GB/s

Intel PAC with Intel Arria 10 GX FPGA Fourth quarter 2017 (FPGA model from 2013) Up to 800 MHz 34.8 GB/s

Intel FPGA PAC D5005 (with Intel Stratix 10 GX) Fourth quarter 2019 (FPGA model from 2013) Up to 1,000 MHz 76.8 GB/s

Intel Stratix 10 MX* FPGA FPGA model from 2017 Up to 1,000 MHz 512 GB/s

Nvidia A100 GPU First quarter 2020 765 MHz (base),
1,410 MHz (boost)

1,555 GB/s

Xilinx Alveo U55C Fourth quarter 2021 Up to 1,028 MHz 460 GB/s

Intel Agilex 7 FPGA* M-Series 039 FPGA model from first quarter 2022 Up to 800 MHz 1,000 GB/s

Nvidia H100 GPU First quarter 2022 1,095 MHz (base),
1,755 MHz (boost)

2,039 GB/s

*The entry is an FPGA integrated circuit (chiplet) model to be integrated into a hardware package or module with other components, not a commercially available ready-to-use
accelerator itself.

	 J U LY 2 0 2 4 � 73

using a high-level synthesis language
and compiler (such as OpenCL) instead
of HDLs. For compute-intensive or HPC
kernels, the cited works report working
frequencies that usually range between
200 and 300 MHz on Arria 10 GX devices,
which is 20% to 37.5%, respectively, of
their reported peak frequency. In the
case of Stratix 10 GX devices, it is usual to
achieve working frequencies that range
between 300 and 400 MHz (30% to 40%
of their peak frequency).

Lower floating-point performance
One of the major limitations of FPGAs
in the context of HPC seems to be the
low single- and double-precision float-
ing-point performance that could be
achieved with such devices.19 Some
recent research works, such as two by
Calore and Schifano20,21 attempted to
measure it in the context of the roof-
line model. These works offer a perfor-
mance estimation of function kernels
developed with high-level synthesis
tools, revealing some of the FPGA lim-
itations in the context of HPC.

ON THE POTENTIAL OF
FPGAs IN MODERN HPC
WORKLOADS
Regarding the question of whether cur-
rent FPGAs are suitable to accelerate
modern HPC workloads, we now con-
textualize the points discussed above
for the case of real-world applications.
To review the potential of FPGAs in
HPC contexts, not only the absolute per-
formance of FPGAs when executing
common HPC tasks must be considered
but also the performance relative to
other accelerators since the potential of
FPGAs is conditioned by the other avail-
able alternatives for HPC accelerators.

Back in 2014, Véstias et al.19 reviewed
the trends of CPU, GPU, and FPGA devices
for HPC. Their conclusions were that

FPGAs were not keeping pace with other
platforms in terms of performance,
which caused HPC applications to be
migrated to other more powerful plat-
forms, such as software-based manycore
systems (CPUs and GPUs). The authors
noted that FPGAs become competi-
tive when working with applications
with specific constructs or requirements
for which general-purpose computing

devices are not suited (for example, appli-
cations with operands with custom/
user-defined data widths as well as com-
binational logic problems, finite-state
machines, and parallel MapReduce prob-
lems). The authors also noted a trend for
the HPC community toward adopting
hybrid (heterogeneous) platforms with
a mix of different kinds of devices work-
ing together. As that work is almost a
decade old, it is worth reviewing more
recent works so as to analyze whether
these trends have continued. For exam-
ple, in 2020, Nguyen et al.11 explored
the potential of FPGAs in HPC environ-
ments, testing both an Intel FPGA (Arria
10 GX) and a Xilinx FPGA (Alveo U280)
and comparing them against other
accelerators (namely, an Intel Xeon CPU
and Nvidia V100 GPU). They found the
single-precision FPGA performance and
bandwidth still fall far below GPUs for
compute and memory-intensive tasks;
however, FPGAs can deliver nearly the

same energy efficiency as GPUs for most
applications, and even exceed it in some
cases. The authors also noted that FPGAs
are likely to continue being competitive
in areas for which GPU and CPU com-
puting models do not match the nature
of the problem. Their work led them to
interesting conclusions. First, they point
to the low memory bandwidths of the
FPGAs as the main limiting factor for

achieving high performance on FPGAs.
Second, they also note that exploiting
such bandwidths is rather difficult, while
only a very small fraction of the theoret-
ical memory bandwidth is achieved by
unoptimized codes. Third, they note
that FPGAs are not power-proportional
devices, in the sense that a significant
increase in performance might require
only a moderate increase in power con-
sumption. This contrasts with CPUs
and GPUs, where the power consump-
tion increase is more pronounced. Their
conclusions were that vendors should
prioritize maximizing development pro-
ductivity for FPGAs rather than increas-
ing their amount and type of resources,
as their FPGA implementations required
greater orders of magnitude of software
development time than the equivalent
(and often superior) CPU and GPU imple-
mentations. Other works22 note that
FPGAs might present certain advantages
compared to GPUs for applications that

FPGAs BECOME COMPETITIVE WHEN
WORKING WITH APPLICATIONS

WITH SPECIFIC CONSTRUCTS OR
REQUIREMENTS FOR WHICH GENERAL-

PURPOSE COMPUTING DEVICES ARE
NOT SUITED.

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ATTRIBUTES OF QUALITY

can exploit temporal blocking or other
forms of high pipelined parallelism.

FPGAs can be beneficial in scientific
computing applications where latency
and predictability of execution times
are crucial, such as in urgent HPC sce-
narios, including interactive prototyp-
ing, urgent streaming data analysis,
application steering, and in situ visu-
alization. There are several reasons for
this. First, FPGAs excel in providing
low-latency processing. Unlike CPUs
and GPUs, which have fixed hardware
structures and instruction sets, FPGAs
can be configured to perform specific
computations directly in hardware,
reducing their overhead. This is partic-
ularly relevant in the case of irregular
applications, where the single-instruc-
tion, multiple data paradigm cannot
be applied. Second, FPGAs offer more
predictable performance compared
to CPUs and GPUs. Since FPGAs can
be configured with specific hardware
paths for given tasks, they can execute
these tasks consistently without the
unpredictability introduced by shared
resources (like caches or memory buses)
in general-purpose processors. This
predictability is critical in applications
where timing and consistency of com-
putation are vital. Third, FPGAs can be
tailored for specific algorithms or data
processing tasks. This customization
allows for highly efficient execution of
particular tasks in scientific comput-
ing, such as data analysis or simulation,
which can be critical in urgent com-
puting scenarios where quick accurate
results are required. Due to these rea-
sons, FPGA benefits in scenarios like
the ones described previously can be
substantial, especially when immedi-
ate data processing and decision mak-
ing are crucial.

For some years, FPGAs have been
considered well suited for deep learning

computations, due to the pipelined nature
of deep learning models and the poten-
tial to optimize them by means of custom
irregular data types as well as irregular
algorithms. Nurvitadhi et al.23 conclude
that recent trends in deep neural net-
work algorithms might favor FPGAs
over GPUs and that FPGAs have poten-
tial to become the platform of choice
for accelerating deep neural networks,
offering superior performance. Never-
theless, the deep learning market has
been of significant importance in recent
times, and many vendors of electronic
components (including CPUs, GPUs, and
ASICs) have tried to get into and expand
inside that market. Since the publi-
cation of that work, two major break-
throughs have been made concerning
hardware acceleration of deep learning
applications. First, many GPUs have
started to include dedicated hardware
for AI acceleration, such as Nvidia’s ten-
sor cores. Second, Google launched the
TPU, an ASIC for AI acceleration. These
new kinds of hardware attempt to accel-
erate AI tasks that GPUs are not well
suited for, including algorithms dealing
with custom irregular data types. Thus,
both of them pose new challenges to
FPGAs to become the platform of choice
to accelerate deep neural networks.
Over recent years, we have seen a signif-
icant increment in TPU and tensor core
GPU utilization for accelerating real-
world AI tasks; however, FPGAs do not
seem to have made significant progress
in this field, and nowadays, they are not
the platform of choice for accelerating
large-scale deep neural networks.

WHAT ABOUT THE
USE OF FPGAs AS
COOPERATIVE DEVICES IN
HETEROGENEOUS SYSTEMS?
Besides the potential use of FPGAs as
stand-alone devices for the acceleration

of HPC workloads, whose strengths and
limitation were described previously,
there is also certain interest in studying
the potential use of FPGAs cooperatively
with other devices, both FPGAs and
other accelerators, so as to exploit all the
available resources of a given heteroge-
neous potentially distributed system.

Many works explore the possibilities
of using FPGAs cooperatively in hetero-
geneous environments. Some explore
the possibility of using FPGA-powered
network interface cards to carry out CPU-
less processing of incoming and outcom-
ing network data, thus reducing latency.
This can be applied to inter-FPGA com-
munications to efficiently connect mul-
tiple distributed FPGAs together. Other
works discuss direct memory access
(DMA) mechanisms to connect GPUs
and FPGAs together in order to effi-
ciently communicate different kinds of
accelerators from different perspectives:
either the GPU is the peripheral compo-
nent interconnect express (PCIe) mas-
ter or this task is assigned to the FPGA.
Both approaches show that performance
penalties are incurred for DMA transfers
in which the PCIe master is the destina-
tion device. These two techniques can be
combined to enable efficient cooperative
work between GPUs and FPGAs over dif-
ferent nodes.24

Although these are promising tech-
niques for heterogeneous environments,
there do not seem to be many real case
applications that clearly benefit from
cooperative FPGA approaches. While
GPU technology is making significant
progress in the distributed multi-GPU
field for real-world applications, the
multi-FPGA and hybrid GPU–FPGA
fields for real-world applications seem
to be considerably less explored. One
major cause for this seems to be the
lower scaling capabilities of FPGA
devices, which hinder the development

	 J U LY 2 0 2 4 � 75

of multi-FPGA solutions, as well as the
higher hardware costs, which hinder
the integration of FPGAs into heteroge-
neous clusters already including GPUs.
Besides this, the existence of applica-
tions with computational patterns that
would benefit from simultaneous GPU
and FPGA acceleration is still unclear.

O verall, modern FPGA technol-
ogy focused on HPC environ-
ments still presents important

limitations that put FPGA devices at a
disadvantage compared to GPUs, namely,
low memory bandwidth and size, lower
raw computational power, the need for
sophisticated manual tuning due to
poor automatic compiler optimizations,
development complexity, and very long
compilation times. FPGAs can still
prove useful in the acceleration of irreg-
ular tasks for which general-purpose
architectures (CPU and GPU) are poorly
optimized, such as tasks with irregular
data types or algorithms, as long as
it is not profitable to build and deploy
ASICs for those applications. FPGAs also
show potential for accelerating tasks
in environments where flexibility and/
or energy efficiency are crucial. Nev-
ertheless, FPGA technology still has to
make some progress, both in hardware
capabilities and ease of development,
to become competitive at accelerating
most modern HPC workloads.

ACKNOWLEDGMENT
The work of Manuel de Castro, Yuri
Torres, and Diego R. Llanos has been
supported in part by Grant PID2022-
142292NB-I00 (NATASHA Project), funded
by MCIN/AEI/10.13059/501100011033,
and by the European Regional Develop-
ment Fund’s A Way of Making Europe
project. Yuri Torres and Diego R. Llanos
have been supported in part by Junta de

Castilla y León FEDER Grant VA226P20
(PROPHET-2 Project). Diego R. Llanos
has been supported in part by Grant
TED2021-130367B-I00, funded by MCIN/
AEI/10.13039/501100011033, and by Next
Generation EU Plan de Recuperación,
Transformación, y Resiliencia. The work
of David L. Vilariño has been supported
by Grants PID2022-141623NB-I00 and
PID2019-104834GB-I00 (funded by MCIN/
AEI/10.13039/501100011033/FEDER, UE)
and by the Conselleria de Cultura, Educa-
cion, e Ordenacion Universitaria, Xunta de
Galicia (Accreditation ED431C 2022/16).
Thanks to the anonymous reviewers for
many useful suggestions.

REFERENCES
	 1.	 N. P. Jouppi et al., “In-datacenter per-

formance analysis of a tensor process-
ing unit,” SIGARCH Comput. Archit.
News, vol. 45, no. 2, pp. 1–12, Jun. 2017,
doi: 10.1145/3140659.3080246.

	 2.	 M. Bedford Taylor, “The evolution of
bitcoin hardware,” Computer, vol. 50,
no. 9, pp. 58–66, Sep. 2017, doi:
10.1109/MC.2017.3571056.

	 3.	 C. Stephen et al., “Examining the
viability of FPGA supercomputing,”
EURASIP J. Embedded Syst.,
vol. 2007, Jan. 2007, Art. no. 93652,
doi: 10.1155/2007/93652.

	 4.	 D. H. Jones et al., “GPU versus FPGA
for high productivity computing,” in
Proc. Int. Conf. Field Programmable
Logic Appl., 2010, pp. 119–124, doi:
10.1109/FPL.2010.32.

	 5.	 N. Brown, “Weighing up the new kid
on the block: Impressions of using Vitis
for HPC software development,” in
Proc. 30th Int. Conf. Field-Programmable
Logic Appl. (FPL), 2020, pp. 335–340,
doi: 10.1109/FPL50879.2020.00062.

	 6.	 G. Alonso and P. Bailis, “Research for
practice: FPGAs in datacenters,”
Commun. ACM, vol. 61, no. 9,
pp. 48–49, 2018, doi: 10.1145/3209275.

	 7.	 M. Baity-Jesi et al., “An FPGA-based
supercomputer for statistical physics:
The weird case of Janus,” in High-
Performance Computing Using FPGAs,
W. Vanderbauwhede and K. Benkrid,
Eds., New York, NY, USA: Spring-
er-Verlag, 2013, pp. 481–506.

	 8.	 “Top500 NEWS: Good times for FPGA
enthusiasts,” Top500, Sinsheim,
Germany, 2016. Accessed: Sep. 2023.
[Online]. Available: https://www.
top500.org/news/good-times-for
-fpga-enthusiasts

	 9.	 S. R. Hines, “Improving processor effi-
ciency through enhanced instruction
fetch,” Ph.D. thesis, Florida State
Univ., Tallahassee, FL, USA, 2008.

	10.	 S. Kestur, J. D. Davis, and O. Wil-
liams, “BLAS comparison on FPGA,
CPU and GPU,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Piscataway,
NJ, USA: IEEE, 2010, pp. 288–293, doi:
10.1109/ISVLSI.2010.84.

	11.	 T. Nguyen, S. Williams, M. Siracusa,
C. MacLean, D. Doerfler, and
N. J. Wright, “The performance and
energy efficiency potential of FPGAs
in scientific computing,” in Proc.
IEEE/ACM Perform. Model., Bench-
marking Simul. High Perform. Comput.
Syst. (PMBS), Piscataway, NJ, USA:
IEEE, 2020, pp. 8–19, doi: 10.1109/
PMBS51919.2020.00007.

	12.	 K. Vipin and S. A. Fahmy, “FPGA
dynamic and partial reconfiguration:
A survey of architectures, methods,
and applications,” ACM Comput. Surv.,
vol. 51, no. 4, Jul. 2018, Art. no. 72,
doi: 10.1145/3193827.

	13.	 J. Cong et al., “FPGA HLS today: Suc-
cesses, challenges, and opportunities,”
ACM Trans. Reconfigurable Technol.
Syst., vol. 15, no. 4, pp. 1–42, Aug. 2022,
doi: 10.1145/3530775.

	14.	 K. Krommydas et al., “Bridging the
performance-programmability gap
for FPGAs via OpenCL: A case study

http://dx.doi.org/10.1145/3140659.3080246
http://dx.doi.org/10.1109/MC.2017.3571056
http://dx.doi.org/10.1155/2007/93652
http://dx.doi.org/10.1109/FPL.2010.32
http://dx.doi.org/10.1109/FPL50879.2020.00062
http://dx.doi.org/10.1145/3209275
http://dx.doi.org/10.1109/ISVLSI.2010.84
http://dx.doi.org/10.1109/PMBS51919.2020.00007
http://dx.doi.org/10.1109/PMBS51919.2020.00007
http://dx.doi.org/10.1145/3193827
http://dx.doi.org/10.1145/3530775
https://www.top500.org/news/good-times-for-fpga-enthusiasts
https://www.top500.org/news/good-times-for-fpga-enthusiasts
https://www.top500.org/news/good-times-for-fpga-enthusiasts

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ATTRIBUTES OF QUALITY

with OpenDwarfs,” in Proc. IEEE 24th
Annu. Int. Symp. Field-Programmable
Custom Comput. Mach. (FCCM), 2016, pp.
198–198, doi: 10.1109/FCCM.2016.56.

	15.	 H. R. Zohouri et al., “Evaluating and
optimizing OpenCL kernels for high
performance computing with FPGAs,”
in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal. (SC), Nov. 2016, pp.
409–420, doi: 10.1109/SC.2016.34.

	16.	 H. K.-H. So and C. Liu, “FPGA
overlays,” in FPGAs for Software
Programmers, D. Koch, F. Hannig, and
D. Ziener, Eds., Cham, Switzerland:
Springer-Verlag, 2016, pp. 285–305.

	17.	 J. Cong et al., “Understanding
performance differences of FPGAs
and GPUs,” in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays
(FPGA), New York, NY, USA: Associa-
tion for Computing Machinery, 2018,
p. 288, doi: 10.1145/3174243.3174970.

	18.	 H. R. Zohouri et al., “The memory
controller wall: Benchmarking the

Intel FPGA SDK for OpenCL memory
interface,” in Proc. IEEE/ACM Int.
Workshop Heterogeneous High-
Perform. Reconfigurable Comput.
(H2RC), Nov. 2019, pp. 11–18, doi:
10.1109/H2RC49586.2019.00007.

	19.	 M. Véstias et al., “Trends of CPU, GPU
and FPGA for high-performance com-
puting,” in Proc. 24th Int. Conf. Field
Programmable Logic Appl. (FPL), 2014,
pp. 1–6, doi: 10.1109/FPL.2014.6927483.

	20.	 E. Calore and S. F. Schifano, “Perfor-
mance assessment of FPGAs as HPC
accelerators using the FPGA empirical
roofline,” in Proc. 31st Int. Conf. Field-
Programmable Logic Appl. (FPL), Pisca-
taway, NJ, USA: IEEE, 2021, pp. 83–90,
doi: 10.1109/FPL53798.2021.00022.

	21.	 E. Calore and S. F. Schifano, “FER:
A benchmark for the roofline
analysis of FPGA based HPC accel-
erators,” IEEE Access, vol. 10, pp.
94,220–94,234, 2022, doi: 10.1109/
ACCESS.2022.3203566.

	22.	 H. R. Zohouri et al., “Combined spatial
and temporal blocking for high-
performance stencil computation on
FPGAs using OpenCL,” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable
Gate Arrays (FPGA), New York, NY,
USA: Association for Computing
Machinery, 2018, pp. 153–162, doi:
10.1145/3174243.3174248.

	23.	 E. Nurvitadhi et al., “Can FPGAs beat
GPUs in accelerating next-generation
deep neural networks?” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate
Arrays (FPGA), New York, NY, USA: Asso-
ciation for Computing Machinery, 2017,
pp. 5–14, doi: 10.1145/3020078.3021740.

	24.	 R. Kobayashi et al., “OpenCL-enabled
high performance direct memory
access for GPU-FPGA cooperative
computation,” in Proc. HPC Asia Work-
shops (HPCAsia Workshops), New York,
NY, USA: Association for Computing
Machinery, 2019, pp. 6–9, doi: 10.1145/
3317576.3317581.

ABOUT THE AUTHORS
MANUEL de CASTRO is a Ph.D. candidate in the Department
of Computer Science, University of Valladolid, 47011 Valladolid,
Spain. His research interests include parallel and distributed com-
puting and GPU and field-programmable gate array program-
ming. de Castro received a M.S. in computer science from the
Universidade de Coruña. Contact him at manuel@infor.uva.es.

DAVID L. VILARIÑO is an associate professor in the Department
of Electronic and Computation, University of Santiago de Com-
postela, 15782 Santiago de Compostela, Spain. His research
interests include the design of algorithms and special-purpose
hardware modules for reconfigurable architectures (field-pro-
grammable gate array and coarse-grain reconfigurable archi-
tecture), with a focus on fast and efficient computation. Vilariño
received a Ph.D. in computer science from the Universidade de
Santiago de Compostela. Contact him at david.vilarino@usc.es.

YURI TORRES is an associate professor in the Department
of Computer Science, University of Valladolid, 47011 Vall-
adolid, Spain. His research interests include parallel and
distributed computing, parallel programming models, and
embedded computing. Torres received a Ph.D. in computer
science from the University of Valladolid. Contact him at yuri.
torres@infor.uva.es.

DIEGO R. LLANOS is a full professor in the Department of
Computer Science, University of Valladolid, 47011 Valladolid,
Spain. His research interests include parallel and distributed
computing, the Internet of Things, and embedded systems.
Llanos received a Ph.D. in computer science from the Uni-
versity of Valladolid. He is a Senior Member of IEEE and the
Association for Computing Machinery. Contact him at diego.
llanos@uva.es.

http://dx.doi.org/10.1109/FCCM.2016.56
http://dx.doi.org/10.1109/SC.2016.34
http://dx.doi.org/10.1145/3174243.3174970
http://dx.doi.org/10.1109/H2RC49586.2019.00007
http://dx.doi.org/10.1109/FPL.2014.6927483
http://dx.doi.org/10.1109/FPL53798.2021.00022
http://dx.doi.org/10.1109/ACCESS.2022.3203566
http://dx.doi.org/10.1109/ACCESS.2022.3203566
http://dx.doi.org/10.1145/3174243.3174248
http://dx.doi.org/10.1145/3020078.3021740
mailto:manuel@infor.uva.es
mailto:david.vilarino@usc.es
mailto:yuri.torres@infor.uva.es
mailto:yuri.torres@infor.uva.es
mailto:diego.llanos@uva.es
mailto:diego.llanos@uva.es
http://dx.doi.org/10.1145/3317576.3317581
http://dx.doi.org/10.1145/3317576.3317581

	066-57mc07-llanos-3378380

