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Abstract— Beekeeping plays an essential role in maintaining
ecosystems through pollination and enhancing biodiversity. The
presence of the queen bee inside the hive is an important
indicator for the health of the bee colony. Monitoring the health
of honeybees and their hives is crucial not only for bees but also
for the entire ecosystem. This article introduces a tiny machine
learning (ML) application for edge computing in the Internet-
of-Things (IoT) systems, designed to predict the queen bee’s
presence. The solution, implemented on a low-power microcon-
troller (MCU), listens to the sound produced by honeybees and
aids beekeepers by automating health assessments of the colony.
The system utilizes audio recordings of honeybees combined with
artificial intelligence (AI) techniques, while the second focuses on
optimizing a feature extraction algorithm from these recordings
to minimize latency and energy use in the IoT setup. The findings
show that despite the implementation of a simpler ML model and
audio preprocessing with lower computational precision, the final
metrics remain comparable to those analyzed, with only a limited
reduction.

Index Terms— Artificial intelligence (AI), Internet of Things
(IoT), neural network (NN), sound analysis, tiny machine learn-
ing (TinyML).

I. INTRODUCTION

HONEYBEES play a crucial role in the pollination and
reproductive cycles of the ecosystem, making them

an indispensable part of the environment [1]. However,
in recent years, the bee population has experienced a decline,
highlighting the fragility and significance of this precious
species [2]. Factors, such as habitat loss, pesticide exposure,
climate change, and diseases, have contributed to this worrying
trend [3]. The prevailing view has been that the wild European
honey bee, Apis mellifera, has vanished from natural envi-
ronments. Even if, recent research indicates that tree cavities
in beech forests present a suitable habitat for wild or feral
bee populations. Beekeepers play a crucial role in mitigating
the impacts of diseases and in supporting the dietary needs
of bees by planting flora that provides pollen, propolis, and
nectar, and ensuring that water sources are available for colony
development [4]. Bee farms are often located in secluded,
hard-to-reach locations, necessitating considerable travel for
beekeepers to visit and monitor their hives, a challenge that is
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particularly pronounced in the practice of nomadic beekeeping.
These considerations serve as a strong motivation for the cre-
ation of innovative approaches designed to assist beekeepers
and researchers. The goal is to deepen our comprehension of
the factors contributing to the mortality of honey bees and to
devise strategies for their preservation [5]. This undertaking is
vital for safeguarding the health and sustainability of honey
bee populations, ensuring their vital role in pollination and
biodiversity is maintained. By addressing these challenges,
we can work toward securing a future where the ecological
and economic contributions of honey bees are protected and
sustained.

Several techniques have been proposed in the literature with
the aim of supporting both researchers and beekeepers preserv-
ing bees’ colonies. Zacepins et al. [6] present one example
of wireless system to monitoring environmental parameters.
The developed system is based on temperature, sound, and
video monitoring that requires the modification of the structure
of the beehive to introduce the electronics. On the one side,
analyzing audio sound has emerged as a common method
for assessing hive health, as the sound produced by buzzing
can serve as an indicator of bee activity, as studied in [7].
Machine learning (ML) techniques are often employed to
make prediction based on audio sound collected inside the
beehive. For instance, in [8], the audio signal is used to
detect the presence of the Varroa destructor within the beehive.
Swarming activity is also detected by using various approaches
as outlined in [9] and [10]. ML has further been used to
discriminate the bee sounds from external noise in [11] and
[12] or for bee audio classification in [13] and [14]. An impor-
tant indicator of the health status of the bee colony is the
presence of the queen bee inside the hive. As claimed in [15],
[16], and [17], ML classifiers can achieve high accuracies,
in detecting the queen, close to 99% by extracting coefficients
dependent on the frequency spectrum from raw audio collected
in the hives. Among the most commonly used coefficients,
there are mel-frequency cepstral coefficients (MFCCs), mel-
spectrogram, and short-time Fourier transform (STFT).

The aim of this study consists in developing a compact
Internet-of-Things (IoT) system based on a low-power MCU
capable of detecting the presence of the queen bee from the
audio recorded in the beehive through a tiny ML (TinyML)
classifier. We think that innovative solutions must be compact,
power efficient, and easy to be introduced inside the beehive,
without requiring hive modifications. Indeed, the prediction
must be transmitted to a cloud dashboard in order to be always
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consultable. The classifier is executed at the edge on the MCU,
necessitating the ML network to be extremely compact to
fit within the MCU’s memory constraints. Furthermore, the
feature extraction process must be streamlined to minimize
latency and energy consumption. This approach is preferred,
because the bandwidth of the long range (LoRa) protocol is
extremely limited, making it impossible to transmit either the
entire audio file or a preprocessed version. In addition, this
choice aims to minimize the latency of the prediction with
a limited power budget. The key contributions of this article
include the following: 1) the development of a TinyML model
with a minimal number of parameters; 2) the creation of
a method to evaluate quantized models across various data
representations; 3) development of a fixed-point algorithm for
feature extraction in both int16 and int32 formats, and com-
paring their efficiency against the floating-point representation;
and 4) measuring the energy usage on a custom designed IoT
node for both feature extraction and inference processes at the
edge. Our goal is to achieve accuracies comparable with more
complex ML models that use larger floating-point precision-
based parameters for feature extraction.

The rest of this article is organized as follows. Section II
gives an overview of the approaches adopted to detect the
queen bee presence. Section III discusses the methodology
employed to extract the ML features. Section IV provides
a description of the ML model configuration. Section V
illustrates the conversion process to execute the inference on
the MCU, while Section VI reports the energy requirement
of the application. Section VII analyzes the metrics obtained
by the tested models. Finally, Section VIII draws conclusions.

II. BACKGROUND

Raw audio files typically require a preprocessing stage
before they can be used to train ML models, and this is due
to their high-dimensional nature. In [14], there is an example
where raw audio features are directly employed to train a
deep neural network (NN), but the number of parameters of
the model is on the order of millions. The most commonly
employed audio features to forecast the presence of the queen
bee are MFCCs combined with convolutional NN (CNN) or
other classifiers, such as support vector machine (SVM) or
random forest (RF) [18], [19], [20], [21]. Cejrowski et al. [22]
adopted linear predictive coding as preprocessing technique
in combination with an SVM. Comparison among different
extraction methods, such as STFT, MFCCs, and the listed
classifiers, is investigated in [15], [16], [17], [23], [24], and
[25].

From the related works, we selected the MFCCs feature,
which is the most used in the literature, with the addition of
STFT, which represents the first step for MFCCs extraction.
Regarding the classifier, CNN and SVM are taken into con-
sideration. In particular, the CNN architecture is simplified
by removing initial convolutional layers to reduce the size
of the network. The chosen MCU supports the LoRaWAN
protocol for data transmission. The audio is recorded using
a MEMS digital microphone and written on a flash memory.
Subsequently, the features are extracted from audio samples.

TABLE I
DATASET USED FOR TRAINING

A very short audio recorded at distant intervals allows rec-
ognizing a disturbed state inside the beehive, identifying the
queen bee’s absence. The entire IoT system is designed to be
powered by a battery, with a target lifetime of several years,
making the system practical for end users.

III. FEATURE EXTRACTION

The ML model is trained using audio files coming from two
distinct datasets openly available: Dataset I [26] and Dataset
II [27], as detailed in Table I. These datasets provide audio files
annotated with the corresponding labels, indicating the queen
bee presence. Given the energy consumption concerns related
to the MCU recording operation, we explore audio recordings
that are shorter than 7 s for the training process. Moreover,
the ML model only needs to make a binary decision. Using
such short audio is sufficient to achieve an accuracy higher
than 98%. Therefore, longer audio samples are not explored.
Consequently, the audio files in the datasets are split to satisfy
this constraint (Fig. 1, “chunk extraction”).

From the two datasets, STFT and MFCCs features are
extracted as outlined in diagram depicted in Fig. 1, “feature
extraction.”

A. STFT

STFT consists in the application of the fast Fourier trans-
form (FFT) algorithm to the audio signal split in short frames.
FFT computes the power spectrum from the audio samples,
as shown in the following equation:

x =

N−1∑
n=0

x[n]e
− j2πkn

N (1)

where N represents the total number of samples to which the
algorithm is applied (will be referred to as FFT size or simply
FFT). The result of the FFT consists of N/2 + 1 complex
coefficients related to the positive frequencies and N/2 related
to the negative frequencies. The complete procedure of STFT
extraction, displayed in the upper part of Fig. 2, is summarized
by the following steps.

1) Windowing: The audio signal is divided into frames, not
overlapped, with a number of samples equal to FFT.
Each frame is multiplied by the Hann window function.

2) FFT: The FFT is used to compute the power spectrum
of the samples, and only the positive frequencies are
maintained.

3) Magnitude: The output of the FFT calculation is com-
plex number, and the magnitude is calculated for each
coefficient.

The main tested parameter of STFT extraction is FFT, which
determines the frame length and, thus, the number of FFT
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Fig. 1. Diagram of the methodology adopted. (a) Operations performed by Python environment. (b) Operations executed utilizing stm32ai. (c) Process on
the MCU.

Fig. 2. Extraction diagram for STFT and MFCC features.

operations. Increasing the FFT size reduces the number of
windows needed to cover the entire audio file but increases
the computation time for a single frame. The STFT outputs
are N/2 + 1 coefficients for each frame. So, the final output
is a matrix where the first dimension represents the frame
number and the second dimension has a size equal to N/2+1.
To additionally compress features, the average along the frame
number axis is computed, resulting in N/2 + 1 features.

B. MFCCs

MFCCs can be computed by extending the STFT algorithm
and mapping the results onto a mel-scale followed by compres-
sion using discrete cosine transform (DCT). The exact steps
required to compute the coefficients, illustrated in Fig. 2, are
as follows.

1) STFT: The STFT coefficients are computed.
2) Mel-Scale: The coefficients are mapped onto the mel-

scale, which is based on the equation

mel( f ) = 2595 · log
(

1 +
f

700

)
. (2)

It is possible to choose the frequency range and the
number of frequency steps (referred as MELS).

3) Log: It is computed in the logarithm in base 10 of the
resulting coefficients.

4) DCT: The coefficients are compressed by applying the
DCT; in this study, the DCT type II is adopted, which
is based on the formula

Xk =

√
2
N

·

N−1∑
n=0

xncos
[

π

N

(
n +

1
2

)
k
]

for k = 1, . . . N − 1 (3)

X0 =
1

√
N

·

N−1∑
n=0

xn

TABLE II
CONFIGURATION USED FOR FEATURE EXTRACTION IN LIBROSA

(where N = MELS) for k = 0. (4)

The main tested parameters for MFCC extraction include FFT,
which regard the STFT extraction, and MELS. The output
shape of the extraction is similar to that of the STFT operation,
forming a matrix with the second dimension being MELS. The
same compression method is applied to obtain only MELS
features at the end.

C. Feature Extraction Deployment on Python and MCU

As a first step, the features are extracted in floating point
using the Python library Librosa [28]. Subsequently, the
extraction process is transposed into C code in fixed point
employing the CMSIS-DSP library [29]. Two data types,
int16 and int32, are evaluated. The correspondence of results
between the two libraries is achieved with the Librosa config-
uration detailed in Table II. At the beginning, various tests
are conducted to determine the best configuration for FFT and
MELS that require less energy to be computed. To estimate
the energy consumption, we measured the extraction time for
different configurations. The values in Table III include the
time required for reading the audio file from the flash memory
and extract the correspondent feature. To maintain consistency
between the two data types, for the int32 format, samples are
read as int16 and shifted. For STFT extraction, the optimal
FFT size, based on extraction time, is found to be 256, while
for MFCC, it is 1024. Increasing MELS from 20 to 30 does
not impact time requirements. Higher values of MELS are not
tested to limit the complexity of the extraction. The quality of
the prediction does not appear to be significantly influenced
by the FFT size, as observed in various tests conducted using
cross validation (CV) in Python. Consequently, the selection
of the FFT is primarily based on the energy consumption
requirements.

The coefficients obtained with floating-point computation
using Librosa are taken as a reference to evaluate the int16
and int32 features. Fig. 3(a) and (b) illustrates the relative
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TABLE III
TIME REQUIREMENTS FOR STFT AND MFCC EXTRACTION

error for the STFT features computed on 1000 samples from
Dataset II. The points represent the average relative error
across the samples, while the vertical bands represent the
standard deviation. The difference between the two data types
is pronounced for STFT feature. The relative error tends
to increase for higher coefficients (associated with higher
frequencies), because although the absolute error remains
stable, the coefficients’ values decrease and eventually become
0 for fixed-point computation (resulting in a relative error of
100%). Therefore, it is preferable to discard high-frequency
coefficients to retain only the features computed with greater
accuracy. The figures display only low-frequency coefficients
to better illustrate the computed errors.

Fig. 3(c) and (d) presents the relative error of MFCC
extraction referred to floating-point computation. This analysis
is conducted using the same audio files as the previous test.
In this scenario, the difference between the two data types
is less marked. An aspect that emerges from the analysis is
that some coefficients exhibit high standard deviation. This
behavior originates from the same underlying cause as that of
the STFT coefficients, where integer values become saturated
to zero, leading to significant relative errors.

D. Feature Selection and Scaling

The number of features directly impacts the size of the ML
model, which influences the flash memory requirements of the
MCU and the latency of the inference. Various approaches are
available for selecting the features, allowing for the exclusion
of features that contribute less to the prediction. Based on the
considerations made during fixed-point extraction, the chosen
method for feature selection is based on variance. Specifically,
features with the lowest variance are discarded. This approach
eliminates coefficients related to high frequency, because they
are close to 0 and exhibits the lowest variance, maintaining
only the coefficients that demonstrate higher accuracy. For
MFCC features, 10–20 coefficients are usually sufficient, while
for STFT, 40–80 coefficients are required to achieve satisfac-
tory accuracy.

The last operation carried on features is scaling. Features
originate from diverse sources and can exhibit varying ranges
depending on the frequency. This disparity can negatively
impact the performance of the ML model, as high-value
features might overshadow those with smaller ranges. One
common method, used for this study, involves normalizing
features, such that their mean becomes 0, and their standard
deviation becomes 1. The StandardScaler class provided by

Fig. 3. Relative error for (a) and (b) STFT and (c) and (d) MFCC extracted
with CMSIS in int16 and int32 compared with float, extracted with Librosa.
Points and bands represent mean and standard deviation on errors calculated
on 1000 audios 5-s long from Dataset II.

the scikit-learn library performs this operation. The scaling
formula used is

z =
x − u

s
(5)

where x is the sample to be scaled, u is the mean, and s is
the standard deviation calculated from all the samples of the
feature.

IV. ML MODELS

Based on the analysis of previous works [15], [16], [17],
[23], [24], [25], the two classifiers considered are SVM and
NN. SVM is discarded at the start due to the lack of methods
for quantization in conventional libraries. In addition, the
memory required to store the parameters necessary for SVM
classification typically exceeds the flash memory capacity
of the selected MCU. Before starting the training operation,
a percentage of the features (20%) are retained and reserved
for a final test to compute the metrics of the network (the
metrics are listed in Section VII). Initially, a series of tests are
conducted in Python to identify which configurations obtain
appreciable results. Regarding feature data type, both floating
point and fixed point are tested for the training. Feature
extraction in Python in fixed point is accomplished using the
package cmsisdsp, which emulates the computation of the C
library.

In this study, NN models consist of three fully connected
(FC) layers in sequence. The last layer has only one output
between 0 and 1; when the result is above the threshold of 0.5,
the presence of the queen bee is inferred. In FC layers, each
output is a linear combination of the inputs, and the number
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of coefficients (commonly referred to as weights) depends on
the number of inputs and outputs of the layer, and the latter
can be controlled by the parameter dense size (DS). After each
FC layer, a ReLU activation function is applied, while for the
last layer, the sigmoid function is adopted, which is typically
employed for binary classification. The ML models are built,
trained, and tested using a Python script and the TensorFlow
library [30], and the training uses the early stopping technique.
The configuration of the model is the following: max_epoch:
500, patience: 50, batch_size: 64, learning_rate: 0.001, opti-
mizer: Adam, and loss: BinaryCrossentropy.

The technique employed for assessing the Python models
is CV. Even when the same input features and network
configuration are chosen, different training operations can lead
to varying final models due to the training algorithm or the
random initialization of the weights. To achieve an evaluation
of a model’s performance that is robust and less affected
by small random fluctuations, the CV approach is employed.
In CV, the dataset is divided into a certain number of folds,
often ranging from 5 to 10; for this study, tenfold are chosen.
For each fold, a model is trained while using onefold as the
validation set and the remaining folds as the training set. This
process is repeated for each fold, resulting in multiple models.
Afterward, the mean and standard deviation of the metrics of
these models are computed.

A. Quantization

TensorFlow models use float32 data type for input features
and internal weights. Using int8 reduces the model size of 25%
and leads to reduced latency and energy requirements during
the inference. The main challenge in converting from float32
to int8 is that floating point representations have a much larger
dynamic range when compared with fixed point. Directly
mapping the float32 values to int8 would result in a enormous
loss of precision. To overcome this issue, a calibration is
necessary, and the int8 samples does not represent all possible
float32 values but only a subset that includes the majority
of the samples. Quantization is carried out using the library
TensorFlow Lite [31], which apply the calibration expressed
by the following equation:

Q(r) = round(r/S + Z) (6)

where r is the input in floating-point precision and S is the
scale factor, which depends on the range of input samples,
while Z is the zero point, which serves as a bias to map the
values to the center of the integer dynamic.

To reduce the model complexity, we adopted the
post-training quantization (PTQ) available in TensorFlow Lite.
In PTQ, the quantization process is performed after the
training of the model is completed. This means that the
model, which is originally trained and represented in float32
precision, is converted to a fixed-point format. The weights
are converted in int8 data type using the calibration formula.
Usually, the S and Z parameters are shared by the same layers
to reduce the number of additional parameters to store. PTQ
generally results in a loss of some percentile points on the
model metrics. Nevertheless, the benefits regarding memory

and energy consumption for the MCU are substantially greater.
Fig. 1(a) displays all the steps performed by the Python
framework.

V. DEPLOYMENT ON THE MCU

This step involves converting and loading the Python model
into the MCU to perform inference using the audio recorded by
the microphone on the board. The microphone records with
an effective sample rate of 21 978 Hz and collects samples
in int16 data type. The PTQ model is converted using the
executable stm32ai provided by the X-CUBE-AI package from
STM32. The executable generates a report detailing the flash
memory required to store the weights and the code, the RAM
memory needed for executing the code, and the total number
of operations required for the inference. In addition, the
command validate can be utilized to assess the performance
of the converted model. By providing the input features, the
corresponding outputs of the expected inference are generated.
These results are analyzed to compare the performance of
the initial model and determine the loss of metrics. Fig. 1(b)
illustrates how these steps are integrated into the entire flow.

MFCC and STFT features are extracted in the MCU
using the CMSIS-DSP library from audio recorded by the
onboard microphone and stored on a dedicated flash memory.
Subsequently, the feature selection process is replicated by
discarding the unused coefficients. The next step involves
the scaling operation, which includes the transformation with
StandardScaler and the conversion to int8 data type. To avoid
floating-point computation, constants required for performing
the two operations are precomputed. The complete procedure
is expressed by the following equation:

Xs[i] =
x[i] − mean[i]

std[i]︸ ︷︷ ︸
StandardScaler

·
1
s︸︷︷︸

int8

≫ shift + zp︸︷︷︸
int8

. (7)

The value x[i] represents the coefficient in int16 or int32 to
scale. For the first operation, the mean and standard deviation
(std) of the corresponding coefficient are computed, while s
and zp, which are the same for all the coefficients, are extracted
by the parameters of the quantized model. The shift operation
serves to move the coefficient to int8 format. By computing,
in advance, the value (std[i] · d)−1, which is typically higher
than 1, and rounding to integer, it is possible to perform the
scaling operation entirely using integer operations.

VI. ENERGY CONSUMPTION

The length of the recorded audio directly impacts the energy
consumption of the board. This occurs because the microphone
must be powered up for a longer duration, and the amount
of data produced is higher. Estimations on the consumption
are made by measuring the current absorbed by the board,
while it is power by 3.6 V, which is the nominal voltage of
the battery. During the measurement, the feature extracted is
MFCC (FFT = 1024 and MELS = 20 in int16). Each process
of recording–extraction (R&E) is spaced by one and a half
hours. After the measurement, the queen presence state is
inferred and transmitted by the LoRaWAN application through
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Fig. 4. (a) Current consumption of the board. (b) With zoom on R&E phase. (c) Illustration of LoRaWAN application.

TABLE IV
RESULTS OF CURRENT AND TIME MEASUREMENTS

the cloud service. Between each R&E, the MCU enters in stop
2 mode, where most clocks and peripherals are powered off.
A current consumption measurement is conducted in stop 2,
yielding a mean result of 3.202 µA with a standard deviation
of 2.084 µA, using the Tektronic dm7510 multimeter as the
measuring device. An overview of the activity of the IoT
system is detailed in Fig. 4, and it includes three steps as
follows:

1) flash memory power-on;
2) R&E and inference of queen bee presence;
3) sending and receiving window for LoRaWAN tasks.

The current is measured for about 50 s, centered on the R&E
phase. To estimate the energy consumption of a complete
cycle, the mean current is computed over one and a half hours,
considering 3.202 µA for the unmeasured portion where the
MCU is in stop 2. Another parameter measured is the time
required only for the R&E phase. In this case, a timer of
the MCU is exploited to measure the time. For both current
and time, ten measurements are taken, and the mean and
standard deviation are computed and reported in Table IV.
The last column illustrates the energy needed to execute a
cycle of 1 h and half, computed by multiplying the current
by the voltage and the total time. The energy has a strong
linear proportionality to the audio length. By interpolating
the points with a polynomial fit algorithm (using Numpy’s
implementation), the increase is about 55 mJ/s. Measurements
on longer audio samples are not taken, because they do not
enhance the accuracy of the ML model. Considering that the
battery utilized for this project has a capacity of 2600 mAh,

Fig. 5. CV accuracy of Python NN trained with (a) MFCC and (b) STFT
for different audio lengths. Two DS are assessed. Std indicates the maximum
CV standard deviation accuracy.

the duration should range from 24 years for 1-s audio length
to 12 years for 7-s audio length. The type of battery selected
is Li-Socl2, suitable for long-term applications up to 20 years.
The computation does not include the self-discharge, which is
claimed to be under 1%.

VII. NETWORK RESULTS

The metrics analyzed during these tests are accuracy, pre-
cision, recall, and F1, but only accuracy is displayed in most
tests for brevity. The best configuration for MFCC and STFT
extraction is already investigated in Section III and will be
maintained for the following tests.

A second important consideration regards the duration of
the recordings. Fig. 5 illustrates how the mean CV accuracy
changes for different audio lengths. For the two features, two
networks with different DSs are tested, and the figures report
the number of weights (w). For MFCC features, Fig. 5(a),
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TABLE V
ACCURACY OF NETWORKS TRAINED WITH MFCC AND STFT

Fig. 6. Accuracy of CubeAI NN trained with (a) MFCC and (b) STFT
maintaining a different number of feature. Train indicates the data type utilized
for training in Python, while Pred shows the data type employed for the
inference in the converted CubeAI model.

the accuracy of the models trained with the three data types is
illustrated. While for STFT feature, Fig. 5(b), the int16 format
does not achieve satisfying results, and it is discarded, indeed,
as explained in Section III, and the number of coefficients
with a small error is extremely low. These tests are performed
only in Python, and Fig. 5 shows the results named CV
metrics in Fig. 1(a). Increasing the audio length collected more
information, and the prediction is usually more precise. The
accuracy starts to saturate for a duration of 3–4 s. We identified
the 3-s audio duration as a good tradeoff between energy
saving and loss in accuracy.

The third consideration is about the feature selection
process. In tests conducted in Python with floating point,
increasing the number of features improves the metrics. How-
ever, when features are extracted in fixed point, this behavior is
not ensured. Due to fixed-point computation, some coefficients
can saturate to 0 with very limited variance. This behavior
can result in a saturation or decline of the accuracy. Fig. 6
shows the accuracy of some tests with a network configured
in the same way as the previous test (utilizing the larger DS).
In this case, the accuracy from CubeAI metrics is displayed.

TABLE VI
CUBEAI REPORT FOR MFCC AND STFT

For MFCC, when the inference exploits int16 data type,
the accuracy saturates for 17 coefficients, while continues to
increase for the int32 data type. The behavior is similar for
both training in floating point and fixed point. For STFT,
performing the training using floating-point coefficients results
in a drop of accuracy for a high number of coefficients. After
this step, 17 features are selected for MFCC and 70 for STFT.

The final tests are performed, maintaining the audio duration
(3 s) and number of features (17 for MFCC and 70 for STFT)
determined. Six NNs with two layers with different DSs are
assessed, with DS selected to generate networks with a number
of weights ranging from 1000 to 3000. For each NN, two
different approaches are evaluated as follows.

1) The training is performed with floating-point features;
then, the CubeAI model is tested with fixed-point fea-
tures.

2) Both training and testing of CubeAI models are per-
formed in fixed point with the same features.

Table V reports the model accuracies obtained. The “Py”
column indicates the accuracy of the model before the quanti-
zation (Python metrics as named in Fig. 1), while the “CuAI”
column indicates the accuracy of the model executed into the
MCU (CubeaAI metrics).

It is evident that there is an accuracy loss in most of cases
due to the quantization process and the scaling operation.
When the model is trained with int32, only for MFCC, the
behavior of the inference utilizing int16 is evaluated. The aim
is to assess if the inference in int16 achieves a better accuracy
when the training is performed with features extracted with
higher precision. For MFCC, the most constant behavior is
achieved by the columns “CuAI and int32.” The loss in
accuracy, compared with the correspondent “Py” column,
is lower than 0.10%. The behavior of the other columns
is more varied, with a maximum accuracy loss of 0.50%,
while in some cases, the fixed-point model performs better
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compared with the corresponding Python model. In general,
for a higher number of parameters, the accuracy loss is more
limited; while comparing the difference between int16 and
int32, there is no significant improvement in the accuracy.
Utilizing STFT, the accuracy of CubeAI model decreases in a
more consistent way. The accuracy drop ranges from 1.6% to
6%, and there is no evident advantage in training the network
with fixed-point features. Regarding the accuracy loss due to
quantization and fixed-point extraction, a comparison can be
made with [32], where an integer algorithm for computing
MFCCs is developed, and the degradation in accuracy of
a deep NN trained with floating-point features is assessed.
Similar to this study, for int32, the accuracy drop is minimal,
while for int16, it is smaller than 0.6%.

Table VI illustrates statistics extracted by stm32ai from
tested models. Specifically, they are related to the models
in the “Int32 training, CuAI, int32” columns of Table V.
The other columns exhibit the same values with some small
variations due to difference in code size. The fields include
the following.

1) W: The number of weights.
2) FLASH: The memory needed to store weights and code.
3) RAM: The memory needed to run the inference.
4) MACC: The number of multiplication and accumulation

to be made during the inference.
As expected, the number of MACC operations is proportional
to the number of weights of the network. Moreover, the
achieved low memory footprint enables the deployment on
compact and low end MCU.

VIII. CONCLUSION

In conclusion, this study demonstrates the effective applica-
tion of TinyML for edge computing in IoT systems to predict
the presence of the queen bee in a hive, which is crucial for
assessing the health state of the queen bee. Using coefficients
extracted from audio recordings obtained from open source
datasets, the developed ML models are exceptionally compact,
occupying less than 17 kB and require only 2-kB RAM for
inference. The models achieve accuracy rates above 97%,
using MFCC features computed in int16 and above 93% with
STFT features computed in int32. These results are compa-
rable to those in the literature that employ more complex
models and floating-point computations, which are impractical
for integration in the selected MCU due to stringent energy
and memory constraints. The feature extraction algorithm
is optimized to minimize latency and energy consumption,
significantly extending battery life, with approximately 400 mJ
required for measuring and inferring the queen bee’s presence.
These findings underscore the importance of balancing accu-
racy, power budget, and available computational resources.
The study highlights that with careful optimization, TinyML
can provide highly efficient and accurate solutions for IoT
applications, even within the tight constraints of edge devices.
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