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Abstract— Metals in coastal regions are threatened by corro-
sion, underscoring the need for precise detection and monitoring
methods. Traditional methods often face limitations in terms
of accuracy and applicability under diverse conditions. This
study introduces the corrosion severity index (CSI), an inno-
vative spectral index for assessing corrosion in steel and iron
structures. Several iron samples were placed in a salt spray
chamber to generate different degrees of corrosion. The sam-
ples were analyzed using hyperspectral cameras covering the
visible near-infrared (VNIR) to the shortwave infrared (SWIR)
spectrum. A scale-invariant feature transform (SIFT) registration
algorithm was employed to generate the full spectral signatures
from 400 to 1700 nm for each pixel. The CSI combines four
spectral bands (457.50, 791.91, 1305.08, and 1442.60 nm) where a
pixel value close to 0 represents the absence of corrosion, whereas
a higher value indicates greater severity of corrosion. Based on
the average CSI values, samples are classified into Grade A, B, C,
or D, which indicates the degree of corrosion. CSI demonstrates
its ability to detect early-stage corrosion and has been evaluated
for robustness across a variety of steel and iron samples in
different environmental conditions. In addition, the performance
of the CSI is validated by comparing it with the previously
published corrosion index (CI). CSI demonstrates a higher
accurate ability to detect corrosion products and identify the
degree of corrosion with a simplified approach. This index allows
a balance between accuracy, low computational demands, and
usability, providing an optimal solution for early diagnosis and
proactive management of corrosion in coastal infrastructures.

Index Terms— Corrosion, early-stage corrosion, hyperspectral
imaging (HSI), multispectral camera, spectral indices.
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I. INTRODUCTION

THE coastal environment is significantly impacted by
corrosion, an inevitable consequence of metals in con-

stant exposure to the salinity of seawater and other corrosive
agents [1], [2], [3]. This phenomenon compromises the
functionality and safety of various steel and iron struc-
tures and artifacts, such as offshore platforms [4], ships [5],
or bridges [6]. Effective corrosion monitoring and predic-
tion are essential not only for ensuring the safety and
integrity of these structures but also for enhancing opera-
tional efficiency, achieving cost savings, and protecting the
environment [7].

Several nondestructive techniques (NDT) have been devel-
oped to automate corrosion detection without damaging the
material [8]. Traditional methods such as linear polariza-
tion resistance (LPR) [9], ultrasonic testing (UT) [10], [11],
eddy current [12], electrical resistance (ER) [13], and elec-
trochemical impedance spectroscopy (EIS) [14], [15], [16]
play a critical role in identifying corrosion. These tech-
niques are often referred to as direct methods because they
assess corrosion based directly on the physical or chem-
ical effects that corrosion produces in the material [17].
However, they have significant limitations. The requirement
for direct contact with the material limits their applicability for
inspecting large surfaces or hard-to-reach areas. In addition,
these methods may find difficulties in detecting early stage
or under thin coatings challenging, where initial signs are
minimal.

In contrast, indirect methods are based on parameters that
indirectly influence the corrosion process, such as temperature,
molecular structure, texture, or surface color. These methods
include chemical analysis techniques such as the Fourier trans-
form infrared (FTIR) spectroscopy [18], [19], [20], the Raman
spectroscopy [21], and the X-ray spectroscopy [22], which
use the spectral properties of materials to obtain information
about their composition and structure. Although these methods
allow noncontact and accurate detection of corrosion, their
range is generally confined to small areas, and in certain
scenarios, their implementation in field operations can be
challenging [23].

Instead, optical techniques include RGB, multispectral, and
hyperspectral sensors. Methods using RGB sensors mea-
sure the intensity of the primary colors (red, green, blue)
and are mainly focused on the intensity, color, and texture
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characteristics of the metal. This method is simple and uses
collected information that is usually processed by machine
learning (ML) and deep learning (DL) algorithms to detect
and quantify corrosion [24], [25], [26], [27]. However, these
algorithms generate a large number of false positives by
misidentifying colors or textures similar to corrosion [28].
Furthermore, they do not facilitate early detection of this
phenomenon, as their analysis is limited to what is visually
observable.

Unlike RGB sensors, which are limited to three spec-
tral channels, multispectral and hyperspectral sensors provide
more detailed analysis by providing a high number of spectral
bands. Specifically, hyperspectral sensors have the ability to
scan a wide range of the electromagnetic spectrum, spanning
the visible near-infrared (VNIR) spectra, as well as the short-
wave infrared (SWIR). This amount of information enables the
production of images in which each pixel reflects a unique
spectral signature, allowing the precise identification of the
composition of surfaces and revealing details not visible to the
naked eye. In contrast, multispectral sensors capture images in
a narrower, yet specific, range of the electromagnetic spectrum,
typically between four and ten bands. Although they provide
less information than hyperspectral sensors, multispectral sen-
sors offer simplified image acquisition through instantaneous
capture (snapshot). This is in stark contrast to the linear
scanning (push broom) approach common to hyperspectral
imaging (HSI) [29], [30].

Multispectral and hyperspectral technology offers a balance,
allowing the analysis of large or small areas, without the
need for direct contact, and without compromising accuracy.
Although these techniques cannot probe under coatings,
a detailed surface examination can reveal much about the
underlying condition of the material.

Multispectral and hyperspectral imaging, originally devel-
oped for remote sensing purposes [31], [32], [33], has
found wide-ranging applications across diverse fields, includ-
ing medicine [34], [35], food safety and quality [30], [36],
and precision agriculture [37], [38]. The corrosion domain
has benefited significantly from these technologies in recent
years. The breakthrough came in 2016 when Simova and
Rochefort [39] highlighted the potential of multispectral imag-
ing in the identification of different materials and corrosion
types. Subsequently, Rowley’s thesis [40] and the study
by Lavadiya et al. [28] have demonstrated the superiority in
terms of accuracy of hyperspectral imaging over traditional
RGB imaging in corrosion detection. This technique has
been successfully applied in the analysis of corrosion on
outdoor bronze sculptures [41] and in the development of
hyperspectral imaging probes designed for inspections in
dark and difficult-to-access areas [42], [43]. Advances by
De Kerf et al. [44] in determining corrosion levels in carbon
steel have demonstrated the precise ability of these technolo-
gies to differentiate between corrosion stages. In addition,
molecular structure studies have facilitated the identification
of specific corrosion products, allowing accurate assessment of
steel condition [44], [45]. Finally, chloride ion (Cl-) concen-
tration has emerged as a key indicator for corrosion detection
in steel reinforcing bars [46].

These studies have largely employed ML and DL algo-
rithms, which have proven to be useful tools for analyzing and
processing data obtained from hyperspectral images. These
algorithms facilitate the identification and classification of
corrosion patterns although the efficiency of these methods
also depends on the quality and quantity of the trained dataset.

Spectral indices are one of the most widely used approaches
to multispectral and hyperspectral data management. A spec-
tral index is a numerical value derived from mathematical
operations performed on different bands of the electromagnetic
spectrum used to highlight specific characteristics of a surface
or object [47], [48]. These measures identify, characterize, and
quantify features such as vegetation quality [49], [50], [51],
soil moisture [52], or oil spills [53]. Spectral indices offer
advantages in terms of lower computational costs compared
to ML and DL algorithms and do not require an extensive
database for training. However, in certain applications, the
limitations of spectral indices compared to ML and DL algo-
rithms could be a challenge in terms of versatility. In the field
of corrosion, the application of spectral indices has not been as
widespread due to the complexity of the diversity of corrosion
products and different types of steel. Zabalza et al. [54] devel-
oped a spectral index specifically aimed at this problem, the
corrosion index (CI). Designed to evaluate corrosion in nuclear
packages and focused on two types of steel (365L and 2205),
the results of this index have been satisfactory and represent a
promising advance. CI evaluates the spectral response obtained
against a reference, corresponding to the spectral signature of
an advanced corrosion state for the type of steel analyzed. This
comparison quantifies the differences using the angular cosine
distance (ACD) [55]. Subsequently, to refine this evaluation,
the ACD values are adjusted using calibration parameters,
empirically determined for each type of steel.

Corrosion represents a major challenge, especially in coastal
environments where atmospheric conditions accelerate the
deterioration of steel and iron structures. Accurate detection of
affected areas is essential to implement effective maintenance
measures, extend the lifespan of infrastructures, reduce costs,
and ensure their functionality and safety. Although various
noninvasive techniques have advanced corrosion monitoring,
there is still a need for a method that combines accuracy,
simplicity, processing speed, and low computational demand.
In this context, the corrosion severity index (CSI) introduced
by the authors emerges as an innovative tool designed to
accurately and reliably assess the degree of corrosion of
steel and iron. This index stands out for its simple approach
that requires only four spectral bands, facilitating its use
in multispectral cameras. The study methodology involves
preparing iron samples, exposing them to different levels of
corrosion in a salt spray chamber, and capturing images with
hyperspectral cameras spanning the VNIR and SWIR ranges.
A registration algorithm processes these images to obtain a
complete spectral signature. The CSI demonstrates its ability
to detect corrosion in its early stages and its robustness by
successfully identifying corrosion in different steel and iron
types. Validation is performed by comparison with the CI
index, showing improved accuracy regarding the diversity of
corrosion products and providing a more detailed analysis
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Fig. 1. Experimental setup for the salt spray chamber.

TABLE I
SUMMARY OF SSC SAMPLES

of the corrosion degree. This research not only contributes
to the field of corrosion monitoring with a revolutionary tool
but also establishes a solid foundation for future practical
applications.

II. MATERIALS AND METHODS

A. Steel and Iron Samples’ Preparation

For this study, two datasets have been developed. The
first dataset, known as Salt Spray Chamber Samples (SSC
Samples), was designed to corrode the plates in a controlled
environment, allowing for validation of the spectral index.
In contrast, the second dataset, Outdoor Conditions Samples
(OC Samples), incorporates a variety of environmental con-
ditions to assess the robustness and adaptability of the index
under different real-world scenarios.

In order to obtain SSC Samples, 12 plates with iron (99.60%
purity) were procured. The purity was obtained through initial
characterization using an Oxford Instruments X-MET7000
Series fluorescence spectrometer [56]. These samples, measur-
ing 100 × 100 mm, were subjected to a sandblasting process
to eliminate any corrosion or surface imperfections. Samples 1,
2, and 3 were kept corrosion-free and designated as Level 0
samples. The remaining nine plates were exposed to 35 ◦C
temperature and 5% NaCl solution in a salt spray chamber
(see Fig. 1). Table I provides a summary of the iron samples
and their exposure time in the salt spray chamber. Samples 4,
5, and 6 (Level 1) were subjected to 30 min of exposure;
Samples 7, 8, and 9 (Level 2) were exposed for 1 h; and
Samples 10, 11, and 12 (Level 3) were exposed for 24 h.
Fig. 2 shows the RGB images after this process.

Fig. 2. RGB images of SSC Samples. (a) Sample 1. (b) Sample 2.
(c) Sample 3. (d) Sample 4. (e) Sample 5. (f) Sample 6. (g) Sample 7.
(h) Sample 8. (i) Sample 9. (j) Sample 10. (k) Sample 11. (l) Sample 12.

TABLE II
CHARACTERISTICS OF OC SAMPLES

Meanwhile, the OC Samples dataset comprises various
types of steel and iron plates subjected to varying treatments
and exposed to outdoor conditions. Table II displays the
metal plates used, along with their respective metal type and
dimensions.

Each plate was subjected to an initial sandblasting treatment.
Following this, Samples 1, 2, and 3 were exposed to outdoor
conditions for a duration of two weeks. Sample 1 did not
receive any further treatment. For Sample 2 and Sample 3,
seawater was poured daily into one half, whereas the other half
was shielded with a protective cover. To document the changes
over time, images were captured on a weekly schedule, that
is, on days 0, 7, and 14 (see Fig. 3).

In addition, Sample 3 was subjected to hyperspectral imag-
ing before the sandblasting treatment to study the behavior
of the spectral index in the presence of mill scale; a layer
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Fig. 3. RGB images of OC Samples.

Fig. 4. RGB images of OC Samples. (a) Sample 3 m. (b) Sample 4.

of oxide on the surface of the steel during hot rolling
[see Fig. 4(a)]. In this case, Sample 3 is referred to as
Sample 3 m. Finally, Sample 4 was placed on a platform in
the middle of the sea for four months [see Fig. 4(b)].

B. Corrosion Severity Assessment of Metal Samples

Each metal sample is meticulously inspected and assessed,
and a corrosion grade is assigned based on its condition
according to the Swedish standard SIS 05 5900 [59]. This
classification relies on visual appearance and structural dam-
age observed in the samples, following predefined criteria to
ensure evaluation consistency.

1) Grade A: Sample without signs of corrosion in pristine
condition.

2) Grade B: Sample with superficial and scattered corro-
sion without significant structural damage.

3) Grade C: Generalized corrosion present in the sample
but without the formation of deep cavities.

TABLE III
GRADES OF SSC SAMPLES

TABLE IV
GRADES OF OC SAMPLES

TABLE V
SPECIM FX10 AND FX17 MAIN CHARACTERISTICS

4) Grade D: Samples with advanced corrosion, including
extensive structural damage.

In the SSC Samples dataset, the first three samples are
classified as Grade A due to their pristine condition. Samples
at Levels 1 and 2 are defined as Grade B. Although Level 2
samples are exposed for an additional half-hour and show more
corrosion, they still exhibit superficial corrosion with intact
areas. Meanwhile, Level 3 samples are classified as Grade C
due to generalized corrosion (see Table III).

Similarly, the OC Samples dataset is classified
(see Table IV). Samples 1, 2, and 3 are categorized as
Grade A before the corrosion process began, i.e., on day 0.
Subsequently, on days 7 and 14, they are classified as
Grade B; although the level of corrosion increases gradually,
it remains superficial and not widespread. Sample 3 m (with
mill scale) is considered Grade A, and Sample 4 is assigned
Grade D due to its significant deterioration.

C. Hyperspectral Measurements

Two hyperspectral Specim cameras have been employed:
the FX10 and the FX17 [60], corresponding to VNIR and
SWIR cameras, respectively. The main characteristics of these
cameras are described in Table V. Both cameras utilize push
broom technology.

The images of the samples were acquired in the lab-
oratory using a hyperspectral imaging acquisition platform
(see Fig. 5). In addition, radiometric calibration in (1)
was performed using white and black references. For the
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Fig. 5. Experimental setup for hyperspectral measurements [63].
(a) Three-dimensional model of the acquisition system. (b) Detailed view
of the main components.

white reference, a Spectralon Diffuse Reflectance Mate-
rial [61] with a reflectance of 99% was used, whereas, for
the black reference, the camera lens was completely closed.
Radiance, which is the measure of the amount of light reflected
by the sample, was used in the calibration process. The value
obtained based on (1) represents the reflectance [62], which is
the calibrated value obtained from the radiance, and it ranges
from 0 to 1

Reflectance =
Radiance − Dark Reference

White Reference − Dark Reference
. (1)

D. Hyperspectral Image Preprocessing

In this study, the importance of analyzing the VNIR and
SWIR spectral ranges together is emphasized to obtain a
comprehensive and accurate spectral signature of corroded
surfaces. To achieve this, we employ the scale-invariant feature
transform (SIFT) algorithm, which is widely recognized for its
robustness in detecting and matching key points across images
with varying conditions [64], [65]. The flowchart in Fig. 6
illustrates the sequential stages of SIFT’s operation from
detecting scale-space extrema to generating unique descriptors
for each key point. This process allows for the reliable
identification of invariant features that remain stable across
changes in scale, orientation, and lighting, ensuring precise

Fig. 6. Flowchart of the SIFT algorithm.

image alignment. This approach is essential for accurately
registering images from different spectral bands despite chal-
lenges such as variations in brightness, scale, and similarities
between features [66], [67].

To select the best matches, a geometric constraint based
on the distance between matched features was applied,
in addition to the random sample consensus (RANSAC)
algorithm [68], [69]. This methodology was crucial in accu-
rately aligning the images despite the challenges presented
by low brightness, scale variation, and similarity between
different image features.

Special emphasis was placed on selecting 2-D images for
key point analysis, focusing on the bands with the highest
correlation between the hyperspectral cameras used. This
selection process significantly improved the results of the
study, ensuring the precision and quality of the resulting
spectral signature [70].

E. CI Methodology

The CSI was developed from the SSC Samples dataset.
This analytical process focused on spectral ranges and specific
bands that are mostly influenced by corrosion, with the aim
of covering the diversity of corrosion products and identifying
common patterns associated with their progression. These
observations are detailed in the Section III-A.

The CSI is obtained by a mathematical calculation described
in (2), which involves four spectral bands able to distinguish
different levels of corrosion. Each spectral band is represented
as R_center wavelength, indicating its reflectance value

CSI =

(
R790 − R450

R790 + R450
+ (R1340 − R1430)

)/
R790. (2)

This index allows a quantitative assessment at the pixel level
of the state of corrosion, facilitating a detailed analysis of its
distribution and severity in the examined area. Values close
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to zero indicate the absence of corrosion, whereas higher
values signify an increasing presence of corrosion. In the
datasets proposed in this study, the CSI values range from
zero to five, without normalization.

To determine the overall corrosion degree of the sample, the
CSI values are averaged for every pixel. From this result, the
plate is classified into A, B, C, or D grade. This classification
provides information on the condition of the metal without the
need for additional qualitative evaluations.

An optical microscope was used to evaluate areas with
minimal or no visible corrosion. This technique enabled a
thorough examination at the microscopic level to detect early
signs of corrosion, which are not easily visible to the naked
eye. Microscopic analysis was conducted on different areas
of the same sample to confirm the presence of corrosion and
verify corresponding CSI values in these regions.

The CSI robustness was confirmed using the OC Samples
dataset, which analyzed steel and iron plates exposed to
environmental and corrosion conditions. This step validated
the applicability and reliability of the index in different
contexts.

Finally, a comparison was carried out between the CSI
and the CI. For this purpose, images from the SSC Samples
dataset were used, and the methodology described in [54] was
followed. To ensure a fair assessment, the CSI is normalized.
This normalization facilitates an accurate and direct compar-
ison between the indices, where a value of 0 indicates no
corrosion and a value of 1, the maximum level of corrosion
detected.

III. RESULTS AND DISCUSSION

A. Spectral Corrosion Characterization of Steel
and Iron Samples

The formation of corrosion in steel and iron is manifested
through the appearance of various corrosion products, which
vary depending on the chemical reactions involved. These
products’ corrosion presents different colors and spectral sig-
natures. Inspired by the approach of De Kerf et al. [45], who
investigated the materials present in corroded steel plates
under similar conditions to this study, within a salt spray
chamber, the presence of hematite, lepidocrocite, goethite, and
magnetite was highlighted. It was observed that hematite and
lepidocrocite predominate in the early phases of corrosion.
However, after 8 h of exposure to the saline environment,
a significant increase in the presence of goethite, identified by
brownish tones, as well as magnetite, which presents a black
color, was noted.

The present study has identified similar patterns. To analyze
spectral signatures across corrosion levels, we calculated the
mean and standard deviation of signatures for each level. The
full spectral results obtained are illustrated in Fig. 7.

Iron plates without corrosion show spectral signatures with
an ascending and almost linear trend. When the corrosion
process began, areas with yellowish tones appeared. These
areas clearly present a change in the spectral signature,
specifically in the visible spectrum, where the slope between
400 and 600 nm becomes steeper. In addition, a descending
trend is observed starting at approximately 1200 nm.

Fig. 7. Spectral signatures of steel under progressive corrosion: from pristine
to advanced stages. The spectral bands employed in the spectral index are
marked with dashed lines.

Samples exposed for an additional 30 min (Level 2) showed
a similar color but with an increased density of corrosion.
In these cases, the decay in the SWIR region was generally
more abrupt compared to the initial samples.

In the samples exhibited for 24 h in the salt spray chamber,
two clearly differentiated zones appear, both in color and
spectral signature. One zone, with brown and dark orange
tones (brown corrosion, Level 3), shows a drastic change in
the SWIR region. Between 1350 and 1450 nm, there is a
further decrease in reflectance, even greater than in previous
observations. The black zones (black corrosion, Level 3)
exhibit extremely low reflectance, practically close to zero.

The CSI employs four specific bands: 457.50, 791.91,
1305.08, and 1442.60 nm. The relationship between the nor-
malized difference of the 457.50- and 791.91-nm bands, in the
visible and near-infrared regions, enables the detection of cor-
rosion in yellowish, orange, and brown tones, characteristics
of corrosion.

In addition, the bands in the SWIR region (1305.08 and
1442.60 nm) show a more pronounced decline in reflectance
as corrosion progresses, while, in noncorroded areas, there
is an increase in the spectral signature. This contrast makes
these bands a strong indicator of corrosion levels. When no
corrosion is present, this difference tends to be negative, which
is counteracted by the previous normalized value between the
457.50- and 791.91-nm bands. This balance allows the CSI to
reliably indicate corrosion, with values close to zero indicating
no corrosion and higher values reflecting greater corrosion
levels.

In order to incorporate corrosion products defined as black
corrosion, which have very low reflectance across the spec-
trum, the entire index is divided by the 791.91-nm band.
This adjustment amplifies the response for magnetite, yielding
higher values where it is present.

The correlation coefficients between the CSI and the spectral
bands were calculated to evaluate the relationship between the
index and the reflectance values at different wavelengths. The
results of the correlation analysis are shown in Table VI. These
correlations demonstrate a strong relationship between the CSI
and the reflectance values at the four spectral bands, with
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Fig. 8. RGB images and CSI color map of SSC Samples. (a) Sample 1. (b) Sample 2. (c) Sample 3. (d) Sample 4. (e) Sample 5. (f) Sample 6. (g) Sample
7. (h) Sample 8. (i) Sample 9. (j) Sample 10. (k) Sample 11. (l) Sample 12.

TABLE VI
CORRELATION COEFFICIENTS BETWEEN THE CSI AND SPECTRAL BANDS

the strongest correlation observed for Band 1 (457.50 nm),
indicating that the index accurately reflects spectral changes
due to corrosion in these wavelengths.

B. Analysis of CSI

The CSI index is applied to the dataset of SSC Samples
obtained with the salt spray chamber. The corrosion degree
of each sample is determined by the CSI mean values (CSI).
Boundaries defined visually determine the corrosion degree.

1) Grade A: CSI < 1.
2) Grade B: 1 ≤ CSI < 2.

Fig. 9. Zones defined in the samples. On the left, the sample was without
corrosion; on the right, the sample was exposed for 20 min in a salt spray
chamber.

3) Grade C: 2 ≤ CSI < 3.
4) Grade D: CSI ≥ 3.
CSI values are translated into colors, as shown in Fig. 8,

together with the RGB image for the 11 iron samples.
Table VII summarizes the mean values along with the standard
deviation (σ ) for each sample and details the corrosion degree.

Level 0 does not show any sign of corrosion, being the
three samples correctly defined as Grade A. Level 1 samples
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Fig. 10. Microscopic image of the areas defined in Fig. 9. (a) Zone 0.
(b) Zone 1. (c) Zone 2. (d) Zone 3.

TABLE VII
RESULTS OF SSC SAMPLES

present a color map in accordance with the visual appearance,
and therefore, these samples are classified as Grade B due to
the increase of the average CSI.

Level 2 shows similar results to Level 1, with a slight
increase in the average CSI due to the higher exposure in
the saline environment. Finally, at Level 3, the color map
begins to reveal areas of increased corrosion represented in
red, correctly classifying the samples as Grade C. The spectral
index identifies the different corrosion products, from black
to orange corrosion. Some areas at the bottom of Samples
10, 11, and 12 that do not present corrosion are correctly
recognized.

C. Early-Stage Corrosion

To analyze early-stage corrosion, a corrosion-free sample
was studied together with another sample exposed for 20 min
in a salt spray chamber under the same conditions as the
SSC Samples. Study zones were defined on both samples,
as shown in Fig. 9. Zone 0 represents an uncorroded sample;
Zone 1 corresponds to an area that, although exposed to the
saline mist chamber, appears corrosion-free; Zone 2 shows
very subtle signs of corrosion, practically invisible to the
naked eye; and finally, Zone 3 exhibits slight visible corrosion.
Applying the CSI to these zones, as shown in Table VIII,

TABLE VIII
CSI VALUES IN ZONES DEFINED IN FIG. 9

revealed a progressive increase in CSI values, suggesting that
CSI effectively enables early corrosion detection.

To validate this observation, these zones were examined
under an optical microscope. The images illustrate how
the surface in Zone 0 remains completely corrosion-free
[see Fig. 10(a)], while initial signs of corrosion appear in
Zone 1 [see Fig. 10(b)]. In Zone 2, corrosion is more pro-
nounced [see Fig. 10(c)], and in Zone 3, it is clearly visible
[see Fig. 10(d)], confirming the utility of CSI for early-stage
corrosion detection.

D. Robustness of CSI

To assess the CSI robustness, the second dataset OC
Samples are evaluated. Fig. 11 illustrates the deterioration of
the samples over two weeks. Samples 2 and 3 show signif-
icant corrosion in the lower half areas exposed to seawater
compared to Sample 1, which was only exposed to outdoor
environmental conditions. However, the protected areas of
Samples 2 and 3 (upper half area) remained in better condition
than Sample 1. In particular, Sample 3 suffers from corrosion
at the edges of the protected area due to accidental seawater
infiltration.

Table IX shows a progressive increase in CSI for Samples 1,
2, and 3 over time. In Sample 1, the CSI rose by approximately
one unit during the first week and then more moderately in the
second week, with an increase of around 0.3 units. This pattern
suggests an expected slowdown in the corrosion process:
initially, corrosion is more intense, but it later stabilizes and
slows down. In addition, the standard deviation in Sample 1 is
close to zero, confirming uniform corrosion across the sample
due to its consistent exposure.

For Samples 2 and 3, although there was also an increase
of one unit in the first week and 0.3 units in the sec-
ond, the corrosion distribution differed. The protected section
of these samples remained corrosion-free, while the section
exposed to saltwater experienced more intense corrosion than
Sample 1 due to the harsher exposure conditions. This vari-
ability between the exposed and protected sections is reflected
in the standard deviation, which is close to one in these
cases.

Each sample was accurately categorized based on the CSI
readings collected over multiple days, with only a minor
discrepancy noted for Sample 2 on Day 7. In this particu-
lar case, the difference between the protected and exposed
sections caused a slight misclassification; the corroded section
showed a low corrosion level, resulting in an average CSI of
less than one. This outcome aligns with expectations, as one-
half of the sample was purposefully exposed to corrosion,
while the other was shielded. Despite this, the overall CSI
remained close to one, and the higher standard deviation



HERNÁNDEZ-SUÁREZ et al.: CSI FOR SPECTRAL CHARACTERIZATION OF CORRODED STEEL AND IRON SAMPLES 5006113

Fig. 11. RGB images and CSI color map of OC Samples.

effectively reflected the corrosion variation between the two
halves, highlighting the spectral index’s sensitivity to such
environmental differences.

Sample 3 m was accurately classified as noncorrosive,
despite exhibiting a different spectral signature and visual
appearance attributable to the oxide layer produced by hot
rolling, known as mill scale [see Fig. 12(a)]. Sample 4
showed advanced deterioration and was classified as Grade D
[see Fig. 12(b)]. Although small areas on the right-hand side
of the plate appeared to be free of corrosion, the exact nature
of these areas requires further chemical analysis for precise
determination.

While the CSI has proven effective in detecting a range
of corrosion products commonly observed under saline con-
ditions, its performance may vary with corrosion products
formed under different environmental factors. The robustness
of the CSI has been studied with various types of steel and
iron under coastal environments, where the primary corrosive
agent is the salinity of seawater. For this reason, the index
includes four specific bands designed to encompass corrosion
products typical of these conditions. Outside this context, the
spectral index may present limitations.

E. CSI Versus CI: A Comparative Analysis

For the comparative analysis, Samples 1, 4, 7, and 10 were
selected from the SSC Samples dataset to study one represen-
tative sample from each level.

The CSI values were normalized, with a maximum value
of 4.5 and a minimum value of 0.

Fig. 12. RGB images and CSI color map of OC Samples. (a) Sample 3 m.
(b) Sample 4.

TABLE IX
RESULTS OF OC SAMPLES

For the CI, a reference representative of advanced corrosion
in the analyzed metal was established. This reference covers
a range between 500 and 600 nm. The calibration parameters
used to adjust the values were visually determined. This
procedure is defined as specified in [54].
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Fig. 13. RGB image, CSI color map, and CI color map, respectively.
(a) Sample 1. (b) Sample 4. (c) Sample 7. (d) Sample 10.

The color maps for CSI and CI are shown in Fig. 13.
CI effectively differentiates between corroded and noncor-
roded areas but lacks sensitivity to variations in corrosion
severity. CI primarily depends on spectral slopes between
500 and 600 nm, which limits its ability to distinguish
more advanced degradation levels. As shown in Table X,
Samples 7 and 10 share similar CI values, with Sample 4
showing a close value, indicating reduced sensitivity, espe-
cially to dark corrosion products.

In contrast, CSI exhibits a more gradual response across
different corrosion levels, with a steady increase in CSI values
from Sample 1 to Sample 10, as shown in Table X. This trend
suggests that CSI is more responsive to varying corrosion
stages, including advanced ones with dark-toned corrosion
products, thereby offering a finer resolution and more accurate
assessment of corrosion severity.

The CSI also offers practical advantages by simplifying
the analysis process. Unlike CI, which requires a continuous
spectral range for accurate measurements, CSI is based on only
four specific wavelengths, which reduces the computational

TABLE X
COMPARISON OF CSI VERSUS CI VALUES

complexity and enables rapid analysis. In addition, the CSI
calculation relies on simple arithmetic operations, making it
computationally less intensive compared to more complex
formulas, such as the ACD. ACD involves trigonometric
functions and vector norms, which increase computational cost
and processing time. This efficiency makes CSI particularly
advantageous for deployment in multispectral cameras, where
speed and cost are critical factors, especially in applications
like field inspections, industrial monitoring, and any other
application where real time is mandatory.

A key distinction between the CI and CSI indices is their
dependence on reference values. CI requires specific reference
values that vary according to the type of steel or iron alloy,
complicating its application across different materials and
limiting its versatility. In contrast, CSI consistently provides
accurate results across various iron and steel alloys without
needing material-specific reference values. This characteristic
makes CSI a more straightforward and flexible tool for corro-
sion assessment, allowing reliable application across a range
of alloy compositions without sacrificing precision.

IV. CONCLUSION

The CSI has established itself as a revolutionary technique
in the detection and quantification of corrosion in steel and
iron materials, especially highlighting its ability to automate
corrosion monitoring in coastal environments. Using VNIR
and SWIR spectra analysis in both controlled and uncontrolled
conditions, the CSI has proven to be superior to the CI as
it uses a formula that integrates only four spectral bands.
In addition, it does not require references or pre-established
parameters for each type of metal studied. Another point to
highlight is the ease with which it allows for the identification
of a wider range of corrosion products and provides an
accurate measurement of metal deterioration.

This study emphasizes the ability of CSI to be integrated
into multispectral sensor systems, thus extending its applicabil-
ity from the laboratory to industrial and natural environments.
Avoiding the use of push broom HSI systems not only reduces
costs but also overcomes the limitations associated with these
technologies, which are developed primarily for laboratory
applications and are restricted for their use in the field. The use
of multispectral sensors equipped with snapshot technology,
capable of capturing spectral information in a specific range
of wavelengths, can offer an optimal balance between ease of
use and accuracy.

These advances promise not only to optimize preventive
maintenance strategies but also to mark a significant evolution
in corrosion monitoring technologies. Providing infrastructure
maintenance and promoting a more efficient and sustainable
management of resources. In addition, the CSI has demon-
strated the capability to detect early-stage corrosion, offering
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an essential advantage for proactive maintenance and extend-
ing asset life. This study has developed the CSI for coastal
environments; however, future research could investigate the
behavior of the CSI under other environmental conditions,
where different corrosion products may emerge. Such research
would provide a more comprehensive view of the limitations
and versatility of the index.
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