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Performance Analysis of Standalone UWB
Positioning Inside Forest Canopy

Zuoya Liu , Harri Kaartinen , Teemu Hakala , Juha Hyyppä , Antero Kukko , and Ruizhi Chen

Abstract— A precise and reliable 2-D/3-D positioning solution
is a significant advancement for robotics-assisted surveying in
forestry automation. Ultrawideband (UWB) positioning, an out-
standing technology for high accuracy and high robustness
positioning solutions, has emerged as the most promising can-
didate to serve this application. It has the potential to reduce the
meter-level positioning accuracy of the global navigation satellite
system (GNSS) inside forest canopies down to the decimeter level
independent of other sensors/measurements. However, to date,
little is known about the actual performance of standalone UWB
positioning in these environments. In this article, a detailed
performance analysis of a standalone UWB positioning system in
a GNSS-denied forest environment with slight and serious non-
line-of-sight (NLOS) propagations was performed. Positioning
accuracy and the effect of the positioning update rate on
the accuracy, as well as the time consumption for different
positioning methods, were analyzed based on real-world datasets.
The results show that the standalone UWB positioning system
is able to achieve decimeter-level positioning accuracy that is
better than 0.3 m in the OXY plane inside the forest canopy
even in the presence of severe NLOS propagations. Therefore,
this study provides a valuable reference for positioning solutions
in robotics-assisted surveying for forestry automation and also
in other location-based applications.

Index Terms— Forest canopy, forestry automation, global
navigation satellite system (GNSS), positioning, ultrawide-
band (UWB).

NOMENCLATURE

dtrue True distance.
dmeasured Measured distance.
di,k Measured distance between the tag and the i th

beacon at the time step k.
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vi,k Distance error between the tag and the i th
beacon at the time step k.

δ Ranging bias.
ω Random ranging error.
Pt,k Location of the tag at time step k.
Pi Location of the i th beacon.
F Transition matrix.
Gk Backward Kalman gain at the time step k.
Hk Measurement model matrix at the time

step k.
xk State at time step k.
xs

k Augmented state at time step k.
Pk Covariance of a Kalman filter at the time

step k.
P s

k Augmented covariance at the time step k.
Qk Covariance of the process noise at the time

step k.
Rk Covariance matrix of the measurement at

the time step k.
zk Measurement at time step k.∑

Sum.
SV D Singular value decomposition.

Abbreviations
AltDS-TWR Alternative double-sided two-way ranging.
AGV Autonomous ground vehicles.
cdf Cumulative distribution function.
CIR Channel impulse response.
Ed Euclidean distance.
EKF Extended Kalman filter.
ERTSS Extended Rauch–Tung–Striebel smoother.
FPU Floating-point unit.
GNSS Global navigation satellite system.
IMU Initial measurement unit.
LDE Leading edge.
LOS Line-of-sight.
LS Least squares.
MAX Maximum error.
NLOS Non-line-of-sight.
PPS Pulse per second.
RMSE Root-mean-square error.
RTK Real-time kinematics.
RTS Rauch–Tung–Striebel smoother.
SLAM Simultaneous localization and mapping.
SS-TWR Single-side two-way ranging.
STD Standard deviation.
TDMA Time-division multiple access.
UAV Unmanned airborne vehicle.
UWB Ultrawideband.
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I. INTRODUCTION

FORESTS are of great importance to people in Finland
and around the world. Therefore, a larger number of

measures and tools have been developed and introduced
to gain more knowledge about the forests and to support
forest-based green growth and corona crisis recovery in the
regions. These outcomes provide timely information for envi-
ronmental sustainability, economic possibilities, and various
ecosystem services, thus helping to balance among all pos-
sibilities of multifunctional forestry ranging from economic
aspects (timber, pulp, and energy wood) to climate regulation,
biodiversity, wildlife, wild berries, and so on.

Currently, surveying and robotic technologies are con-
verging [1], resulting in rapid increase in the demands for
robotic-assisted surveying for forest detection, monitoring,
and management in recent years due to labor shortages and
high labor costs as well as the growing demands for forestry
automation applications [2], [3], [4], such as collecting inven-
tory and harvesting. To achieve these targets, a precise and
reliable 2-D/3-D positioning solution is needed, especially
for these applications in which the robot needs to operate
autonomously under canopies with reduced human efforts.
In addition, it is also sufficient for multiple robot joints and
safe operation under a larger forest canopy simultaneously.

GNSSs are widely used for positioning and navigation
outdoors [5], which is an indispensable tool for critical
infrastructure tasks such as positioning and navigation for
pedestrians and vehicles [6]. However, although GNSS can
provide centimeter-level positioning accuracy in outdoor open
spaces with RTK techniques [7], [8], the resolution can quickly
increase to several tens of centimeters and even to meters if
the satellite visibility is obstructed by an overhead canopy [9].
To overcome the environmental limitation of the GNSS mea-
surements, different positioning methods with other types of
sensors/measurements have been introduced to enhance the
positioning accuracy of GNSS and ensure the consistency and
continuity of location information inside forest canopy, such as
standalone or fusion UWB positioning [10], [11] and SLAM
navigation with/without high-definition map matching using
LiDAR/camera data [1], [12], [13], [14].

Liang et al. [15] developed a fully automated undercanopy
UAV by using an onboard LiDAR sensor, an IMU sensor,
and a camera and demonstrated the feasibility of applying
autonomous undercanopy UAV to navigate itself inside a
forest canopy and to collect data for forest and tree attribute
estimations. Nguyen et al. [16] achieved an uncertainty-aware
visually attentive navigation for UAV by only using a depth
camera, which can navigate a UAV inside a dense forest
autonomously at a flight speed of 2.5 m/s. Ruetz et al. [17]
achieved autonomous navigation for AGVs in challenging
dense and cluttered vegetated environments by only using a
LiDAR sensor. However, although SLAM-based methods have
many advantages, such as high accuracy and real-time per-
formance, they usually require a powerful and large-capacity
battery for the computing platform and LiDAR/camera as
well as other sensors integrated into the system. In addition,
the positioning accuracy of the SLAM highly depends on
the performance of the LiDAR/camera sensor used. In con-
trast, UWB-based methods can be easily implemented on a
low-power embedded platform, such as an STM32F4 pro-
cessor; thus, they can achieve an extremely lower energy
consumption of less than approximately 1 W [18], which

is sufficient for robotic-assisted surveying in the long term.
Moreover, the centimeter-level ranging accuracy of UWB tech-
nology [19] gives it the possibility to achieve decimeter-level
or even centimeter-level positioning accuracy inside forest
canopy.

Compared with other radio frequency technologies, such
as Bluetooth [20] and Wi-Fi [21] used for close-range com-
munication and positioning as well as 5 G [22] used for
long-range communication and close-range positioning, the
advantage of UWB technology is its capability to use min-
imal energy for medium- and long-range communications and
distance measurements while maintaining precise timing and
anti-interference capabilities [23]. UWB transmits information
by generating radio energy at specific time intervals and
occupying a large bandwidth instead of varying the power
level, frequency, and/or phase of a sinusoidal wave, thus
enabling pulse position or time modulation [23]. As a result,
the UWB pulse can be used to determine the distance between
two devices by measuring the time delay of the pulse traveling
between them, thus achieving precise real-time positioning.
Moreover, the UWB pulse can travel through walls and other
objects, allowing it to reasonably operate and have strong
potential in NLOS scenarios [10], such as GNSS-denied
forests full of trees.

Currently, UWB positioning is commonly used in indoor
environments to locate pedestrians and robotics [24],
[25], [26], where LOS propagation can be easily satisfied.
However, for GNSS-denied forest environments, very few
studies have been performed, especially considering real-world
datasets, leading to unexpected challenges in realizing practi-
cal applications. Anderson et al. [11] described the propagation
characterization of low-antenna UWB signals in four different
forest environments with different densities, verifying that
UWB propagation in these areas depends heavily on the forest
density and antenna type as well as the forest configuration.
The frequency range of the UWB pulse used in that study
was from 830 to 4200 MHz, which is greater than that of the
current state-of-the-art UWB pulse (with a frequency range
of 500 MHz); thus, very little is known about the exact per-
formance of the current state-of-the-art UWB signals in forest
environments. In addition, Kai et al. [10] presented a valuable
UWB positioning study in 2015 in a GNSS-compromised
outdoor environment located in the Wayne National Forest
near Athens, Ohio, with a set of UWB devices, PulseON 410
ranging and communications module. Similarly, these results
are outdated compared to the current state-of-the-art UWB
positioning.

Therefore, to determine the exact performance of the cur-
rent state-of-the-art UWB positioning inside forest canopy,
a detailed performance analysis of standalone UWB position-
ing was performed in this article by using one of the most
commonly used UWB chips, DW1000 chip from Decawave,
in the market recently in an actual forest environment
(see Fig. 1). In addition, four commonly used positioning
methods working tightly with/without the smoothing filter
were also performed and compared to fully characterize the
positioning performance of the system: 1) the linear iterative
positioning algorithm, LS and LS-RTS, and 2) the nonlinear
recursive positioning algorithm, the EKF and EKF-ERTSS.
These four positioning methods can be easily implemented in
real time using an embedded processor platform with limited
computing ability, such as an STM32F4 processor. Further-
more, a performance comparison for the four positioning
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Fig. 1. Live review of the forest environment used for the study.

methods is conducted upon the final outcomes of each method.
We also analyzed the minimum update rate of the UWB
measurements needed for each method to ensure the position-
ing performance of the system. The presented experimental
results fully demonstrate that standalone UWB positioning
is sufficient to bring the meter-level positioning accuracy
of GNSS to the decimeter level, less than 0.3 m, in forest
environments even with severe NLOS propagation.

The main contributions of this article are highlighted as
follows.

1) We perform a detailed performance analysis of stan-
dalone UWB positioning inside forest canopy with
slight/severe NLOS propagations by using one of the
most popular UWB chips in the market, thus providing
a valuable reference for the implementation of stan-
dalone UWB positioning in forestry automation and
other location-based services.

2) To the best of our knowledge, we are the first to
characterize the exact performance estimation of 2-D
and 3-D for standalone UWB positioning with different
positioning update rates in NLOS conditions based on
real-world datasets.

3) We discuss the multiuser scalability of standalone UWB
positioning inside the forest canopy and provide an
optimal solution to serve this application.

The remainder of this article is organized as follows. Section II
reviews the methods used for the UWB ranging bias cali-
bration. Section III describes the four estimated positioning
methods in detail. Section IV shows the setup of the field
tests. Section V presents the experimental results and analysis.
Section VI discusses the multiuser scalability and provides an
optimal solution. Finally, Section VII offers conclusions.

II. UWB RANGING BIAS CALIBRATION

Based on the report of Decawave [19] and the experimental
results provided by [27], in addition to the antenna delay, clock
drift, and frequency drift, UWB ranging errors are mainly
attributed to the variational ranging bias caused by different
received signal powers within the distance range. These biases
are caused by the inaccurate Rx timestamps estimated by the
LDE algorithm [28] integrated into the UWB chips and used
to find the “LDE” of the CIR of the received signals. The
effect has been described and verified in [19]. As a result, the

Fig. 2. UWB ranging bias calibration. (a) Calibration with different models.
(b) Example of the ranging errors in LOS conditions after the bias calibration.
(c) Ranging errors of the calibrated measurements for different distances
utilizing the 2nd-order polynomial fit. (d) Tag and beacons. (e) Beacons.

measured distance can be modeled as

dmeasured = dtrue − f (δ, dtrue) − ω (1)

where dtrue is the true distance, dmeasured is the measured
distance between two UWB devices, δ is the corresponding
ranging bias with respect to dtrue, f (, ) is the function between
δ and dtrue, and ω is the random error of the ranging algorithm
integrated into the UWB chip. According to [19], a bias that
varies with the received signal power level can be observed
in the reported timestamp of the received UWB signal, intro-
ducing a ranging bias in the evaluated distance measurement.
Besides, different ranging biases are included for different true
distances. However, based on our previous study [29], it is
possible to fit the function between δ and dtrue in advance
with a simple linear function. Thus, the bias with respect to the
true distance can be eliminated effectively. Although different
functions may appear for different environments, the values of
the function variables will change slightly for the same pair of
UWB devices under LOS conditions. Therefore, the estimation
for the function only needs to be performed once.

Fig. 2(a)–(c) shows an example of the fit results of the
bias calibration and an example of the statistic results of
the calibrated measurements, and Fig. 2(d) and (e) shows
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the test environment used for calibration. The results show
that better performance was achieved by the polynomial-based
model with an average ranging precision of less than
approximately ±7 cm for all the tested distance ranges
from 3 to 49 m. Meanwhile, the polynomial-based model out-
performs the linear-based model, especially when the close
distance was less than 5 m. In addition, as can be seen
from Fig. 2(a) and (b), the performance of the 3rd-order
polynomial fit is only slightly better than that of the second
fit. Therefore, to ensure the ranging precision while keeping
the time consumption of the ranging correction unchanged, all
the distance measurements in Section IV were collected based
on the second polynomial-based model.

Furthermore, different ranging biases are included in the
results for different UWB beacons even with respect to the
same UWB receiver due to the differences in the components
soldered between the UWB chip and antenna [10], [30].
For the UWB modules produced by the same factory at the
same time, this effect can be minimized. However, for this
study, we used four self-developed UWB devices to perform
all the field tests based on DW1000. Therefore, to achieve
more accurate UWB positioning, strict calibration is necessary
for each pair of UWB beacons and receivers. Toward this
goal, the real-world datasets of the ranging measurements
without bias calibration were obtained in LOS conditions
in an outdoor environment where no multipath propagations
were included in this scenario. The distance range was set
to 3–49 m with a distance interval of 2 m. A total of
1000 distance measurements were obtained for each distance
in the same conditions (weather, temperature, humidity, time
of the day, and environment), as shown in Fig. 2(d) and (e).
The median of these measurements was used as the final
distance measurement. The use of the median instead of the
mean is sufficient to eliminate the effect of the ranging outliers
on the results, especially in the cases with a small number of
measurements. Then, the function between the ranging biases
and the true distances can be fit with a linear or polynomial
model [10].

In addition, all the errors in Fig. 2(a) are negative. This is
because there is an inaccurate antenna delay (an excessively
large value) with the UWB device. Normally, it is difficult
to measure the true value of the antenna delay for each
UWB device because of the difference in the ranging biases
caused by the variational received signal level at different
distances [29]. However, these biases can be mitigated effec-
tively by fitting the function between δ and dtrue, as shown
in Fig. 2(c).

III. POSITIONING METHODS

For a demonstration of the standalone UWB positioning
system, three or four beacons with known locations are nec-
essary to determine the unknown 2-D/3-D locations of the tag,
as shown in Fig. 3. Theoretically, the unknown locations of
the tag can be determined by calculating the intersection of the
three circles in 2-D or at least four spheres in 3-D. However,
these circles or spheres rarely intersect at a single location in
practice due to inaccurate distance measurements caused by
factors such as unfixed ranging bias and NLOS measurements.
Fig. 3 demonstrates the possible location area for the tag, the
red ellipse with the dotted line.

As mentioned above, we compare and analyze four com-
monly used positioning methods, LS, LS-RTS, EKF, and
EKF-ERTSS, considering that all four methods can be easily

Fig. 3. Illustration of the possible location estimation for the tag in the
standalone UWB positioning.

implemented in real time using an embedded platform with
limited computing ability. Although the particle filter has the
best performance for standalone UWB positioning (especially
when the target speed is increased) based on the analy-
sis results of [31], the complex calculation of this method
heavily limits its real-time applications, especially for an
embedded processor platform. Therefore, this article compares
and analyzes these four positioning methods. The following
contents of this section review the implementation of the four
positioning methods in detail one by one.

A. Least Squares
Let Pt,k = [xt,k, yt,k, zt,k]

T be the location of the tag at
estimation time k, and let Pi = [xi , yi , zi ]

T be the location of
the i th beacon. Then, the basic equation is modeled as

vi,k =
(
xt,k − xi

)2
+

(
yt,k − yi

)2
+

(
zt,k − zi

)2
− d2

i,k (2)

where di,k is the measured distance between the tag and the
i th beacon and vi,k is the distance error. Using several distance
measurements obtained by the tag at almost the same location
for different beacons and supposing that the distance error
follows a normal distribution, the optimal solution of the
location for the tag can be obtained by LS by minimizing
the sum of squared residuals as follows:

min
x,y,z

∑
i, j,k

v2
i, j,k

(
xi , yi , zi , di, j,k

)
. (3)

For (3), a minimum of the three/four distance measurements
must be available to determine the optimal location of the tag
in 2-D/3-D.

B. Extended Kalman Filter
Usually, precision estimations can be obtained by LS for a

static tag due to the fixed network geometry between the static
tag and all the stationary beacons. However, for kinematic
conditions, inaccurate results may occur due to the contin-
uously changing network geometry and the distance outliers
caused by NLOS propagations. To overcome the effects of
these factors on positioning and thus improve the robustness of
positioning, the EKF is highly available to limit these outliers
because the EKF is able to determine to what degree to rely on
the measurement or use the predicted estimation to estimate
the optimal location for the kinematic conditions.
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In the EKF, the state vector stays the same as the standard
Kalman filter. Moreover, for standalone UWB positioning
with n beacons, the observation vector of the EKF for the
measurement update is modeled as

zk =
[
d1,kd2,k · · · dn,k

]T (4)

where di,k is the measured distance between the tag and the
i th beacon at the estimation time k.

Without considering the velocity and acceleration of the tag,
the Jacobian matrix Hk in the EKF is obtained by

Hk =


xk − x1

f1(k, P1)

yk − y1

f1(k, P1)

zk − z1

f1(k, P1)
· · · · · · · · ·

xk − xn

fn(k, Pn)

yk − yn

fn(k, Pn)

zk − zn

fn(k, Pn)

 (5)

where fi (k, Pi ) = ((xk − xi )
2
+ (yk − yi )

2
+ (zk − zi )

2)1/2.
In addition, the error covariance matrix Rk for the measure-

ment function in the EKF is obtained by

Rk = diag
[
σ 2

1,kσ
2
2,k · · · σ 2

n,k

]
. (6)

Then, the location of the tag at estimation time k is using the
EKF calculation process.

C. Rauch–Tung–Striebel Smoother and Extend
Rauch–Tung–Striebel Smoother

The RTS, also called Kalman smoother, can be imple-
mented to smooth the locations obtained by the LS-based
method [32], [33], thus restraining the bounce points obtained
in the trajectory. Similarly, its special case, ERTSS, can
be implemented to smooth the locations obtained by the
EKF-based method by replacing the prediction equations with
first-order approximations. Toward this goal, the constant
velocity kinematic model is commonly used as the motion
model for the kinematic tag in both RTS and ERTSS. Based
on this, the corresponding parameters at the estimation time k
in both RTS and ERTSS are defined as

xk =
[
xyz

]T
, Pk = diag

[
δ2

x,kδ
2
y,kδ

2
z,k

]
(7a)

Qk = diag
[
T 4/4T 4/4T 4/4

]
· δ2

w,k (7b)

where x, y, and z are the coordinates of the state, T is the
time interval of the measurement updates, Pk is the covariance
estimate of the filter, and Qk is the covariance of the process
noise. In practical positioning applications, T should be set
as small as possible so that the velocity over this interval is
assumed to be nearly constant. The smoothing state estimation
and the covariance matrix in the RTS are obtained by

x−

k+1 = Fk xk (8a)

P−

k+1 = Fk Pk FT
k + Qk (8b)

Gk = Pk FT
k

(
Fk Pk FT

k + Qk

)−1
(8c)

xs
k = xk + Gk

(
xs

k+1 − x−

k+1

)
(8d)

P s
k = Pk + Gk

(
P s

k+1 − P−

k+1

)
GT

k (8e)

where Fk = diag[1 1 1] is the transition matrix of the jump
from the time step k to time step k + 1, Gk is the backward
Kalman gain, and xs

k and P s
k are the augmented state and

covariance estimate, respectively. Based on [29], the original
derivation of the Kalman filter (linear filter) was based on the
LS approach. Thus, we can use RTS to smooth the results

Fig. 4. UWB devices used for the study, UWB beacon (left) and UWB
receiver (right). The size of the field test was larger than 3000 m2.

obtained by the LS. For LS-RTS, Qk and Pk were set as
fixed values as follows: Qk = Pk = diag[0.0150.0150.0001].

Different from the RTS, the transition matrices
of 9(b) and 9(c) in the ERTSS are replaced by the evaluated
Jacobian matrix in the EKF. Therefore, the smoothing
state estimation and covariance matrix in the ERTSS are
obtained by

x−

k+1 = Fk xk (9a)

P−

k+1 = Hk Pk HT
k + Q−

k (9b)

Gk = Pk HT
k

(
Hk Pk HT

k + Q−

k

)−1
(9c)

xs
k = xk + Gk

(
xs

k+1 − x−

k+1

)
(9d)

P s
k = Pk + Gk

(
P s

k+1 − P−

k+1

)
GT

k (9e)

where Q−

k is the covariance of the process noise with δw,k =

sum(SVD(Pk−1))Tk, Tk = tk − tk−1 is the time interval of the
EKF prediction and update, and SVD is the singular value
decomposition.

IV. EXPERIMENT SETUP

To characterize the performance of standalone UWB posi-
tioning inside forest canopy and to compare and analyze
different positioning methods mentioned within the posi-
tioning section, a typical forest environment was tested
in managed boreal forest sites located in Evo, southern
Finland (61◦11’28′′N, 25◦07’00′′E). This forest is full of
pines with diameters of approximately 20–35 cm, as shown
in Figs. 1 and 4.

Fig. 4 shows the bespoke UWB devices used for this study.
These UWB beacons were deployed on the trees with a
specific bracket with a length of approximately of 0.5 m to
keep the UWB beacon as far away from the tree stem as
possible and powered by a power bank, and the true locations
of all the UWB beacons with respect to each other in the
forest were measured by the total station with centimeter-level
accuracy. The UWB receiver was mounted with the tracking
prism and held by a tester, who was walking freely in the forest
to collect the raw distance measurements for postprocessing
and analysis. Moreover, a low-cost WPI4130 GNSS module
that integrates a U-BLOX NEO-7 GNSS receiver was also
integrated into the receiver to provide a unique timestamp
for each distance measurement. Therefore, we can estimate
the positioning performance of the system by searching the
correct timestamps and comparing the corresponding location
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TABLE I
CONFIGURATION OF THE DW1000 CHIP

Fig. 5. Setups for the field tests. For trajectory 2, let the UWB receiver be
as close as possible to the tree stem and stay for approximately 3–5 s, and
ensure that the tracking prism is always in LOS conditions. (a) Trajectory 1:
slight NLOS. (b) Trajectory 2: serious NLOS.

points with respect to the results of the tracking prism, which
allows for a comparison of the standalone UWB positioning
with high-quality ground truth.

In addition, all the measurements were communicated to a
smartphone equipped with the tester via Bluetooth for post-
processing and analysis. Moreover, the biases for each pair of
UWB receivers and beacons were corrected in advance based
on the calibration method within the process flow. However,
we only used the polynomial model, and the fit parameters
were integrated into the UWB receiver; thus, no postprocessing
is necessary for the obtained distance measurements. The
ranging algorithm between the UWB receiver and the UWB
beacon was SS-TWR, which can achieve ±10-cm ranging
accuracy in LOS conditions [34]. The ranging rate was set
to 20 Hz per round for all the beacons from number 1 to
number 4. The parameters of the DW1000 chip used in this
forest are listed in Table I.

Furthermore, two cases were tested, as shown in Fig. 5.
The first is when the tester walked along the specific route
continuously from the starting point to the endpoint, marked as
Trajectory 1. In this case, slight NLOS propagations of UWB
signals exist between the kinematic receiver and stationary
beacons. The total length of the route is approximately 100 m.
The second is when the tester walked randomly in the forest
and placed the receiver close to the tree stems, staying for
approximately 3–5 s, marked as Trajectory 2. In this case,
serious NLOS propagations of UWB signals are involved
due to the occlusion of the tree stems because more than
60 trees were involved in this test. This test lasted for approx-
imately half an hour continuously. Overall, these two cases
allowed for a full comparison and performance analysis of
standalone UWB positioning inside forest canopy with NLOS
conditions.

The positioning accuracy of the trajectory is evaluated by
calculating the Ed between the estimated location points and
the results of the total station by searching the unique times-
tamps obtained from the GNSS module. First, we searched for
the nearest reference points for which less than a 0.01-s time

Fig. 6. Trajectories of the four positioning methods in the OXY plane for the
two field tests. (a) Trajectory 1: slight NLOS. (b) Trajectory 2: serious NLOS.

difference was obtained between the location point and the
reference point. Then, we calculated the corresponding Ed
between them as follows:

2DError =

√
(xe − xr )

2
+ (ye − yr )

2 (10a)

3DError =

√
(xe − xr )

2
+ (ye − yr )

2
+ (ze − zr )

2 (10b)

where (xe, ye, ze) denotes the found location point and
(xr , yr , zr ) is the location of the reference point. Although
this approach does not permit the precise determination of
the point-to-point positioning error, it can be used to roughly
assess the overall positioning accuracy of a solution and
compare the performance of different positioning methods.

V. EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

A. Comparison and Performance Analysis for Slight
NLOS and Serious NLOS Conditions

Fig. 6 shows the estimated 2-D trajectories in the OXY
plane for the slight NLOS and serious NLOS conditions
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Fig. 7. CDFs of positioning accuracy of the four positioning methods in the
OXY plane for (a) and (b) Trajectories 1 and 2.

Fig. 8. Positioning errors of the four positioning methods in the OXY plane
for (a) and (b) Trajectories 1 and 2.

with the four positioning methods mentioned within the
positioning section. Figs. 7 and 8 show the corresponding
CDFs and boxplots of the errors, respectively. Table II shows
the statistical results, including the RMSE, STD, MAX, and
68%–95% errors of the CDFs. The results show that the
RMSEs of standalone UWB positioning are less than 0.3 m
for both trajectories and all positioning methods. In particular,
the RMSEs are less than 0.25 m for both trajectories with
the EKF-ERTSS and EKF-based positioning methods. This
indicates that standalone UWB positioning is sufficient and
capable of bringing the meter-level positioning errors of GNSS
inside forest canopy with NLOS conditions to the decimeter
level.

As mentioned, the SS-TWR was used as the ranging
algorithm between the UWB receiver and beacon, and a
±10-cm ranging accuracy can be achieved by the SS-TWR.
As a result, we achieved a positioning accuracy of better
than 0.3 m. However, based on the study presented in [34],
the AltDS-TWR method is more accurate than SS-TWR, and

TABLE II
STATISTICAL RESULTS OF THE 2-D LOCATION

POINTS IN THE OXY PLANE, UNIT [m]

based on the experimental results provided in [25], a ranging
accuracy better than ±5 cm can be achieved by AltDS-TWR
for the DW1000 chip. Therefore, we can predict that a
positioning accuracy better than 0.15 m might be achieved
for standalone UWB positioning inside the forest canopy by
using the AltDS-TWR method to perform the ranging between
the UWB receiver and beacon.

As shown in Fig. 7(a), the performance of the EKF-based
method is only slightly better than that of the LS-based
method. However, for trajectory 2, under serious NLOS con-
ditions, the EKF-based method achieves better performance,
as indicated in Fig. 7(b). In addition, the performance of
EKF-ERTSS and LF-RTS is better than that without the
smothers. Therefore, we conclude that the EKF-based method
is more stable than the LS-based method and that smoother
is of great significance to improve the positioning accuracy of
the filter.

In addition, the statistical results clearly show that the
performance of the EKF-based positioning methods is clearly
better than that of the LS-based methods, especially for
trajectory 2, serious NLOS conditions. For example, the
RMSEs and 95% errors of the EKF-ERTSS-based method
are 0.22–0.38 m for trajectory 2, improving by 21%–25%
compared to the LS-RTS-based method. Moreover, EKF-based
methods achieved a better ability to suppress positioning out-
liers according to the statistical results of Fig. 8. However, for
slight NLOS conditions in which fewer outliers are included in
the raw distance measurements, the LS-based methods achieve
considerable positioning performance with EKF-based meth-
ods. Therefore, for some applications in which LOS conditions
can always be served, LS-based methods are also desirable
with high-quality positioning performance and reliability. For
example, UWB technology can be used to locate a robot in
an open environment.

Furthermore, the statistical results also clearly show that the
performance with smoothing is slightly better than that without
smoothing. Theoretically, smoothing is sufficient to restrain
the outliers included in the trajectory, making the estimated
trajectory closer to the true trajectory and thus improving
the positioning accuracy and enhancing the reliability of the
system. However, our update rate of the UWB measurements is
set to 20 Hz, which is very fast for a positioning system; thus,
the location changes very little during this time interval. As a
result, the positioning results can be corrected immediately
even without smoothing, but this effect will be weakened for
a lower update rate, as demonstrated in the following results
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Fig. 9. Results of EKF-ERTSS in the OXY, OXZ, and OYZ planes for Trajectories 1 and 2. (a)–(c) Trajectory 1. (d)–(f) Trajectory 2.

obtained from different update rates. In addition, four ranging
measurements were used simultaneously in the positioning
methods; thus, accurate location estimations can be obtained
even if there are larger ranging errors or outliers included in
one or two ranging measurements. For the EKF-based method,
this effect can be effectively restrained due to the implemen-
tation of the state prediction and measurement update in the
method. However, for the LS-based method, the performance
may degrade because a good network geometry is the foun-
dation of this method. As shown in Fig. 6, several locations
deviated from the ground truth for both LS-RTS- and LS-based
methods.

Finally, Fig. 9 shows the 3-D positioning results of the
EKF-ERTSS in the OXY, OXZ, and OYZ planes for Trajecto-
ries 1 and 2, and Table III shows the corresponding statistical
results, including the RMSEs, STDs, MAXs, and 68%–95%
errors of the CDFs for the four positioning methods. These
results show that the positioning is extremely unreliable when
reporting data in the Z -axis, especially for these location
points outside the public coverage of the beacons. The maxi-
mum positioning errors even increase to 4 m. This is mainly
attributed to the impeded network geometry in these areas and
the NLOS measurements. Although the positioning accuracies
of most location points inside the public coverage on the
Z -axis are less than ±1 m, some outliers are still included in
the results. This is mainly caused by inaccuracy in the NLOS
measurements. Moreover, the data show that the beacons were
almost deployed on the same vertical plane, which is also not
sufficient for 3-D positioning even for public coverage.

To obtain accurate 3-D positioning results, better network
geometries with more beacons are sufficient to achieve this
target. For example, increasing one or two beacons with a
height difference larger than 5 m with respect to the four
beacons into the network and ensuring that the possible motion

routes of the UWB receiver are inside the 3-D coverage of all
the beacons. In this way, a good 3-D network geometry for
the UWB receiver can be obtained. Furthermore, fusion-based
solutions, for example, UWB fusions with IMU sensors, are
also sufficient to achieve this target.

B. Comparison and Performance Analysis for Different
Positioning Update Rates

To continue characterizing the performance of standalone
UWB positioning inside forest canopy and provide valuable
references for the actual implementation of the system, in this
section, we compared and analyzed the effect of the sys-
tem positioning update date on the positioning performance.
However, we just compared the 2-D positioning results in
the OXY plane, considering the actual case that the 3-D
positioning performance is extremely unstable and inaccurate.
The corresponding results are given as follows.

Fig. 10 shows the estimated trajectories, Fig. 11 shows
the RMSEs of the four positioning methods with different
update rates (1, 2, 5, 10, and 20 Hz) for Trajecto-
ries 1 and 2, and Fig. 12 shows the corresponding CDFs.
Finally, Tables IV and V show the statistical results for
Trajectories 1 and 2, respectively, including the RMESs, STDs,
MAXs, and 68% and 95% errors of the CDFs.

It can be seen from Fig. 10 that all positioning update rates
achieved good positioning and tracking for the UWB terminal.
The results of Tables IV and V show that the standalone
UWB positioning system achieved a decimeter-level position-
ing accuracy better than 0.3 m for both trajectories, even with a
1-Hz positioning update rate for the four positioning methods.
Moreover, for Trajectory 1: slight NLOS, the positioning errors
are even less than 0.2 m when the positioning update rate is
larger than 2 Hz for the four positioning methods.
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TABLE III
STATISTICAL RESULTS OF THE 3-D LOCATION POINTS ON THE X-, Y-, AND Z-AXES, UNIT [m]

Fig. 10. Positioning results of different update rates for Trajectories 1 and 2. (a)–(d) Trajectory 1. (e)–(h) Trajectory 2.

In addition, Fig. 11 clearly shows that the positioning accu-
racies increase slightly with the decrease in the update rates
from 20 to 5 Hz, marking this case as Case 1. However, the
positioning accuracies decrease with the decrease in the update
rates from 5 to 2 Hz, especially for EKF-based positioning
methods, marking this case as Case 2. For Case 1, this might
occur because of the reduced location points that were used to
calculate the positioning accuracy, where each location point
does not correspond to an actual reference point from the
results of the total station due to the occlusion of the tree stem
on the tracking prism. For Case 2, the reduced location points
are also one of the main sources of error, and another source
is that the error model and the motion model are no longer
suitable for the positioning methods due to the larger time
interval between two continuous location points, especially
for the EKF-based methods based on the nonlinear recursive
technique. However, for the LS-based methods, a slight dif-
ference exists in the positioning results for different update
rates, especially for Trajectory 1: slight NLOS. This means
that the errors will not accumulate during the motion process
for iterative positioning methods. In addition, the timestamp

errors of the measurements will also introduce errors in the
accuracy estimation.

Furthermore, it is clearly visible from the results
of Figs. 11 and 12 that the smoothing performance is only
effective for high positioning update rates, for example, 5,
10, and 20 Hz. In addition, it is also clear that the perfor-
mance of the EKF-based positioning methods is better than
that of LS-based methods, especially when the positioning
update rates are larger than 5 Hz, which benefits from the
implementation of the recursive process in the EKF. However,
better performance is obtained by the LS-based method for
a 1-Hz positioning update rate due to the invalidation of the
recursive process of the EKF.

As shown in Fig. 12 and Tables IV and V, we can also
conclude that the EKF-based method is more stable than the
LS-based method and that smoother is of great significance to
improve the positioning accuracy of the filter, especially when
the positioning update rates are larger than 5 Hz. However,
in the case of low positioning update dates, such as 2–1 Hz, the
performance of smoother is extremely unstable. For example,
for trajectory 1 with the positioning update rates of 2 Hz,
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Fig. 11. RMSEs and STDs of different positioning update rates for Trajectories 1 and 2. Note that the accuracy of Fig. 11 is set to 0.01 m to unify the
accuracy of these data with the statistical results shown in Tables IV and V. (a) RMSE of Trajectory 1: slight NLOS. (b) RMSE of Trajectory 2: serious NLOS.
(c) STD of Trajectory 1: slight NLOS. (d) STD of Trajectory 2: serious NLOS.

Fig. 12. Corresponding CDFs of different uprate rates for Trajectories 1 and 2. (a)–(d) Trajectory 1. (e)–(h) Trajectory 2.

the performance of LS is much better than that of LS-RTS.
The same results can be obtained from Fig. 11. Therefore,
we conclude that in order to improve the accuracy of the filter
by integrating a corresponding smoother, a positioning update
rate of larger than 2 Hz is necessary for both EKF and LS.

In addition, considering the positioning update rate, the
performance of the EKF-ERTSS/LS-RTS at 5 Hz is better
than that at 20 Hz, as shown in Fig. 11, Tables IV and V.

To further analyze this phenomenon, Fig. 13 shows the RMSEs
of different starting points used to estimate the performance
of the EKF-ERTSS at 5 Hz from the original target of 20 Hz.
It is clearly visible that the performance highly depends on
the selected index used to determine the results. For example,
the performance of I = 1 is better than that of I = 2
or I = 4. Besides, the performance at 5 Hz is mostly better
than that at 20 Hz. However, the performance of I = 4
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TABLE IV
STATISTICAL RESULTS OF THE 2-D LOCATION POINTS IN THE OXY PLANE FOR TRAJECTORY 1, UNIT [m]

Fig. 13. (a) RMSEs of different starting points used to estimate the
performance of the EKF-ERTSS at 5 Hz from the original target for Trajecto-
ries 1 and 2. (b) RMSEs of the original target of 20 Hz. I denotes the index
of the starting point. All the results were obtained based on the EKF-ERTSS
method.

at 5 Hz is comparable to that at 20 Hz. This is mainly caused
by the method used to determine the positioning accuracy.
As mentioned before, we first searched for the nearest ref-
erence points for which less than a 0.01-s time difference
was obtained between the location point and the reference
point. Then, we calculated the corresponding Ed between them
based on (10). Therefore, for the results at 20–5 Hz, different
estimated locations will be used to calculate the accuracy.
Besides, more location points will also be used to estimate

the results at 20 Hz. However, most searched location points
of I = 4 at 5 Hz remain basically the same as those at 20 Hz.
Thus, the performance in the two cases is comparable to each
other.

Finally, Table VI shows the comparison of the time con-
sumption for the four positioning methods. All the estimations
were obtained with postprocessing, and the configuration of
the PC is given as follows: 1) processor, 11th Gen Inter1

Core2 i7-11 800 H @ 2.30 GHz, and 2) RAM, 64 GB.
From these results, it can be seen that the time consumption
of the EKF-based methods increases by approximately 50%
compared with LS-based methods. Therefore, for real-time
positioning applications with an embedded processor, such
as STM32F4, LS-based methods might be more sufficient.
For the LS, a fixed number of calculations are enough to
obtain the results precisely. For example, calculations were
performed ten times in this study. For the EKF, it is better
to use an embedded processor integrated with an FPU to
perform the positioning in real time because it can perform
complexity matrix computation in real time without losing the
precision. However, this also depends on the degree of the
optimization for the positioning algorithm and thus needs to
be estimated in the real world. This is not the focus of this
article. For some applications, using a lower positioning update

1Registered trademark.
2Trademarked.
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TABLE V
STATISTICAL RESULTS OF THE 2-D LOCATION POINTS IN THE OXY PLANE FOR TRAJECTORY 2, UNIT [m]

TABLE VI
TIME CONSUMPTION ON THE POSITIONING ESTIMATIONS,

UNIT [SECONDS]

rate is also optimal. Thus, the processor will have enough time
intervals for positioning processing.

In summary, all four positioning methods achieve
decimeter-level positioning accuracy for different position-
ing update rates and are all sufficient for standalone UWB
positioning inside forest canopy, and the EKF-based methods
achieve better performance in terms of positioning accuracy
and reliability than the LS-based methods but more time
consumption. For applications with various demands, optimal
positioning methods with optimal configurations need to be
considered before implementation of the system to obtain

optimal performance. For example, to locate a forester or map
the tree stem in forests, a maximum positioning update rate
of 5 Hz might be sufficient for these applications, and both
EKF- and LS-based methods are suitable. However, to locate
and track, for example, a UAV or other robotics inside the
forest canopy, a 20 Hz or even higher positioning update
rate is necessary to obtain precise and continuous positioning
results. The results of this study provide a valuable reference
not only for GNSS-denied forest environments but also for
other positioning applications.

VI. MULTIUSER SCALABILITY

In this section, multiuser scalability of the standalone
UWB positioning inside forest canopy is discussed. Usually,
it is limited as interfering messages from different UWB
terminals may interrupt the required message exchange in
the SS-TWR [35] or other communications in the network.
The classical TDMA scheme is promising to address this
by dividing the time in superframes, as shown in [36]. For
the standalone UWB positioning solution used in this study,
it is easy to achieve the TDMA scheme for different UWB
terminals due to the integration of the GNSS module into each
terminal used for synchronization.

Fig. 14 shows the solution for the future to support a larger
number of UWB terminals working simultaneously inside
forest canopy. First, each UWB terminal receives the GNSS
signals and synchronizes the local time of the terminal to
the UTC time by capturing the PPS signals of the GNSS
module. These terminals then autonomously determine their
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Fig. 14. Signal schedule for multiuser operation in the standalone UWB
positioning inside forest canopy.

timestamps to start the SS-TWR based on the unique device
ID in the network. Although the positioning accuracy of the
GNSS is limited inside forest canopy, the PPS is accurately
used to synchronize all the terminals in these environments.
The synchronization accuracy highly depends on the resolution
of the local time of the terminal and the threads executed
in the processor. In this study, the UWB terminal achieved
a synchronization accuracy of better than 0.1 ms, in which
an STM32F4 processor with a 0.1-ms system ticker was
integrated. Better accuracy can be achieved by using a higher
performance processor.

In addition, a fixed and known protection interval, known
as the contention access period, is also included for all the
terminals to further enable the TDMA scheme, as shown
in Fig. 14. According to [36], the maximum number of UWB
terminals that the system can support can be obtained by

N =
TSuperframe

M · TSS-TWR + TAceess
(11)

where TSuperframe is the time duration of each superframe
determined by the expected positioning update rate, TSS-TWR
is the frame duration of each SS-TWR determined by the
configuration of the UWB chip and the processing speed
of the embedded processor integrated into the UWB device,
TAccess is the time duration of the contention access period
set to avoid the UWB signal interference between devices,
and M is the number of anchors used to determine the
location of the terminal. For actual applications, the values of
these parameters need to be considered carefully and weighed
between each other based on the demand of the application to
achieve the optimal performance of the system.

VII. CONCLUSION

This article presents a detailed performance analysis of a
standalone UWB positioning system in an actual GNSS-denied
forest environment with slight/serious NLOS propagations in
terms of positioning accuracies for different NLOS conditions
and the effect of the positioning update date as well as the
time consumption for different positioning methods based
on real-world datasets. The results show that the standalone
UWB positioning system is able to reduce the meter-level
positioning accuracy of GNSS in these areas down to the
decimeter level (better than 0.3 m in the OXY plane), which is
sufficient resolution for forest surveys. In addition, the results
also show that the LS-based methods achieve comparable
performance with EKF-based positioning methods in slight
NLOS conditions. However, more reliable performance was
achieved by EKF-based positioning methods than LS-based

positioning methods. All the results provide a valuable refer-
ence not only for positioning solutions for forestry automation
but also for other location-based services.

In addition, although the positioning accuracy of the stan-
dalone UWB positioning in the OXZ plane is meter level
and worse than that in the OXY plane, it can be improved
by increasing beacons to the network geometry or using
IMU-based fusion solutions. Thus, precise 3-D positioning
might be achieved with UWB, which is sufficient for forest
surveys, for example, providing precise positioning for a UAV
to model the forest in 3-D. This topic is worthy of future inves-
tigation. Moreover, performing real-time positioning would be
a significant feat to provide precise locations for a UAV or
other applications with UWB.
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