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Reconfigurable hardware circuits, such as field-

programmable gate arrays, have gained popularity in the 

high-performance computing (HPC) community in recent 

years. Nevertheless, their real contribution to accelerating 

HPC workloads is unclear in both potential and extent. 

In the early 2000s, the increment in single-core CPU 
performance slowed down significantly with respect 
to previous decades. This caused new techniques and 
design paradigms, such as parallel (multicore) or vec-

torial processing, to emerge as alternatives to further 
increase CPU performance. Scientists also started inves-
tigating the potential use of GPUs as high-performance 
computational units for floating-point intensive computa-
tions. That encouraged the main GPU vendors to develop 

frameworks, languages, and runtime environments to ease 
the programming of GPUs for purposes beyond graphic 
processing. Consequently, general-purpose computing on 
GPUs was born. This entailed a paradigm shift for the 
high-performance computing (HPC) community, as het-
erogeneous systems including regular CPUs and spe-
cialized hardware accelerators became the standard for 
supercomputers, and data parallelism took the spotlight.

As a consequence of this shift toward heterogeneous 
systems, different kinds of hardware accelerators, from 
GPUs to field-programmable gate arrays (FPGAs) to appli-
cation-specific integrated circuits (ASICs), have appeared 
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during the last two decades. Among 
them, FPGAs have recently gained 
interest in the literature as a prom-
ising HPC platform. However, there 
exists a sharp contrast between this 
increasing research interest in FPGAs’ 
theoretical capabilities and their low 
general adoption. This situation begs 
some questions: Are current data cen-
ter FPGAs well suited for accelerating 
modern HPC workloads? When and 
how is it advisable to leverage FPGA 
devices to accelerate scientific compu-
tations? Let us discuss these topics in 
more detail by first putting heteroge-
neous accelerators in perspective and, 
later, analyzing the characteristics, 
advantages, and drawbacks of FPGAs, 
including their programmability and 
the portability of their code, to offer an 
answer to these questions.

GPUs: THE STANDARD HPC 
ACCELERATOR
As efforts to increase processing per-
formance since the early 2000s have 
focused on parallel computing and its 
many forms, GPUs have revolution-
ized the field, due to their massively 
parallel architectures. GPUs include 
thousands of processing cores, simpler 
than the ones used for CPUs, which 
are designed so that all of them per-
form the same computations (that is, 
instructions) on different and inde-
pendent datasets. Even though each 
individual GPU core is considerably 
less computationally powerful than 
a CPU core, the sheer number of them 
that a single device can contain makes 
GPUs superior to CPUs when it comes 
to data-parallel processing, both in raw 
performance and energy efficiency.

The high interest in GPUs mani-
fested by the HPC community from 
the beginning has greatly influenced 
the industry. We highlight here two 

main consequences. First, GPU ven-
dors started assembling what we may 
call “general-purpose versions” of their 
cards, adding error-correcting code mem-
ory and other features to better suit 
HPC needs. More recently, mainly due 
to the artificial intelligence (AI) mar-
ket (and its convergence with HPC), 
GPU vendors also started to develop 

GPUs with scientific/AI computations 
in mind. Second, programming lan-
guages, frameworks, and models for 
heterogeneous computing mainly tar-
geting GPUs have been created. Thus, 
their design philosophy has been GPU 
centric, or at least data parallelism cen-
tric. For example, OpenCL, SYCL, and 
Data Parallel C++ include program-
ming constructs that map particularly 
well to GPU architectures, even though 
all of them are designed to work with a 
wide range of computing devices, not 
only GPUs. CPUs can easily translate 
these constructs to their own archi-
tectural resources and efficiently work 
with them, but this is not the case for all 
computing devices supported by these 
models (for example, FPGAs).

To maintain GPU dominance, ven-
dors have recently started includ-
ing more specific hardware in their 
devices, which further accelerate tasks 
of high current interest. For example, 
since 2018, Nvidia GPUs include dedi-
cated tensor cores for the acceleration 
of deep learning workloads.

ASICs: SPECIFIC-PURPOSE 
ACCELERATORS
Some computational algorithms only 
moderately benefited from conven-
tional GPU architectures, while others 
needed to be accelerated even further. 
In these cases, ASICs came to the res-
cue. ASICs are designed and built solely 
to solve the particular task of interest, 

with both increased performance and 
better energy efficiency as compared 
to those achievable by a CPU or GPU. 
This is another form of heterogeneous 
computing, although the adoption of 
ASICs is often limited to certain market 
niches, due to their specific nature. In 
research contexts, one of the most cur-
rently used ASICs is the tensor process-
ing unit (TPU), developed by Google for 
neural network machine learning accel-
eration.1 Another example is the use of 
ASICs in the context of bitcoin mining.2

FPGAs: RECONFIGURABLE 
HARDWARE ACCELERATORS
FPGAs are reconfigurable hardware 
devices. They can be used to synthesize 
different hardware designs or architec-
tures over and over again. FPGAs were 
introduced in mid-1980 by Xilinx (now 
AMD) as a natural evolution of pro-
grammable logic devices. They were 
initially intended to serve as glue logic 
and a prototype of small digital circuits.

Since the beginning of the premul-
ticore CPUs era, FPGAs appeared as an 

THE DECLINE OF FPGAs WAS NOT JUST 
AN ISSUE OF COMPUTING PERFORMANCE 
OR EFFICIENCY BUT ALSO A PROBLEM OF 

PRODUCTIVITY.
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excellent proof-of-concept device to 
shorten the software development cycle 
for ASICs, as this development was 
allowed to start before any test chip 
had been manufactured. The increase 
in the available logic cells, together with 
large random-access memory blocks, 
digital signal processor (DSP) arithme-
tic units, and even embedded micro-
processors, moved FPGA usage beyond 
proof-of-concept prototyping to final 
production on their own. Thus, in the 

2000s, high-performance FPGA-based 
architectures were developed. At that 
time, FPGAs already exhibited high effi-
ciency as accelerators of applications in 
a wide variety of areas, such as cryptog-
raphy, signal processing, genomics, or 
pattern recognition, to name just a few. 
As a consequence, they were adopted as 
accelerator devices in some supercom-
puting clusters.3

In the mid-2000s, GPUs came into the 
game as a serious rival of FPGAs. Even if 
FPGAs were initially competitive against 
GPUs, the fast development of the latter, 
and, more importantly, the support of 
Nvidia delivering the CUDA platform 
in 2007, restricted FPGAs to embedded 
application domains where energy effi-
ciency was critical, and GPUs took their 
place as accelerators in HPC clusters.4

In fact, the decline of FPGAs was 
not just an issue of computing perfor-
mance or efficiency but also a problem 

of productivity. The programming of 
FPGAs required working at the register 
transfer level (RTL) with intricate hard-
ware description languages (HDLs), 
such as VHDL or Verilog, which are 
rather less user-friendly than high-level 
programming languages and models. 
As in the case of GPUs, which were first 
programmed using clever tricks to take 
advantage of their capabilities, with 
their vendors later to develop friend-
lier programming environments, the 

main FPGA vendors have made efforts 
to provide high-level synthesis (HLS) 
tools, such as AMD’s Vitis, which allow 
FPGA applications to be developed from 
a software perspective, viewing pro-
grammable logic as a computational 
resource instead of a hardware system.5

However, this improvement comes 
at the cost of increased compilation 
time. The translation of HLS code to 
RTL, and from there to the desired 
FPGA configuration, involves multiple 
optimization steps to map the design 
onto the target FPGA architecture, and 
it usually takes a significant amount of 
time, on the order of hours.

Progress in the computing capabil-
ities of FPGA technology has also been 
made so that these kinds of devices 
might be leveraged in research facili-
ties, data centers, computing centers, 
and other similar environments. Sev-
eral projects were also conducted in 

this regard, such as, for example, the 
Horizon 2020 Future and Emerging 
Technologies–HPC EuroEXA project 
(https://euroexa.eu/) and the Hetero-
geneous Accelerated Compute Clusters 
project (https://www.amd-haccs.io/), 
which remains ongoing. Regarding the 
integration of FPGAs in data centers, 
an overview of different developments 
is provided in Alonso and Bailis.6

Concerning vendors, there are cur-
rently two main FPGA vendors devel-
oping device models that target HPC 
contexts: Xilinx (property of AMD) 
and Intel (formerly Altera). Exam-
ples of HPC or data center accelerator 
FPGAs are Xilinx’s Alveo and Versal 
FPGA families and Intel’s Stratix 10 and 
Agilex FPGA family. However, even 
though data center FPGAs have been 
available for a few years now, interest 
among researchers has increased sig-
nificantly, and although the prospect of 
near-future FPGA-powered supercom-
puters has existed since at least 2013,7,8 
there has not been significant adoption 
of FPGA devices as general-purpose 
accelerators in the industry. For exam-
ple, many of the TOP500 list’s newest 
entries are multi-CPU-and-GPU super-
computers. One of the few FPGA-pow-
ered supercomputers found in the 
latest TOP500 list is Noctua 2, inaugu-
rated in 2022, in Paderborn, Germany.

This situation leads us to the fol-
lowing question: Are FPGAs really 
useful to accelerate HPC workloads, 
where absolute performance is the 
ultimate goal? To try to answer this 
question, we should first understand 
why FPGA architecture and program-
mability are so special.

SPECIAL CHARACTERISTICS 
OF FPGAs
Reconfigurability is the main prop-
erty of FPGAs. They contain an array 

AS FPGAs ALLOW THE PROGRAMMER 
TO IMPLEMENT CUSTOM HARDWARE 

ARCHITECTURES, THEY, AT FIRST 
GLANCE, SEEMED TO BE WELL SUITED 

FOR HPC COMPUTATIONS.

https://euroexa.eu/
https://www.amd-haccs.io/


	 J U LY  2 0 2 4  � 69

of programmable logic blocks as well 
as reconfigurable interconnections to 
link these blocks together, which allows 
them to implement complex logic func-
tions. FPGAs can implement any logi-
cal function that an ASIC can perform. 
Most FPGAs also include memory ele-
ments, such as flip-flops, and modern 
FPGAs even include logic blocks for 
the fast execution of common low-level 
computations, such as DSPs for float-
ing-point operations. Although FPGAs 
are designed to be able to implement 
(synthesize) arbitrary logic functions, 
they are limited by their quantity of 
resources and their clock speed. Thus, 
high-complexity functions might not 
be synthesizable into a given FPGA. 
Nevertheless, the resource amount 
present in FPGA models has greatly 
increased over time.

As FPGAs allow the programmer to 
implement custom hardware architec-
tures, they, at first glance, seemed to 
be well suited for HPC computations. 
While common CPU execution must 
dedicate a significant amount of time 
and energy fetching and decoding every 
instruction to execute,9 these steps and 
their cost can be avoided in custom 
hardware designs, where the compu-
tations to perform are known before-
hand. Moreover, CPU instruction sets 
are composed mainly of simple opera-
tions that are combined to make more 
complex computations; however, FPGAs 
can potentially implement those com-
plex computations directly, saving clock 
cycles in their execution. This includes 
the implementation of data- or task-par-
allel computations in hardware. By 
allowing specific computational tasks to 
be executed directly in hardware, FPGAs 
are highly power-efficient devices, 
reducing the need for general-purpose 
processor overheads. This direct execu-
tion path can significantly lower power 

consumption, especially for tasks that 
can be highly parallelized or require 
specialized processing. However, FPGAs 
offer lower clock speeds than CPUs. To 
overcome their limitations, engineers 
exploit the main strengths of FPGAs: 
fine- and coarse-grain parallelism as 
well as the previously mentioned low 
overhead in computations.

Overall, recent improvements in FPGA 
technology (both in device design and 
the software stack) have made the use 
of these devices seemingly viable as 
accelerators for HPC workloads. They 
are known for being able to success-
fully accelerate workloads composed 
of irregular data types and algorithms 
when compared to CPU executions as 
well as for achieving a considerably 
higher energy efficiency.10,11 Addition-
ally, FPGAs present a certain innate 
characteristic that cannot be replicated 
by any ASIC: reconfigurability. This is 
a crucial advantage in environments 
where multiple distinct applications 
need to be accelerated over different 
periods of time. Moreover, FPGAs can 
leverage dynamic partial reconfigu-
ration to modify their behavior on the 
fly.12 This possibility increases the 
accelerator’s f lexibility further and 
enables it to widen the number of tasks 
it can serve without requiring a com-
plete reconfiguration (which incurs 
higher overheads).

Nevertheless, as devices for hetero-
geneous computing, it would be more 
appropriate to compare them with 
other accelerators used for hetero-
geneous computing. After all, mod-
ern general-purpose supercomputers 
rarely include only CPUs but, rather, 
a combination of CPUs and GPUs. This 
comparison should not only be carried 

out in terms of absolute performance 
and energy efficiency but also taking 
into account programmability and 
portability issues.

FPGA PROGRAMMABILITY 
AND PORTABILITY ISSUES
As we stated above, FPGAs are often 
programmed using HDLs, such as 
Verilog or VHDL, which provide deep 
low-level control over the electronic 
components or behavior of the devices. 
Although the use of these languages 
maximizes FPGA performance and 
minimizes resource utilization, from 
an HPC perspective, these languages 
are cumbersome and error prone and 
incur high development times. The 
reason is that they are too low level, 
and HPC engineers are not usually very 
familiar with the constructs on which 
they are based. Trying to program HPC 
kernels entirely with an HDL leads to 
very high development costs, even 
more so if the user has to program 
the entire logic to communicate the 

THE COMPILATION OF FPGA CODES IS A 
TIME-CONSUMING PROCESS, ESPECIALLY 

WHEN HIGH-LEVEL LANGUAGES ARE 
USED TO DESCRIBE SOPHISTICATED 

ALGORITHMS.
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FPGA (device) with the CPU (host) for 
data movement and task dispatch-
ing, which is architecture dependent. 
Thus, using HDL languages is deemed 
unfeasible in HPC contexts.

To alleviate these issues, HLS lan-
guages and frameworks have been 
developed, which leverage high-level 
software programming languages 
(mainly C  based) for hardware design. 

HLS has succeeded in several areas, 
including deep learning, video transcod-
ing, graph processing, and genome 
sequencing.13 Examples of these lan-
guages are Vitis HLS (for Xilinx FPGAs 
only) and OpenCL (commonly used for 
Intel FPGAs). OpenCL is one of the most 
popular ones for Intel FPGAs and previ-
ously for Xilinx ones too. OpenCL was 
designed from the beginning to tar-
get heterogeneous systems and allow 
all their resources to be efficiently 
exploited, and it has been extensively 
used for programming CPU  + GPU 
applications. Its design philosophy is 
to enable code portability across many 
different computing devices, that is, to 
be able to write a single device-agnos-
tic code and execute it on any Open-
CL-supported device (including CPUs, 
GPUs, and FPGAs). This, in theory, is 
perfect for heterogeneous computing, 
especially for FPGAs. Not only does the 
language make the complex low-level 
details of hardware design abstract by 

using a popular software programming 
language but it also allows any code 
written targeting any other accelerator 
(namely, GPUs) to execute on an FPGA.

Nevertheless, theory and reality are 
often known to differ. While it is true 
that OpenCL provides code portability 
across supported devices, it does not 
guarantee performance portability. 
Moreover, its high verbosity and the lack 

of support from important vendors (for 
example, Nvidia) have made it less com-
monly used lately. In the particular case 
of FPGA accelerators, although they 
are able to properly execute device-
agnostic or GPU-optimized OpenCL 
code, the performance they achieve 
with such codes is, in general, con-
siderably low.14,15 Some optimization 
techniques are known to alleviate this 
situation (see “FPGA-Specific Optimiza-
tion Techniques”). Although we centered 
our discussion on OpenCL capabilities, 
it is worth noting that these conclusions 
may be extended to any programming 
model or framework targeting different 
kinds of accelerators (namely, GPUs and 
FPGAs), such as SYCL and all its derived 
implementations, although their actual 
performance depends on the particular 
application considered and the inter-
nal compiler optimizations available. 
Other pragma-based languages, such as 
OpenACC and OpenMP, are also used for 
this purpose.

Other languages and frameworks 
used for high-level synthesis use C prag-
mas to target particular devices. For 
example, Vitis HLS uses pragmas to tar-
get AMD Xilinx FPGAs. The use of prag-
mas allows the code to be annotated 
with different pragmas to target several 
architectures at the same time. On the 
other hand, the use of OpenCL forces the 
rewriting of the code to take advantage 
of architectures whose vendors do not 
support OpenCL. Consequently, the use 
of C pragmas leads to an FPGA-centric 
design philosophy, which might result 
in fewer efforts and complexities to 
optimize naive or device-agnostic codes 
for FPGA execution. However, this opti-
mization step is still unavoidable.

Overall, concerning the programma-
bility of FPGAs for HPC applications, as 
of today, it seems unfeasible to rely only 
on compiler optimizations to efficiently 
execute device-agnostic code on FPGAs. 
Therefore, HPC researchers and engi-
neers are expected to have some knowl-
edge of the underlying architecture 
when trying to maximize performance 
for FPGA devices.

Moreover, the compilation of FPGA 
codes is a time-consuming process, espe-
cially when high-level languages are used 
to describe sophisticated algorithms that 
lead to complex hardware descriptions. 
HPC kernels for FPGAs are known to take 
several hours to compile, which further 
adds to the development costs associated 
with these devices. Overlay architectures 
for FPGAs show potential in reducing the 
long compilation and reconfiguration 
times traditionally associated with FPGA 
deployment. By providing a higher-level 
abstraction, overlays can simplify FPGA 
programming, making it more accessible 
and quicker to adapt to different appli-
cations.16 This approach allows for rapid 
prototyping and iteration, which is crucial 
in research and development settings.

MOST BANDWIDTH LIMITS ON FPGAs 
COME FROM THE USE OF DOUBLE DATA 

RATE 4 TECHNOLOGY, WHILE GPUs 
HAVE BEEN USING FASTER MEMORY 

TECHNOLOGY FOR SOME YEARS NOW.
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CURRENT HARDWARE 
LIMITATIONS OF FPGA 
DEVICES
In addition to the programmability 
and portability issues described previ-
ously, current FPGA technology pres-
ents some significant limitations that 
hinder achieving high performance, 
no matter how thoughtf ul of the 
underlying architecture the program-
ming might be.

Lower clock frequency
FPGA devices present considerably lower 
working clock frequencies than other 
kinds of accelerators. For example, Cong 
et al.17 studied the main performance 
differences between FPGAs and GPUs. 
The authors claim that the lower clock 
frequencies are partially alleviated by 
the fact that FPGAs are able to achieve 
a higher number of operations per 
cycle in each computing pipeline than 

GPUs. However, FPGAs still present a 
lower effective parallel factor, which 
makes GPUs the winner in terms of the 
absolute performance achievable.

Lower memory 
bandwidth and size
Cong et al. also state that the lower 
parallel factor presented by FPGAs, 
described previously, is largely caused 
by the FPGAs’ far lower of f-chip 

FPGA-SPECIFIC OPTIMIZATION TECHNIQUES
To achieve high performance on FPGA devices, specific 
code optimizations are needed. These optimizations 
often differ considerably from CPU or GPU optimizations 
and require the programmer to be aware of the under-
lying architecture to a certain degree. The importance of 
optimizing the code for FPGAs is such that it can make 
the difference between underperforming and outper-
forming CPU executions of the same applications. There 
exist several particular optimization techniques that are 
known to considerably increase performance for FPGA 
executions of HPC workloads:

»» Pipeline single-threaded versus ND-range kernels: 
Single-threaded loop-pipelined kernels usually achieve 
higher performance and allow for more FPGA-spe-
cific optimizations than multithreaded (also known 
as ND-range) kernels, which are commonly used for 
GPU and CPU execution. This is usually true even when 
the single-threaded kernels achieve a lower work-
ing frequency than the multithreaded ones since the 
further optimizations available to the single-threaded 
kernels enable a much higher number of computations 
per cycle to be achieved. FPGAs especially benefit from 
deep pipeline kernels, as executing every independent 
stage of the pipeline simultaneously on every single 
clock cycle achieves a computations-per-cycle rate 
proportional to the number of pipeline stages. Thus, 
algorithmic refactoring of a kernel might be needed to 
achieve the highest performance on FPGAs.

»» Memory hierarchy usage: The memory hierarchy of FP-
GAs differs significantly from traditional general-pur-
pose accelerators, and the user should take this into 
account when designing optimized kernels. Among 
others, the usage of the restrict C keyword, which is 
used in pointer declarations to indicate to the com-
piler that no other pointer will be used to access the 
object to which it points, usually provides a noticeable 
performance improvement. Some other well-known 
constructs, such as the use of shift registers and sliding 
window strategies, are able to efficiently exploit the 
FPGA resources and achieve high performance.

»» Other manual optimizations: In general, automatic 
compiler optimizations do not achieve perfor-
mance increments comparable to those of manual 
optimizations. In particular, manual loop unrolling 
and manual vectorization often result in increased 
performance.

More advanced optimizing transformations, including 
pipelining, data reuse, and resolving interface conten-
tion, are discussed in de Fine Licht et al.S1 

REFERENCE
S1.	 J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, 

“Transformations of high-level synthesis codes for 
high-performance computing,” IEEE Trans. Parallel  
Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, May 2021, 
doi: 10.1109/TPDS.2020.3039409.
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memory bandwidth. Low memory band-
width is the other most important lim-
itation of current FPGA devices, and it 
probably constitutes the main limiting 
factor for FPGAs to achieve high per-
formance in numerous applications. 
Most bandwidth limits on FPGAs come 
from the use of Double Data Rate 4 tech-
nology, while GPUs have been using 
faster memory technology for some 
years now. This limitation is even more 
relevant when considering that avail-
able FPGA boards do not support the 
memory sizes available in GPUs, and 
getting data in and out of these cards 
is expensive and can easily destroy 
any potential benefit in the computa-
tion. FPGAs are designed for flexibil-
ity and programmability, with their 
architecture consisting of an array of 
programmable logic blocks and rout-
ing. This flexibility comes at the cost 

of not being optimized for high mem-
ory bandwidth in the same way GPUs 
are since GPUs are designed with par-
allelism and high-bandwidth memory 
interfaces from the outset.

Zohouri et al.18 present a compre-
hensive analysis of the memory control-
ler and memory bandwidth efficiency of 
Intel FPGAs, concluding that to achieve 
high memory performance, FPGA ker-
nels must meet multiple and strict 
requirements related to access pat-
terns, alignment, and memory hierar-
chy usage. These requirements are hard 
to meet in real-world applications, and 
thus, for many applications, it might not 
be possible to achieve more than 70% of 
the peak memory bandwidth. Overall, 
the low off-chip memory bandwidth 
compared to CPUs and GPUs, as well as 
the difficulties to efficiently exploit that 
bandwidth, put FPGA accelerators at a 

disadvantage against other accelerators 
for many applications.

The cited works conducted their 
research using older FPGA and GPU 
models, so their conclusion might not 
seem representative of the current 
state of the art. To provide some insight 
into how the state of the art might have 
changed since those works were pub-
lished, Table 1 provides a comparison of 
clock frequencies and memory band-
widths among different Intel FPGA and 
Nvidia GPU models, including recent 
ones. Comparing FPGAs and GPUs just in 
terms of maximum clock frequency is an 
oversimplification based on theoretical 
hard limits and should be taken lightly. It 
is worth noting that FPGA working clock 
frequencies depend on the specific hard-
ware design synthesized and rarely come 
close to the reported theoretical maxima 
(shown in the table), especially when 

TABLE 1. A comparison of the clock frequency and peak memory bandwidth of several 
Xilinx and Intel FPGAs and Nvidia GPU models, sorted by release date.

Release date
Processing clock  
frequency

Peak memory  
bandwidth

Virtex UltraScale+ First quarter 2016 Up to 819 MHz 76.8 GB/s

Nvidia Tesla V100 GPU First quarter 2017 1,245 MHz (base),  
1,380 MHz (boost)

900 GB/s

Intel PAC with Intel Arria 10 GX FPGA Fourth quarter 2017 (FPGA model from 2013) Up to 800 MHz 34.8 GB/s

Intel FPGA PAC D5005 (with Intel Stratix 10 GX) Fourth quarter 2019 (FPGA model from 2013) Up to 1,000 MHz 76.8 GB/s

Intel Stratix 10 MX* FPGA FPGA model from 2017 Up to 1,000 MHz 512 GB/s

Nvidia A100 GPU First quarter 2020 765 MHz (base),  
1,410 MHz (boost)

1,555 GB/s

Xilinx Alveo U55C Fourth quarter 2021 Up to 1,028 MHz 460 GB/s

Intel Agilex 7 FPGA* M-Series 039 FPGA model from first quarter 2022 Up to 800 MHz 1,000 GB/s

Nvidia H100 GPU First quarter 2022 1,095 MHz (base),  
1,755 MHz (boost)

2,039 GB/s

*The entry is an FPGA integrated circuit (chiplet) model to be integrated into a hardware package or module with other components, not a commercially available ready-to-use 
accelerator itself.
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using a high-level synthesis language 
and compiler (such as OpenCL) instead 
of HDLs. For compute-intensive or HPC 
kernels, the cited works report working 
frequencies that usually range between 
200 and 300 MHz on Arria 10 GX devices, 
which is 20% to 37.5%, respectively, of 
their reported peak frequency. In the 
case of Stratix 10 GX devices, it is usual to 
achieve working frequencies that range 
between 300 and 400 MHz (30% to 40% 
of their peak frequency).

Lower floating-point performance
One of the major limitations of FPGAs 
in the context of HPC seems to be the 
low single- and double-precision float-
ing-point performance that could be 
achieved with such devices.19 Some 
recent research works, such as two by 
Calore and Schifano20,21 attempted to 
measure it in the context of the roof-
line model. These works offer a perfor-
mance estimation of function kernels 
developed with high-level synthesis 
tools, revealing some of the FPGA lim-
itations in the context of HPC.

ON THE POTENTIAL OF 
FPGAs IN MODERN HPC 
WORKLOADS
Regarding the question of whether cur-
rent FPGAs are suitable to accelerate 
modern HPC workloads, we now con-
textualize the points discussed above 
for the case of real-world applications. 
To review the potential of FPGAs in 
HPC contexts, not only the absolute per-
formance of FPGAs when executing 
common HPC tasks must be considered 
but also the performance relative to 
other accelerators since the potential of 
FPGAs is conditioned by the other avail-
able alternatives for HPC accelerators.

Back in 2014, Véstias et al.19 reviewed 
the trends of CPU, GPU, and FPGA devices 
for HPC. Their conclusions were that 

FPGAs were not keeping pace with other 
platforms in terms of performance, 
which caused HPC applications to be 
migrated to other more powerful plat-
forms, such as software-based manycore 
systems (CPUs and GPUs). The authors 
noted that FPGAs become competi-
tive when working with applications 
with specific constructs or requirements 
for which general-purpose computing 

devices are not suited (for example, appli-
cations with operands with custom/
user-defined data widths as well as com-
binational logic problems, finite-state 
machines, and parallel MapReduce prob-
lems). The authors also noted a trend for 
the HPC community toward adopting 
hybrid (heterogeneous) platforms with 
a mix of different kinds of devices work-
ing together. As that work is almost a 
decade old, it is worth reviewing more 
recent works so as to analyze whether 
these trends have continued. For exam-
ple, in 2020, Nguyen et al.11 explored 
the potential of FPGAs in HPC environ-
ments, testing both an Intel FPGA (Arria 
10 GX) and a Xilinx FPGA (Alveo U280) 
and comparing them against other 
accelerators (namely, an Intel Xeon CPU 
and Nvidia V100 GPU). They found the 
single-precision FPGA performance and 
bandwidth still fall far below GPUs for 
compute and memory-intensive tasks; 
however, FPGAs can deliver nearly the 

same energy efficiency as GPUs for most 
applications, and even exceed it in some 
cases. The authors also noted that FPGAs 
are likely to continue being competitive 
in areas for which GPU and CPU com-
puting models do not match the nature 
of the problem. Their work led them to 
interesting conclusions. First, they point 
to the low memory bandwidths of the 
FPGAs as the main limiting factor for 

achieving high performance on FPGAs. 
Second, they also note that exploiting 
such bandwidths is rather difficult, while 
only a very small fraction of the theoret-
ical memory bandwidth is achieved by 
unoptimized codes. Third, they note 
that FPGAs are not power-proportional 
devices, in the sense that a significant 
increase in performance might require 
only a moderate increase in power con-
sumption. This contrasts with CPUs 
and GPUs, where the power consump-
tion increase is more pronounced. Their 
conclusions were that vendors should 
prioritize maximizing development pro-
ductivity for FPGAs rather than increas-
ing their amount and type of resources, 
as their FPGA implementations required 
greater orders of magnitude of software 
development time than the equivalent 
(and often superior) CPU and GPU imple-
mentations. Other works22 note that 
FPGAs might present certain advantages 
compared to GPUs for applications that 

FPGAs BECOME COMPETITIVE WHEN 
WORKING WITH APPLICATIONS 

WITH SPECIFIC CONSTRUCTS OR 
REQUIREMENTS FOR WHICH GENERAL-

PURPOSE COMPUTING DEVICES ARE 
NOT SUITED.
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can exploit temporal blocking or other 
forms of high pipelined parallelism.

FPGAs can be beneficial in scientific 
computing applications where latency 
and predictability of execution times 
are crucial, such as in urgent HPC sce-
narios, including interactive prototyp-
ing, urgent streaming data analysis, 
application steering, and in situ visu-
alization. There are several reasons for 
this. First, FPGAs excel in providing 
low-latency processing. Unlike CPUs 
and GPUs, which have fixed hardware 
structures and instruction sets, FPGAs 
can be configured to perform specific 
computations directly in hardware, 
reducing their overhead. This is partic-
ularly relevant in the case of irregular 
applications, where the single-instruc-
tion, multiple data paradigm cannot 
be applied. Second, FPGAs offer more 
predictable performance compared 
to CPUs and GPUs. Since FPGAs can 
be configured with specific hardware 
paths for given tasks, they can execute 
these tasks consistently without the 
unpredictability introduced by shared 
resources (like caches or memory buses) 
in general-purpose processors. This 
predictability is critical in applications 
where timing and consistency of com-
putation are vital. Third, FPGAs can be 
tailored for specific algorithms or data 
processing tasks. This customization 
allows for highly efficient execution of 
particular tasks in scientific comput-
ing, such as data analysis or simulation, 
which can be critical in urgent com-
puting scenarios where quick accurate 
results are required. Due to these rea-
sons, FPGA benefits in scenarios like 
the ones described previously can be 
substantial, especially when immedi-
ate data processing and decision mak-
ing are crucial.

For some years, FPGAs have been 
considered well suited for deep learning 

computations, due to the pipelined nature 
of deep learning models and the poten-
tial to optimize them by means of custom 
irregular data types as well as irregular 
algorithms. Nurvitadhi et al.23 conclude 
that recent trends in deep neural net-
work algorithms might favor FPGAs 
over GPUs and that FPGAs have poten-
tial to become the platform of choice 
for accelerating deep neural networks, 
offering superior performance. Never-
theless, the deep learning market has 
been of significant importance in recent 
times, and many vendors of electronic 
components (including CPUs, GPUs, and 
ASICs) have tried to get into and expand 
inside that market. Since the publi-
cation of that work, two major break-
throughs have been made concerning 
hardware acceleration of deep learning 
applications. First, many GPUs have 
started to include dedicated hardware 
for AI acceleration, such as Nvidia’s ten-
sor cores. Second, Google launched the 
TPU, an ASIC for AI acceleration. These 
new kinds of hardware attempt to accel-
erate AI tasks that GPUs are not well 
suited for, including algorithms dealing 
with custom irregular data types. Thus, 
both of them pose new challenges to 
FPGAs to become the platform of choice 
to accelerate deep neural networks. 
Over recent years, we have seen a signif-
icant increment in TPU and tensor core 
GPU utilization for accelerating real-
world AI tasks; however, FPGAs do not 
seem to have made significant progress 
in this field, and nowadays, they are not 
the platform of choice for accelerating 
large-scale deep neural networks.

WHAT ABOUT THE 
USE OF FPGAs AS 
COOPERATIVE DEVICES IN 
HETEROGENEOUS SYSTEMS?
Besides the potential use of FPGAs as 
stand-alone devices for the acceleration 

of HPC workloads, whose strengths and 
limitation were described previously, 
there is also certain interest in studying 
the potential use of FPGAs cooperatively 
with other devices, both FPGAs and 
other accelerators, so as to exploit all the 
available resources of a given heteroge-
neous potentially distributed system.

Many works explore the possibilities 
of using FPGAs cooperatively in hetero-
geneous environments. Some explore 
the possibility of using FPGA-powered 
network interface cards to carry out CPU-
less processing of incoming and outcom-
ing network data, thus reducing latency. 
This can be applied to inter-FPGA com-
munications to efficiently connect mul-
tiple distributed FPGAs together. Other 
works discuss direct memory access 
(DMA) mechanisms to connect GPUs 
and FPGAs together in order to effi-
ciently communicate different kinds of 
accelerators from different perspectives: 
either the GPU is the peripheral compo-
nent interconnect express (PCIe) mas-
ter or this task is assigned to the FPGA. 
Both approaches show that performance 
penalties are incurred for DMA transfers 
in which the PCIe master is the destina-
tion device. These two techniques can be 
combined to enable efficient cooperative 
work between GPUs and FPGAs over dif-
ferent nodes.24

Although these are promising tech-
niques for heterogeneous environments, 
there do not seem to be many real case 
applications that clearly benefit from 
cooperative FPGA approaches. While 
GPU technology is making significant 
progress in the distributed multi-GPU 
field for real-world applications, the 
multi-FPGA and hybrid GPU–FPGA 
fields for real-world applications seem 
to be considerably less explored. One 
major cause for this seems to be the 
lower scaling capabilities of FPGA 
devices, which hinder the development 
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of multi-FPGA solutions, as well as the 
higher hardware costs, which hinder 
the integration of FPGAs into heteroge-
neous clusters already including GPUs. 
Besides this, the existence of applica-
tions with computational patterns that 
would benefit from simultaneous GPU 
and FPGA acceleration is still unclear.

O verall, modern FPGA technol-
ogy focused on HPC environ-
ments still presents important 

limitations that put FPGA devices at a 
disadvantage compared to GPUs, namely, 
low memory bandwidth and size, lower 
raw computational power, the need for 
sophisticated manual tuning due to 
poor automatic compiler optimizations, 
development complexity, and very long 
compilation times. FPGAs can still 
prove useful in the acceleration of irreg-
ular tasks for which general-purpose 
architectures (CPU and GPU) are poorly 
optimized, such as tasks with irregular 
data types or algorithms, as long as 
it is not profitable to build and deploy 
ASICs for those applications. FPGAs also 
show potential for accelerating tasks 
in environments where flexibility and/
or energy efficiency are crucial. Nev-
ertheless, FPGA technology still has to 
make some progress, both in hardware 
capabilities and ease of development, 
to become competitive at accelerating 
most modern HPC workloads. 
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