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Abstract— Linear computations over quantum many-to-one
communication networks offer opportunities for communica-
tion cost improvements through schemes that exploit quantum
entanglement among transmitters to achieve superdense coding
gains, combined with classical techniques such as interference
alignment. The problem becomes much more broadly accessible
if suitable abstractions can be found for the underlying quantum
functionality via classical black box models. This work formalizes
such an abstraction in the form of an “N -sum box”, a black box
generalization of a two-sum protocol of Song et al. with recent
applications to N -server private information retrieval. The N -
sum box has a communication cost of N qudits and classical
output of a vector of N q-ary digits linearly dependent (via an
N × 2N transfer matrix) on 2N classical inputs distributed
among N transmitters. We characterize which transfer matrices
are feasible by our construction, both with and without the
possibility of additional locally invertible classical operations
at the transmitters and receivers. Furthermore, we provide a
sample application to Cross-Subspace Alignment (CSA) schemes
to obtain efficient instances of Quantum Private Information
Retrieval (QPIR) and Quantum Secure Distributed Batch Matrix
Multiplication (QSDBMM). We first describe N -sum boxes based
on maximal stabilizers and we then consider non-maximal-
stabilizer-based constructions to obtain an instance of Quantum
Symmetric Private Information Retrieval.
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I. INTRODUCTION

DISTRIBUTED computation networks are often limited
by their communication costs. Improving the efficiency

of distributed computation by reducing communication costs is
an active area of research. Reductions in communication cost
may be achieved by coding techniques that are specialized for
the type of distributed computation task (e.g., aggregation [3],
MapReduce [4], matrix multiplication [5]) as well as the nature
of the communication network (wireless [3], cable [6], optical
fiber [7], quantum networks [8]). For instance, coding for over-
the-air computation reduces the communication cost of linear
computation over many-to-one wireless networks, by taking
advantage of the natural superposition property of the wireless
medium [3].

Investigating the properties and the applications of quan-
tum protocols is crucial for the development of a quantum
internet [9], [10], [11], which operates on the principles
of quantum mechanics and differs fundamentally from the
classical internet used in our daily lives. Our focus in this
work is on linear computations (possibly with privacy and
security constraints) over quantum many-to-one communica-
tion networks. The potential for reduced communication costs
in this setting comes from quantum entanglement among the
transmitters, which creates opportunities for superdense coding
gains [12], [13], [14], [15] as well as classical techniques such
as interference alignment. However, unlike wireless networks
for which there exists an abundance of simplified channel
models and abstractions to facilitate analysis from coding,
information-theoretic and signal-processing perspectives [16],
[17], [18], similarly convenient abstractions of quantum com-
munication networks are not readily available, which limits the
study of quantum communication networks largely to quantum
experts. Our work is motivated by the observation that a
convenient abstraction for linear computation over quantum
many-to-one networks is indeed available, although somewhat
implicitly, in the works of Song and Hayashi, in the form
of a quantum two-sum protocol [19], [20], and its subsequent
generalizations, as applied to QPIR [21], [22], [23], [24], [25].
A similar type of linear computation with a classical-quantum
multiple access channel has been discussed in [26], [27],
and [28], where the classical-quantum multiple access channel
might have noise, and further applied to the problem of
quantum secret sharing and QPIR [29].
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Fig. 1. Quantum circuit and black-box representation for two-sum transmission protocol with |β00⟩ = 1√
2
(|00⟩ + |11⟩).

A. Two-Sum Protocol

The two-sum protocol [20] is shown in Figure 1, both as a
quantum circuit and as a black box. In the quantum circuit,
we see two transmitters (Tx1 and Tx2), each in possession
of one qubit of an entangled pair. The entangled state in this
case is the Bell state |β00⟩. As classical 2-bit inputs become
available to the two transmitters ((x1, x3) to Tx1, (x2, x4)
to Tx2), they perform conditional quantum operations (X,Z
gates) on their respective qubits and then send them to the
receiver (Rx), for a total communication cost of 2 qubits. The
receiver performs a Bell measurement and obtains (y1, y2) =
(x3 + x4, x1 + x2). The two-sum protocol can be abstracted
into a black box, also shown in Figure 1, with inputs
(x1, x3), (x2, x4) controlled by Tx1 and Tx2, respectively, and
output y = Mx, where M = ( 1 1 0 0

0 0 1 1 ) is the transfer matrix
of this 2-sum box and x⊤ =

(
x1, x2, x3, x4

)
. The black-

box representation hides the details of the quantum circuit
and specifies only the functionality (transfer matrix M) and
the communication cost (2 qubits), which makes it possible
for non-quantum experts to design low-communication-cost
coding schemes for quantum communication networks using
this black box, e.g., to take advantage of super-dense coding.
Note that without entanglement, in order for the receiver to
recover the same output (x3 + x4, x1 + x2), the required
communication cost is 4 qubits, i.e., twice as much. This factor
of two improvement is an example of superdense coding gain.

B. Our Contribution
The main contribution of this work is to formalize a

generalization of the 2-sum box, namely an N -sum box. It is
worth pointing out immediately that the technical foundations
of the N -sum box are not new, indeed the construction draws
upon the well-understood stabilizer formalism in quantum
coding theory [30], [31], [32], [33], and most of the tech-
nical details of the generalization from 2-sum to N -sum
are also contained in the works of Song and Hayashi on
Quantum Private Information Retrieval [21]. Nevertheless, the
crystallization of the black-box abstraction, as demonstrated
in this study, holds significant promise for researchers in
the classical information and coding theory domains. These
researchers, though less acquainted with stabilizer codes and
quantum coding theory, can still make valuable contributions
to comprehending the fundamental boundaries of transmitter-
side entanglement-assisted distributed classical computation
over quantum multiple access (QMAC) networks. This is
achieved through the utilization of the aforementioned classi-
cal abstraction, which effectively conceals the intricate details

Fig. 2. The N -sum box is illustrated as a MIMO MAC for N = 3.

of the underlying quantum circuitry. For example, wireless
researchers with little background in quantum codes may
recognize the N -sum box as the familiar MIMO MAC setting
illustrated via an example in Figure 2. The main distinctions
from the multiple antenna wireless setting are 1) that the
channel is deterministic (noise-free), defined over a finite field
(Fq) rather than complex numbers, and 2) that instead of
being generated randomly by nature, the channel matrix can be
freely designed as long as it is strongly self orthogonal (SSO)
(cf. Definition 3). This is because it is shown in this work
that feasible N -sum box transfer functions are precisely those
matrices M ∈ FN×2N

q that are either strongly self-orthogonal
themselves, or can be made strongly self-orthogonal by local
invertible transformations (cf. Definition 1) at various trans-
mitters and/or the receiver. Thus, from a wireless perspective,
the problem of coding for the QMAC becomes conceptually
equivalent to that of designing a coding scheme as well as the
channel matrix for a MIMO MAC subject to given structural
constraints imposed by the N -sum box abstraction (SSO), such
that the resulting MIMO MAC is able to efficiently achieve
the desired linear computation ‘over-the-air’ (actually, through
quantum entanglement). The efficiency gained by ‘over-the-
air’ computation in this (constrained: SSO) MIMO MAC
translates into superdense coding gain over the QMAC.

The N -sum box is intended to be useful primarily as a tool
for exploring the information-theoretic capacity of Fq-linear
classical computations over an ideal QMAC, with the potential
to shed new light into the fundamental limitations of super-
dense coding and quantum entanglement. As with other tools
that information theorists have at their disposal, it is difficult to
predict in advance if the N -sum box abstraction will turn out to
be sufficient to construct capacity achieving schemes. Indeed
the linear computation capacity of a MAC is a challenging
problem even in the classical setting, especially for vector
linear computations. Nevertheless, we are cautiously optimistic
that the stabilizer-based construction exhausts the scope of
the N -sum box functionality for Fq-linear computations. The
optimistic outlook is supported by prior works on capacity of
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QPIR [21], [23], [24] where N -sum boxes have been implicitly
employed for capacity-achieving schemes, as well as a recent
follow-up work that utilizes the N -sum-box abstraction from
this work, to find the capacity of sum-computation over the
QMAC [34], [35].

Last but not the least, even when an exact capacity charac-
terization is beyond reach, a fruitful strategy is to utilize the
N -sum box to design the best possible schemes allowed by
the abstraction. In general the constraints of the abstraction
may lead to entirely new schemes. However, certain applica-
tions of interest, of which QPIR is a prime example, have
classical solutions with specialized structures that naturally
resonate with the SSO constraint, the defining feature of
N -sum boxes. For such applications, it can be particularly
insightful to find ways to efficiently quantumize the classical
solutions, leading not only to good quantum coding schemes
but also a better understanding of the role of the SSO structure
for linear computations. Notably, such a quantumization was
introduced in [22] by blending the star-product scheme [36]
with the two-sum protocol. In this work, to further illustrate
this aspect, we provide another instance by quantumizing
classical cross-subspace alignment (CSA) codes into QCSA
codes. CSA codes have been used in a variety of schemes
ranging from XSTPIR [37] and MDS coded XSTPIR [38] to
secure distributed batch matrix multiplication (SDBMM) [5],
[39]. Therefore, QCSA codes naturally open the door for the
general quantum MDS-coded XSTPIR (MDS-coded QXST-
PIR) setting as well as quantum SDBMM (QSDBMM).

C. Organization of the Paper

In Section II we describe the stabilizer formalism over
a finite field, which provides the quantum building block
for stabilizer-based N -sum-box constructions. In Section III
we formally define an N -sum box. In Section IV we study
which constructions based on a maximal stabilizer are feasible
both allowing and disallowing local invertible transformations,
i.e., invertible transformations applied to the inputs by the
transmitters or invertible transformations applied to the output
by the receiver. In Section V we provide an application to CSA
schemes to obtain a QCSA scheme that enables instances of
MDS-coded QXSTPIR and QSDBMM. Finally in Section VI
we consider constructions based on non-maximal stabilizers
that enable instances of symmetric MDS-coded QXSTPIR
without the need for shared randomness among the servers.

D. Notation

We denote by [N ] the set {1, . . . , N}, n ∈ N, and by Fq

the finite field with q elements. We use bold lower-case letters
and bold upper-case letters to denote vectors and matrices,
respectively. Given a matrix A, ⟨A⟩row and ⟨A⟩col denote the
spaces spanned by the rows and columns of A, respectively,
while A⊤ and A† represent its transpose and its conjugate
transpose, respectively.

II. STABILIZER FORMALISM OVER FINITE FIELDS

The stabilizer formalism [30] is a compact framework for
quantum computation that provides a useful bridge to classical

computation. Recently, this framework has been leveraged to
boost several classical protocols. We describe the stabilizer
formalism over a finite field, for the details of which we refer
the reader to [31] and [32]. Throughout, we will use the same
notation as in [24].

Let q = pr with a prime number p and a positive integer r.
Let H be a q-dimensional Hilbert space spanned by orthonor-
mal states {|j⟩ : j ∈ Fq}. For x ∈ Fq , we define the trace
trx :=

∑r−1
i=0 x

pi ∈ Fp. Let ω := exp(2πı/p). For a, b ∈ Fq ,
we define unitary matrices X(a) :=

∑
j∈Fq
|j + a⟩⟨j| and

Z(b) :=
∑

j∈Fq
ωtr bj |j⟩⟨j| on H. For s = (s1, . . . , s2N ) ∈

F2N
q , we define a unitary matrix W̃(s) := X(s1)Z(sN+1) ⊗
· · · ⊗ X(sN )Z(s2N ) on H⊗N called Weyl operator.

For x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ FN
q , we define

the tracial bilinear form ⟨x,y⟩ := tr
∑N

i=1 xiyi ∈ Fp and the
trace-symplectic bilinear form ⟨x,y⟩S := ⟨x,Jy⟩, where J is
the 2N × 2N matrix

J =
(
0 −I
I 0

)
.

The dual of a subspace V of F2N
q with respect to this form is

V⊥S :=
{
s ∈ F2N

q : ⟨v, s⟩S = 0 for any v ∈ V
}

.
A matrix F ∈ F2N×2N

q is called symplectic if F⊤JF = J.
Symplectic matrices are precisely those matrices that preserve
⟨·, ·⟩S, and its columns form a symplectic basis for F2N

q .
If we write F = ( A C

B D ), then F is symplectic if and only
if B⊤A,D⊤C are symmetric and A⊤D−B⊤C = I. Thus,

F−1 = J⊤F⊤J =
(

D⊤ −C⊤

−B⊤ A⊤

)
. (1)

Remark 1: If F ∈ F2N×2N
q is a symplectic matrix, then it

is easy to see that the matrix F′ = F
(

Iκ
0

)
∈ F2N×κ

q , i.e., the
matrix containing the first κ ∈ [N ] columns of F, satisfies the
relation (F′)⊤JF′ = 0. Conversely, a matrix satisfying such
relation can be completed to a symplectic matrix [40].

Symplectic orthogonality in the vector space F2N
q is equiva-

lent to commutativity in the Heisenberg-Weyl group HWN
q :={

cW̃(s) : s ∈ F2N
q , c ∈ C \ {0}

}
. In fact, there is a surjec-

tive homomorphism cW̃(s) ∈ HWN
q 7→ s ∈ F2N

q with kernel{
cIqN : c ∈ C \ {0}

}
, and two matrices c1W̃(s1), c2W̃(s2)

commute if and only if ⟨s1, s2⟩S = 0.
A commutative subgroup of HWN

q not containing cIqN

for any c ̸= 1 is called a stabilizer group. Such groups
are precisely those groups for which the aforementioned
homomorphism is actually an isomorphism. Thus, a stabilizer
group defines a self-orthogonal subspace, that is V ⊆ V⊥S ,
in F2N

q . Conversely, given a self-orthogonal subspace V of
F2N

q , there exist complex numbers cv so that

S(V) :=
{
W(v) := cvW̃(v) : v ∈ V

}
⊆ HWN

q (2)

forms a stabilizer group.
Example 1: Let X = X(1), Z = Z(1), I = X(0)

(defined over the binary field). Consider the self-orthogonal
subspace V of F4

2 generated by s1 = (1, 1, 0, 0) and
s2 = (0, 0, 1, 1). Then, the unitary matrices W̃(s1) =
X ⊗ X and W̃(s2) = Z ⊗ Z generate the stabilizer
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group S(V) = {I⊗ I,X⊗ X,Z⊗ Z,XZ⊗ XZ}. On the other
hand, the unitary matrices −W̃(s1) = −X ⊗ X and
W̃(s2) = Z ⊗ Z generate the stabilizer group S ′(V) =
{I⊗ I,−X⊗ X,Z⊗ Z,−XZ⊗ XZ}.

Remark 2: In the previous example we showed that differ-
ent choices for cv generate different stabilizer groups from
a given self-orthogonal subspace. On the other hand, the
homomorphism cW̃(s) ∈ HWN

q 7→ s ∈ F2N
q is surjec-

tive with kernel
{
cIqN : c ∈ C \ {0}

}
, which implies that,

given a self-orthogonal subspace, there is a class of stabilizer
groups that can be generated from it that vary only from
the choice of the constants cv. Thus, there is a one-to-one
correspondence between classes of stabilizer groups in HWN

q

and self-orthogonal subspaces in F2N
q .

Throughout this paper, we focus primarily on maximal
stabilizers, since they exhaust the scope of all possible
stabilizer-based N -sum boxes (cf. Remark 20). Maximal
stabilizers define strongly self-orthogonal (SSO) subspaces,
i.e., V = V⊥S , which implies the property dim(V) = N .
In Section VI we consider non-maximal stabilizer-based con-
structions for the cases when we want to discard N −κ of the
N outputs of an N -sum box.

While V defines a stabilizer S(V), the quotient space
F2N

q /V⊥S defines orthogonal projectors

PV :=
{
PVs : s ∈ F2N

q /V⊥S
}

(3)

which we use as a projective-value measurement (PVM).
We will denote |s⟩ the state which PVs projects onto. Through-
out this paper we will use the results shown in the following
proposition.

Proposition 1 [24, Proposition 2.2]: Let V be a D-
dimensional self-orthogonal subspace of F2N

q and S(V) be
a stabilizer defined from V . For a coset s ∈ F2N

q /V⊥S , let s
be its coset leader. Then, we obtain the following statements.
(a) For any v ∈ V , the operation W(v) ∈ S(V) is

simultaneously and uniquely decomposed as

W(v) =
∑

s∈F2N
q /V⊥S

ω⟨v,s⟩SPVs (4)

with orthogonal projections
{
PVs
}

such that

PVs PV
t

= 0 for any s ̸= t,∑
s∈F2N

q /V⊥S

PVs = IqN .

(b) Let HVs := ImPVs . We have dimHVs = qN−D for
any s ∈ F2N

q /V⊥S and the quantum system H⊗N is
decomposed as

H⊗N =
⊗

s∈F2N
q /V⊥S

HVs ≃ W ⊗ CqN−D

, (5)

where the system W is the qD-dimensional Hilbert
space spanned by

{
|s⟩ : s ∈ F2N

q /V⊥S
}

with the property

HVs = |s⟩ ⊗ CqN−D

:=
{
|s⟩ ⊗ |ψ⟩ : |ψ⟩ ∈ CqN−D

}
.

(c) For any s, t ∈ F2N
q , we have

W(t)|s⟩ ⊗ CqN−D

= |s + t⟩ ⊗ CqN−D

,

W(t)
(
|s⟩⟨s| ⊗ IqN−D

)
W(t)† = |s + t⟩⟨s + t| ⊗ IqN−D .

Measuring with PV as in Equation (3) would yield a coset.
Proposition 2 aims to clarify the notation of Proposition 1 by
giving a unique representative of the outputted equivalence
class. First, we need the following lemma to prove that
matrices satisfying the conditions of the proposition exist.

Lemma 1: Let G ∈ F2N×κ
q be such that G⊤JG = 0 and

rank(G) = κ. Then there exists a full-rank matrix G⊥ ∈
F2N×2N−κ

q such that
1) G⊤JG⊥ = 0, i.e., ⟨gi,g′j⟩S = 0 for i ∈ [κ], j ∈ [2N −

κ], where gi is the ith column of G and g′j is the jth

column of G⊥, and
2) G = G⊥( Iκ

0

)
, i.e., G is the leftmost submatrix of G⊥.

Proof: Let F be a symplectic completion of G, i.e., a
symplectic matrix such that its first κ columns are equal to G,
which exists by the conditions imposed on G (cf. Remark 1).
Then we can write it as F =

(
G G2 H1 H2

)
, where

H1 ∈ F2N×κ
q , G2,H2 ∈ F2N×N−κ

q . Since F⊤JF = J, it is
clear that f⊤i Jfj = 0 for each pair of columns fi, fj of F
such that i ∈ [κ], j ∈ [N ] ∪ {N + κ+ 1, . . . , 2N}. Choosing
G⊥ =

(
G G2 H2

)
proves the statement. □

Example 2: Let G =
(
1 1 0 0

)⊤
. Then a symplectic

completion is given by

F =


1 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0

,
thus we can choose G⊥ to be

G⊥ =


1 0 1
1 0 0
0 1 0
0 1 0

.
It is easy to see that G⊥ satisfies the two conditions of
Lemma 1.

Proposition 2: Let G ∈ F2N×κ
q and G⊥ ∈ F2N×2N−κ

q be
such that
• G = G⊥( Iκ

0

)
,

• G⊤JG⊥ = 0,
• there exists H ∈ F2N×κ

q such that
(
G⊥ H

)
is full rank.

Let V = ⟨G⟩col and (·)h : F2N
q → Fκ

q be such that

(x)h :=
(
0κ×2N−κ Iκ

)(
G⊥ H

)−1
x.

Then performing the PVM
{
PVs : s ∈ F2N

q /V⊥S
}

on the state
|x⟩⟨x| ⊗ IqN−κ gives the outcome (x)h followed by N − κ
uniformly random symbols with probability 1.

Proof: Condition 3 ensures that the matrices G and G⊥

are full rank, so dim(V) = κ and dim(V⊥S) = 2N − κ. By
conditions 1 and 2 we have that V ⊆ V⊥S = ⟨G⊥⟩col, so a sub-
group S(V) as in Equation (2) is a stabilizer. By Equation (5)
we have that H⊗N = W ⊗ CqN−κ

, where W is the qκ-
dimensional Hilbert space spanned by

{
|s⟩ : s ∈ F2N

q /V⊥S
}

.
Let x ∈ F2N

q , then we can uniquely decompose it as x =
G⊥xg + Hxh, xg ∈ F2N−κ

q , xh ∈ Fκ
q . Notice now that

(x)h = xh. Let g ∈ V⊥S , then we can write g = G⊥g′
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for g′ ∈ F2N−κ
q and x + g can be decomposed as x + g =

G⊥(xg + g′) + Hxh = G⊥x′g + Hxh, x′g ∈ Fκ
q .

In Proposition 1, we have that s = s + V⊥S ={
s + g : g ∈ V⊥S

}
. It follows that every x ∈ s maps to a

unique element sh ∈ Fκ
q . Thus, we can identify each coset s

with the element sh. Then we identify the states

|sh⟩W = |s⟩ (6)

to avoid confusion with the computational basis, since W is
the space spanned by the states |s⟩.

In the decomposition given by Equation (5) we have qκ

distinct elements, since each HVs has dimension qN−κ. Thus,
since there are qκ vectors sh ∈ Fκ

q , we can write Equation (4)
as W(v) =

∑
sh∈Fκ

q
ω⟨v,H1sh⟩SPVsh

, where PVsh
is the projec-

tion associated with the measurement outcome sh.
If κ = N , then dim(ImPVsh

) = 1 and we can decompose it
as PVsh

:= |sh⟩W⟨sh|W , otherwise the projection is given by
a density matrix. Assume now that the system is in the state
|x⟩ for some x ∈ F2N

q /V⊥S . By the discussion above, we can
identify x with a unique xh ∈ FN

q . Then,

PVsh
|x⟩ =

{
|xh⟩W if sh = xh,

0 if sh ̸= xh.

We thus obtain the outcome (x)h with probability 1 after per-
forming the PVM

{
PVs : s ∈ F2κ

q /V⊥S
}

=
{
PVsh

: sh ∈ Fκ
q

}
on the state |x⟩.

In general, assume the system is in the state |x⟩⟨x|⊗IqN−κ

for some x ∈ F2N
q /V⊥S . By the discussion above, we can

identify x with a unique xh ∈ Fκ
q . Then,

PVsh
(|x⟩⟨x| ⊗ I)

(
PVsh

)⊤
=

{
|xh⟩W⟨xh|W ⊗ I if sh = xh,

0 if sh ̸= xh.

We thus obtain the outcome (x)h followed by N − κ random
symbols from Fq with probability 1 after performing the
PVM

{
PVs : s ∈ F2κ

q /V⊥S
}

=
{
PVsh

: sh ∈ Fκ
q

}
on the state

|x⟩⟨x| ⊗ IqN−κ . □
Remark 3: The PVM can be more clearly expressed as

PV :=
{
PVsh

= |sh⟩W⟨sh|W : sh ∈ Fκ
q

}
. (7)

Example 3: Let G, G⊥ as in Example 2. We can choose H
to be the column we excluded from F in the previous example
when defining G⊥, i.e., H =

(
0 0 0 1

)⊤
. Then, the map

(·)h outputs

(x)h =
(
0 0 0 1

)
1 0 1 0
1 0 0 0
0 1 0 0
0 1 0 1


−1(

x1 x2 x3 x4

)

=
(
0 0 0 1

)
0 1 0 0
0 0 1 0
1 1 0 0
0 0 1 1

(x1 x2 x3 x4

)
=
(
0 0 1 1

)(
x1 x2 x3 x4

)
= x3 + x4.

In Example 5 we build a state over two qubits that is stabilized
by a non-maximal stabilizer and for which the PVM PV

outputs the same bit x3 +x4 and a uniformly-random bit after
applying the Weyl operators on each qubit.

Remark 4: If κ = N , then G⊥ = G, so the first
two conditions of Proposition 2 can be simply rewritten as
G⊤JG = 0. In this case G defines an SSO subspace V ,
which is in correspondence with a maximal stabilizer S(V).
Furthermore, measuring over the PVM PV is equivalent to
first revert the unitary UG,H (cf. Remark 9) and measuring
on the computational basis, as such unitary is needed to map
the computational basis to the PVM basis.

As the PVM PV is applied on N qudits, one should expect
N q-ary digits as output, but if κ < N , the output of the PVM
has only κ q-ary digits according to Proposition 2. We will
clarify this aspect in Section VI.

III. N -SUM BOX

An N -sum box is a black box with the following functional
form:


y1
y2
...
yN

 =

M1,1 · · · M1,2N

...
. . .

...
MN,1 · · · MN,2N




x1

...
xN

xN+1

...
x2N


,

or equivalently y = Mx, where y ∈ FN
q is the output

vector, x ∈ F2N
q is the input vector, and M ∈ FN×2N

q is the
transfer matrix. The inputs to the N -sum box are controlled
by N parties (transmitters), where transmitter n ∈ [N ] is
controlling (xn, xN+n). The output vector y is measured by
another party, which we label as the receiver. The N -sum
box is initialized with shared quantum entanglement among
the N transmitters, i.e., N entangled q-dimensional qudits
are prepared and distributed to the transmitters, one qudit per
transmitter. The initial qudit entanglement is independent of
the inputs x and any data that subsequently becomes available
to the transmitters. No quantum resource is initially available
to the receiver. In the course of operation of the N -sum
box, each of the N transmitters acquires data from various
sources, including possibly the receiver (e.g., queries in private
information retrieval), based on which it performs conditional
X,Z-gate operations on its own qudit, and then sends its qudit
to the receiver. The receiver performs a quantum measurement
on the N qudits, from which it recovers y.

In this setting, we allow the inputs (xn, xn+N ) from each
transmitter n ∈ [N ] to be transformed by an invertible matrix.
This corresponds to multiplying the input vector by local
invertible transformations, which are defined as follows.

Definition 1: Let diagN,Fq
be the set of diagonal matrices

of dimension N × N and entries in Fq . The set of local
invertible transformations (LITs) is defined as

LITN,Fq
:=
{(

Λ1 Λ2

Λ3 Λ4

)
: Λi ∈ diagN,Fq

,

i ∈ [4], det(Λ1Λ4 −Λ2Λ3) ̸= 0
}
.
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Notice that the submatrix with the entries in position (n, n),
(n, n+N), (n+N,n), (n+N,n+N) of Λ ∈ LITN,Fq is the
invertible matrix applied by transmitter n ∈ [N ] to its inputs.

We also allow receiver invertible transformations, i.e., we
allow the receiver to transform the output vector of the N -sum
box by multiplying it by P ∈ GLN,Fq

, where GLN,Fq
is the

set of invertible matrices with dimension N and entries in Fq .
This gives equivalent representations of the N -sum box as

y = PMΛx, P ∈ GLN,Fq
, Λ ∈ LITN,Fq

.

Definition 2: The relation
LIT≡ defines an equivalence class of

pairs of matrices M1,M2 ∈ FN×2N
q up to local and receiver

invertible transformations, i.e.,

M1
LIT≡M2 ⇐⇒ M1 = PM2Λ,

where P ∈ GLN,Fq
, Λ ∈ LITN,Fq

.

IV. STABILIZER-BASED N -SUM BOXES

First, we define strongly self-orthogonal matrices, which
are used in the construction of N -sum boxes based on the
stabilizer formalism.

Definition 3: A matrix M ∈ F2N×N
q is said to be strongly

self-orthogonal (SSO) if its columns span an SSO subspace,
or equivalently, if M⊤JM = 0 and rank(M) = N . The set
of SSO matrices is denoted by Mo.

Remark 5: The reason why we define strongly
self-orthogonal matrices is because self-orthogonal matrices
would not generate SSO subspaces. For example, in F4

9 where
F9 ≡ F3[x]/(x2 +x+2) with generator element α, the matrix

G⊤ =
(

1 0 0 2
0 1 −α 0

)
is self-orthogonal since the F3-trace of each element of the
matrix

G⊤JG =
(

0 α+ 2
α+ 2 0

)
is 0, but the space spanned by its rows wouldn not be strongly
self-orthogonal since

⟨αv1,v2⟩S = TrF9/F3(2α+ α2) ̸= 0.

Let us now characterize some classes of N -sum boxes that
can be constructed based on the stabilizer formalism.

A. Case With Disallowed LITs

The following theorem describes which transfer matrices
are feasible from a stabilizer-based construction when LITs
are disallowed.

Theorem 1: Suppose there exists G ∈ F2N×N
q such that

1) G ∈Mo,
2) there exists H ∈ F2N×N

q such that
(
G H

)
is full-rank,

3) M ∈ FN×2N
q is the submatrix comprised of the bottom

N rows of
(
G H

)−1
, i.e., M :=

(
0 I

)(
G H

)−1
.

Then there exists a stabilizer-based construction for an N -sum
box over Fq with transfer matrix M.

Proof: Let UG,H ∈ CqN×qN

(cf. Remark 9) be the
unitary matrix such that its ith column is the vector repre-
senting the state |ν(i)⟩W identified by Equation (6), where

i ∈ [qN ], ν : [qN ] → FN
q is a bijection and W is the

Hilbert space defined by a chosen stabilizer group within the
class in correspondence with V = ⟨G⟩col (cf. Remark 2). In
other words, UG,H is the encoding operation for the chosen
stabilizer group, as shown on the left side of Figure 3. Let
|0⟩W = UG,H|0⟩ be the initial entangled state over H⊗N .
Assume that transmitter n ∈ [N ] applies X(xn),Z(xN+n)
on his qudit and sends it to the receiver. Then the quantum
system received is in the state W(x)|0⟩W = |(x)h⟩W . After
performing the PVM PV defined in Equation (7) on the qudits
the receiver measures (x)h without error by Proposition 2.
Let M be the submatrix comprised of the bottom N rows
of
(
G H

)−1
, then we have that Mx = xh, which is the

output of the measurement. We proved that for an N -sum box
with transfer function M satisfying condition 3 there exists a
quantum black box with input x and output Mx. □

Remark 6: The terminology “stabilizer-based construction”
stems from the aforementioned correspondence between sta-
bilizers and self-orthogonal spaces. Explicitly, let S =
⟨W(s1), . . . ,W(sκ)⟩ ⊆ HWN

q be a stabilizer group, i.e., a
stabilizer group with κ independent generators W(si) depen-
dent on si ∈ F2N

q , i ∈ [κ]. Let G ∈ F2N×κ
q be the matrix that

has si as its ith column, then G⊤JG = 0 and rank(G) = κ.
For the case κ = N , the stabilizer is maximal, |0⟩W is its
stabilized state, and G ∈Mo.

Remark 7: A stabilizer-based construction for any feasible
N -sum box y = Mx is information-theoretically optimal
as a black-box implementation in the sense that its quantum
download cost of N qudits cannot be improved upon by any
other construction. In other words, there cannot exist a more
efficient (in terms of download cost) construction (e.g., non-
stabilizer based) that allows the receiver to recover the same
y = Mx output with a total download cost that is strictly less
than N qudits. This is because the transfer matrix M is full
rank, and by the Holevo bound [41], N independent classical
dits cannot be delivered with a communication cost of less
than N qudits.

Remark 8: From a quantum coding-theoretic perspective,
a stabilizer-based construction for an N -sum box is equivalent
to preparing a stabilizer state, applying an N -qudit error
corresponding to a string of 2N symbols from a finite field,
and computing the syndrome on this state as output.

We denote by Msbc the set of all the transfer matrices
resulting from stabilizer-based constructions with disallowed
LITs. In the following, we establish that the set of transfer
matrices achievable through the (G,H)-construction estab-
lished by Theorem 1 is the same as the set of SSO matrices,
i.e.,

Lemma 2: Mo =Msbc.
Proof: Let M ∈ FN×2N

q be such that M⊤ ∈ Msbc.
By condition 3 of Theorem 1 we have that MG = 0, and
since G ∈Mo, we also have that G⊤JG = 0, which implies
MG = G⊤JG. Since G is full-rank, also G⊤J is full-rank,
so ⟨M⟩row = ⟨G⊤J⟩row as they both describe the null-space
of G⊤. This implies that M = PG⊤J for an invertible
matrix P ∈ GLN,Fq , and since JJ⊤ = I we can conclude
that MJM⊤ = PG⊤JJJ⊤GP⊤ = 0, i.e., M⊤ ∈ Mo and
Msbc ⊆Mo.



ALLAIX et al.: N -SUM BOX: AN ABSTRACTION FOR LINEAR COMPUTATION OVER MANY-TO-ONE QUANTUM NETWORKS 1127

Fig. 3. Quantum circuit and black-box representation for an N -sum box with transfer function y = Mx.

Now, let M ∈ FN×2N
q be such that M⊤ ∈ Mo. Let

N ∈ FN×2N
q be such that ( N

M ) is full-rank. Then the matrix
( N
M ) is invertible and we can write its inverse as

(
G H

)
,

where G,H ∈ F2N×N
q are full-rank matrices. Clearly,

( N
M )
(
G H

)
= ( I 0

0 I ), so MG = 0. Since M⊤ ∈ Mo,
we also have that MJM⊤ = 0, which implies G⊤M⊤ =
MJM⊤. With a similar argument as above, we have that
⟨G⊤⟩row = ⟨MJ⟩row, from which we can easily conclude that
G⊤JG = 0, i.e., G ∈ Mo, thus proving M ∈ Msbc and
Mo ⊆Msbc. □

Remark 9: Let G = ( A
B ) ∈ Mo be any SSO matrix and

H = ( C
D ) be such that the matrix F :=

(
G H

)
is symplectic.

Then, by Equation (1), we have
(
0 I

)
F−1 =

(
−B⊤ A⊤)

which is again an SSO matrix. Combining this with Lemma 2
implies that we only need to complete G to a symplectic
matrix (instead of invertible). The well-known connection
between symplectic matrices and the stabilizer formalism [33]
allows for a simpler description of the matrix UG,H, as the
following example illustrates.

Example 4: Suppose we have two parties, Tx1 and Tx2,
both possessing two bits a = (x1, x3), b = (x2, x4) ∈ F2

2,
respectively (see Figure 1). The two-sum transmission protocol
computes the sum of their bits (x1 +x2, x3 +x4) starting with
the Bell state |β00⟩ = (|00⟩ + |11⟩)/

√
2, which is stabilized

by the stabilizer S = ⟨W(0, 0, 1, 1),W(1, 1, 0, 0)⟩. Consider
the matrix

F =
(
G H

)
=


0 1 1 0
0 1 0 0
1 0 0 0
1 0 0 1

,

where G is determined by S and H is chosen so that F is a
symplectic matrix. The symplectic matrix can be decomposed,

e.g., using the Bruhat decomposition [42], [43], as

F =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 ·


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

.
The components are precisely the symplectic representation of
the quantum gates CNOT and a partial Hadamard H⊗ I on the
first qudit [44]. This is precisely the circuit UG,H for which
|β00⟩ = UG,H|00⟩. Using Equation (1) we then obtain the
transfer matrix

M =
(
0 I

)
F−1 =

(
1 1 0 0
0 0 1 1

)
,

which is exactly the functional form of the two-sum trans-
mission protocol. This approach allows for a straightforward
generalization that computes Mx starting with the state
(|0..0⟩+ |1..1⟩)/

√
2, where

M =


110 · · · 00 000 · · · 00
011 · · · 00 000 · · · 00

...
...

000 · · · 11 000 · · · 00
000 · · · 00 111 · · · 11

 ∈ FN×2N
q .

The following theorem fully characterizes N -sum boxes
without LITs and follows directly from Theorem 1, Remark 6
and Lemma 2.

Theorem 2: Let M ∈ Mo. A construction based on a
stabilizer S ⊆ HWN

q exists for an N -sum box over Fq with
transfer matrix M⊤ if and only if S is a maximal stabilizer.

B. Overview of Stabilizer-Based Construction of an N-Sum
Box

In a nutshell, the construction starts with an SSO matrix G.
The set of Weyl operators corresponding to the columns of
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G = [g1,g2, . . . ,gN ] forms the generators of a commuting
group of normal matrices W̃(gi), i ∈ [N ]. Commutativity is
guaranteed by the SSO property of G and the definition of
the Weyl operators.

Because of the commutativity, these normal matrices W̃(gi)
are simultaneously diagonalizable — they share the same set
of orthonormal eigenvectors. Let UG be a unitary matrix
whose columns are these orthonormal eigenvectors. Any one
of these, say the first column, |u⟩ := UG|0⟩, can be chosen
to be the initial state for the N -sum box. Consider the
Weyl operators normalized by their respective eigenvalues for
the chosen eigenvector, i.e., W(gi) = (1/λi)W̃(gi) where
W̃(gi) |u⟩ = λi |u⟩, so that |u⟩ has eigenvalue +1 for W(gi).
These normalized Weyl operators are now seen as the “stabi-
lizers”, |u⟩ is the initial entangled state that is prepared for the
N -sum box, and the columns of UG represent the orthonormal
basis for the measurement that produces the output of the
N -sum box. Note that while the set of orthonormal basis
vectors is fixed by the choice of the SSO matrix G, the order
in which these vectors appear as columns of UG dictates
the representation of the measurement result. This choice is
determined by the matrix H in Theorem 1. Each choice of
H produces a matrix UG,H, which is nothing but a particular
permutation of the columns of UG determined by the choice
of H, thus producing different representations of the same
measurement. The choices of G and H, and therefore the
initial entangled state and the orthogonal measurement, are
all agreed upon between the transmitters and the receiver in
advance as part of the protocol design, based on the desired
functionality (i.e., the desired transfer matrix M) of the N -
sum box.

It is noteworthy that the normalization of the Weyl operators
to act as stabilizers for the initial state is not essential for the
N -sum box, where we send only classical information and
an orthogonal measurement fully identifies the state. It is pri-
marily a convenience chosen to retain the obvious connection
to syndrome measurement in quantum error correction with
stabilizer codes.

C. Case With Allowed LITs

Now we explore what is possible when LITs are allowed.
The following theorem shows that the transfer matrix of
any (G,H) construction is equivalent (up to LITs) to the
null-space of G⊤, which can be explicitly represented as
⟨J⊤G⟩col.

Proposition 3: Let M ∈ FN×2N
q be such that M⊤ ∈Msbc.

Then M
LIT≡ G⊤J, whose row-space is the null-space of G⊤.

Proof: This follows directly from the proof of Lemma 2,
since we can write M = PG⊤J for P ∈ GLN,Fq , i.e., M

LIT≡
G⊤J. □

A known property of SSO matrices is that they can be
written in the so-called standard form [45], i.e., if M ∈ Mo

then there exist P ∈ GLN,Fq , Q ∈ GL2N,Fq such that

PM⊤Q =
(
I S

)
, (8)

where S is a symmetric N×N matrix, i.e., S⊤ = S. We denote
by Ms the set of transfer matrices in standard form, i.e.,

Ms := {M ∈ F2N×N
q :M⊤ =

(
I S

)
,

S ∈ FN×N
q , S⊤ = S}.

The following lemma shows that any SSO matrix M can be
transformed by at most N signed column-swapping operations
into a matrix M′ =

(
M′

l M′
r

)⊤ ∈Mo such that M′
l is full-

rank. For completeness, the proof is included in Appendix A.
Lemma 3: For any M ∈Mo there exists a diagonal matrix

Σ ∈ {0, 1}N×N such that

(M′)⊤ = M⊤
(
I−Σ Σ
−Σ I−Σ

)
LIT≡M⊤, (9)

M′ ∈Mo, (10)
det(M′

l) ̸= 0. (11)

Remark 10: Notice that (M′)⊤ is obtained from M⊤ by
signed column-swapping operations, i.e., swapping corre-
sponding columns of Gl and Gr with a sign-change operation.
Specifically, if Σi,i = 1, the ith column of Gl is replaced with
the negative of the ith column of Gr, while the ith column
of Gr is replaced with the ith column of Gl.

Our next result shows that with LITs, every feasible transfer
matrix M ∈ Mo has an equivalent representation in the
standard form (M)⊤

LIT≡
(
I S

)
, where S⊤ = S. Notice that

in Equation (8) the matrix Q is not necessarily an LIT. The
contribution here is to show that the standard form remains
valid when only LITs are allowed.

Theorem 3: For every M ∈ Msbc there exists M′ ∈ Ms

such that (M′)⊤
LIT≡M⊤. Conversely, Ms ⊆Msbc.

Proof: By Lemma 3 in Appendix A, there exists M′ :=(
M′

l M′
r

)⊤ ∈ Mo such that M⊤ LIT≡ (M′)⊤ and M′
l is full-

rank. Since multiplication on the left by an invertible square
matrix preserves both rank and strong self-orthogonality,
we obtain that (M′′)⊤ = (M′

l)
−1(M′)⊤ =

(
I F

)
and M′′ ∈

Mo. Notice that F is symmetric, since M′′ =
(
I F

)⊤ ∈Mo

implies that

0 = (M′′)⊤JM′′ =
(
F −I

)(
I F

)⊤ = F− F⊤,

so we can conclude that M′′ ∈Ms.
Conversely, it is easy to see that the standard form

(
I S

)
is strongly self-orthogonal, since it has rank N and(

I S
)
J
(
I S

)⊤ =
(
S −I

)(
I S

)⊤ = S− S⊤ = 0.

Clearly we have that Ms ⊆Mo =Msbc. □
Remark 11: The standard form is not unique up to LITs.

For example,(
I S1

)
=
(

1 0 1 1
0 1 1 1

)
LIT≡
(

1 0 1 1
1 −1 0 1

)
LIT≡
(

1 0
1 −1

)(
1 0 1 1
1 −1 0 1

)
=
(

1 0 1 1
0 1 1 0

)
=
(
I S2

)
, S2 ̸= S1.
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Fig. 4. Relationships between the various forms of transfer functions.

Next, we define the set MLIT of all possible transfer
matrices that we can obtain by applying LITs:

MLIT :=
{
M ∈ F2N×N

q : ∃M′ ∈Msbc, (M′)⊤
LIT≡M⊤

}
.

The following theorem shows that any transfer matrix in
MLIT is equivalent, up to LITs, to a transfer matrix in standard
form. Figure 4 provides an overview of the relationships
between the various forms of transfer functions.

Theorem 4: For every M ∈ MLIT there exists M′ ∈ Ms

such that (M′)⊤
LIT≡ M⊤. Conversely, for every M′ ∈ Ms

there exists M ∈MLIT such that M⊤ LIT≡ (M′)⊤.
Proof: By definition, for every M ∈ MLIT there exists

M′ ∈ Msbc such that (M′)⊤
LIT≡ M⊤. By Theorem 3 there

exists M′′ ∈ Ms such that (M′′)⊤
LIT≡ (M′)⊤, and since the

equivalence is transitive, we have that (M′)⊤
LIT≡M⊤.

The converse is trivial by the definitions. □

D. Feasibility of an N -Sum Box

Next we explore the problem of testing feasibility. Given
a desired N -sum box specification Y = M⊤X for some
M ∈ F2N×N

q , the goal is to determine if this N -sum box is
feasible by stabilizer based constructions combined with local
invertible transformations. The easiest case is if M is in the
standard form M⊤ =

(
I S

)
, which is immediately seen to be

feasible. Another easy case is when M ∈ Mo, which can be
checked efficiently as well with complexity O(N3). However,
if M is neither in standard form, nor a full-rank strongly
self-orthogonal matrix, it could still be feasible through local
invertible transformations. Here we describe a test to determine
such feasibility, or to rule it out with certainty, with complexity
no more than O(N4).

Theorem 5: The transfer matrix M⊤ =
(
Ml Mr

)
∈

FN×2N
q is feasible for an N -sum box construction, i.e., M ∈
MLIT, if and only if rank(M) = N and there exists an
invertible diagonal matrix ∆ ∈ FN×N

q such that

M′ =
(
Ml Mr∆

)⊤ ∈Mo. (12)

Remark 12: Finding such a ∆ can be done with complexity
O(N4) by solving for the N elements of ∆ subject to the
linear constraints imposed by the self-orthogonality condition.

Proof: Consider a general feasible setting. By Theorem 4
we can write M⊤ = P

(
I S

)
Λ for some P ∈ GLN,Fq

and

Λ =
(
Λ1 Λ2

Λ3 Λ4

)
∈ LITN,Fq ,

where the matrices Λi ∈ diagN,Fq
, i ∈ [4], are such that

det(Λ1Λ4 − Λ2Λ3) ̸= 0. Let Λd = Λ1Λ4 − Λ2Λ3 and
∆ = Λ−1

d ∈ diagN,Fq
. To prove the result it is only necessary

to show that the matrix Λ′ = Λ( I 0
0 ∆ ) is symplectic, i.e., it

satisfies the property Λ′J(Λ′)⊤ = J, as symplectic matrices
are known to be the only kind of matrices that preserves strong
self-orthogonality:

Λ
(

I 0
0 ∆

)
J
(

I 0
0 ∆

)⊤
Λ⊤ = Λ

(
0 −I
∆ 0

)(
I 0
0 ∆

)
Λ⊤

= Λ
(

0 −∆
∆ 0

)
Λ⊤ =

(
Λ2∆ −Λ1∆
Λ4∆ −Λ3∆

)(
Λ1 Λ3

Λ2 Λ4

)
=
(
Λ2∆Λ1 −Λ1∆Λ2 Λ2∆Λ3 −Λ1∆Λ4

Λ4∆Λ1 −Λ3∆Λ2 Λ4∆Λ3 −Λ3∆Λ4

)
=
(

(Λ2Λ1 −Λ1Λ2)∆ (Λ2Λ3 −Λ1Λ4)∆
(Λ4Λ1 −Λ3Λ2)∆ (Λ4Λ3 −Λ3Λ4)∆

)
=
(

(Λ1Λ2 −Λ1Λ2)∆ −(Λ1Λ4 −Λ2Λ3)∆
(Λ1Λ4 −Λ2Λ3)∆ (Λ3Λ4 −Λ3Λ4)∆

)
= J

by the commutativity of diagN,Fq
. It follows that

(M′)⊤JM′=M⊤
(

I 0
0 ∆

)
J
(

I 0
0 ∆

)⊤
M

=P
(
I S

)
Λ
(

I 0
0 ∆

)
J
(

I 0
0 ∆

)⊤
Λ⊤(I S

)⊤
P⊤

=P
(
I S

)
J
(
I S

)⊤
P⊤ = 0,

i.e., M′ ∈Mo.
For the other direction it is trivial to see that if such a ∆

exists, then M⊤ LIT≡ (M′)⊤ and M′ ∈ Mo ⊆ MLIT, which
implies that M ∈MLIT. □

Remark 13: Notice that in the proof we proved that the
matrix Λ′ = Λ( I 0

0 ∆ ) is symplectic, i.e., it satisfies the
property Λ′J(Λ′)⊤ = J, as symplectic matrices are known
to be the only kind of matrices that preserves strong self-
orthogonality.

V. N -SUM BOX APPLICATION: QUANTUM CSA SCHEME

Cross-subspace alignment (CSA) codes find applications in
various private information retrieval (PIR) schemes (e.g., PIR
with secure storage) and in secure distributed batch matrix
multiplication (SDBMM). Using the developed N -sum box
abstraction of a quantum multiple-access channel (QMAC),
we translate CSA schemes over classical multiple-access chan-
nels into efficient quantum CSA schemes over a QMAC,
achieving maximal superdense-coding gain. Because of the
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N -sum box abstraction, the underlying problem of coding
to exploit quantum entanglements for CSA schemes becomes
conceptually equivalent to that of designing a channel matrix
for a MIMO MAC subject to given structural constraints
imposed by the N -sum box abstraction, such that the resulting
MIMO MAC is able to implement the functionality of a
CSA scheme (encoding/decoding) over-the-air. Applications
include Quantum PIR with secure and MDS-coded storage,
as well as Quantum SDBMM. In this section we first introduce
the classical CSA scheme, then give the definition of some
important concepts and finally present the way to translate a
CSA scheme to QCSA scheme and apply the QCSA scheme
to specific problems.

A. Cross Subspace Alignment (CSA) Codes

Conceptually, the setting for a CSA coding scheme (over
a finite field Fq) is the following. We have N distributed
servers. The servers locally compute their answers An, n ∈
[N ], to a user’s query. Each answer An is a linear com-
bination of L symbols that are desired by the user, say
δ1, δ2, · · · , δL, and N − L symbols of undesired information
(interference), say ν1, ν2, · · · , νN−L. The linear combinations
have a Cauchy-Vandermonde structure that is the defining
characteristic of CSA schemes, such that the desired terms
appear along the dimensions corresponding to the Cauchy
terms, while the interference appears (aligned) along the
dimensions corresponding to the Vandermonde terms. The bth

instance of a CSA scheme is represented as(
Ab

1 · · · Ab
N

)⊤︸ ︷︷ ︸
Ab

=


1

f1−α1
· · · 1

fL−α1
1 α1 · · · αN−L−1

1
1

f1−α2
· · · 1

fL−α2
1 α2 · · · αN−L−1

2

...
...

...
...

...
...

...
1

f1−αN
· · · 1

fL−αN
1 αN · · · αN−L−1

N


︸ ︷︷ ︸

G
CSAq

N,L
(α,f)(

δb
1 · · · δb

L νb
1 · · · νb

N − L

)⊤︸ ︷︷ ︸
Xb

δ,ν

.

The CSA scheme requires that all the αi, fj are distinct ele-
ments in Fq (thus needing q ≥ N +L), which guarantees that
the N×N matrix G

CSAq
N,L

(α,f)
is invertible. After downloading

An from each server n, n ∈ [N ], the user is able to recover the
desired symbols δb

1, . . . , δ
b
L by inverting CSAq

N,L(α, f). Thus,
each instance b of the CSA scheme allows the user to retrieve
L desired symbols at a cost of N downloaded symbols. The
rate of the scheme, defined as the number of desired symbols
recovered per downloaded symbol, is L/N . The reciprocal,
N/L, is the download cost per desired symbol.

Remark 14: A noteworthy aspect of CSA schemes is that
the number of servers can be reduced, i.e., the CSA scheme
can be applied to N ′ < N servers, with a corresponding
reduction in the number of desired symbols L′ < L, as long
as the dimension of interference is preserved, i.e., N − L =
N ′ − L′. In the classical setting, this flexibility is not useful

as it leads to a strictly higher download cost, i.e., N ′/L′ =
(N − L)/L′ + 1 > (N − L)/L + 1 = N/L. In the quantum
setting, however, this will lead to a useful simplification.

B. Definitions

In the following we represent GRS codewords as column
vectors rather than the usual coding-theoretic notation with
row vectors in order to be consistent with the standard notation
used in linear computation. It follows that the GRS generator
matrix is represented as a n × k matrix instead of the usual
k × n matrix.

Definition 4 (GRS Code): Let C = GRSq
n,k(α,u) be a

Generalized Reed–Solomon (GRS) code over Fq , where α =
(α1, . . . , αn) ∈ F1×n

q , u = (u1, . . . , un) ∈ F1×n
q , ui ̸= 0 and

αi ̸= αj for all distinct i, j ∈ [n]. Its generator matrix can be
defined as

GGRSq
n,k(α,u) :=

u1 u1α1 u1α
2
1 · · · u1α

k−1
1

u2 u2α2 u2α
2
2 · · · u2α

k−1
2

...
...

...
...

...
un unαn unα

2
n · · · unα

k−1
n

 ∈ Fn×k
q .

Definition 5 (Dual Code): For an [n, k] linear code C ⊂
Fn×1

q , its dual code C⊥ is defined as

C⊥ :=
{
v ∈ Fn×1

q : ⟨v, c⟩ = 0,∀c ∈ C
}
.

The dual code of a GRS code is also a GRS code, e.g.,
according to the following construction [46].

Definition 6 (Dual GRS Code): [46] For v =
(v1, . . . , vn) ∈ F1×n

q defined as

vj =
1
uj

 ∏
i∈[n],i̸=j

(αj − αi)

−1

∀j ∈ [n], (13)

where uj ̸= 0, we have

G⊤
GRSq

n,k(α,u)GGRSq
n,n−k(α,v) = 0k×(n−k), (14)

i.e., GRSq
n,n−k(α,v) is an [n, n− k] code that is the dual of

the code GRSq
n,k(α,u).

Definition 7 (QCSA Matrix): We define the
QCSAq

N,L(α,β, f) matrix as the N × N matrix
in (15), as shown at the bottom of the next page, where
α = (α1, . . . , αN ) ∈ F1×N

q , β = (β1, . . . , βN ) ∈ F1×N
q ,

f = (f1, f2, . . . , fL) ∈ F1×L
q , all βi, i ∈ [N ] are non-zero, the

terms α1, . . . , αN , f1, . . . , fL are L+N distinct elements of
Fq , q ≥ L+N , L ≤ N/2. The sub-matrices GGRSq

N,⌊N/2⌋(α,β)

and GGRSq
N,⌈N/2⌉(α,β) identified in Equation (15) are the

generator matrices of [N, ⌊N/2⌋] and [N, ⌈N/2⌉] GRS codes,
respectively. As a special case, setting β1 = . . . = βN = 1,
we have,

GCSAq
N,L(α,f) = GQCSAq

N,L(α,1,f). (16)

Remark 15: When N is an even number, the two sub-
matrices GGRSq

N,⌊N/2⌋(α,β) and GGRSq
N,⌈N/2⌉(α,β) become the

same sub-matrix GGRSq
N,N/2(α,β).
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Remark 16: The QCSAq
N,L(α,β, f) matrix is the product

of an N × N diagonal matrix diag(β1, β2, · · · , βN ) and the
N×N Cauchy-Vandermonde matrix GCSAq

N,L(α,f) invoked by
CSA schemes (cf. [38, Equation (11)]). The former is full rank
since βn ̸= 0, ∀n ∈ [N ], and the latter is full rank according
to [38, Lemma 1] because α1, · · · , αN , f1, · · · , fN are distinct
(q ≥ L + N ). Since multiplication with an invertible matrix
preserves rank, the QCSAq

N,L(α,β, f) matrix is an invertible
matrix.

C. From CSA Scheme to QCSA Scheme

Given a CSA scheme over Fq , we show how to translate it
into a QCSA scheme over a QMAC. The process is described
by the following three steps.

1) From the CSAq
N,L(α, f) matrix, construct two matrices

Qu
N = GQCSAq

N,L(α,u,f), Qv
N = GQCSAq

N,L(α,v,f).
2) From Qu

N ,Q
v
N , construct a feasible N -sum Box, i.e., a

MIMO MAC with channel matrix MQCSA.
3) Over the MIMO MAC, realize ‘over-the-air’ decoding

of two instances of the CSA scheme. By the N -sum
box abstraction, this automatically maps to a quantum
protocol (a QCSA scheme) and the efficiency gained by
‘over-the-air’ decoding in the MIMO MAC translates into
the superdense coding gain over the QMAC.

These steps are explained next.
1) Step 1. Generation of QCSA Matrices: Let u =

(u1, . . . , uN ) ∈ F1×N
q and v = (v1, . . . , vN ) ∈ F1×N

q , where

vj =
1
uj

 ∏
i∈[N ],i̸=j

(αj − αi)

−1

∀j ∈ [N ], (17)

such that the sub-matrix GGRSq
N,⌈N/2⌉(α,u) of Qu

N and the
sub-matrix GGRSq

N,⌊N/2⌋(α,v) of Qv
N satisfy

G⊤
GRSq

N,⌈N/2⌉(α,u)GGRSq
N,⌊N/2⌋(α,v) = 0⌈N/2⌉×⌊N/2⌋, (18)

according to Equation (13) and Equation (14).
2) Step 2. A suitable N -Sum Box: The N -sum box is

specified by the following theorem.
Theorem 6: For the Qu

N and Qv
N constructed in Step 1,

there exists a feasible N -sum box y = MQCSAx in Fq with
the N × 2N transfer matrix,

MQCSA =


IL 0L×⌈N/2⌉ 0 0 0 0
0 0 I⌊N/2⌋−L 0 0 0
0 0 0 IL 0L×⌊N/2⌋ 0
0 0 0 0 0 I⌈N/2⌉−L


·
(
Qu

N 0
0 Qv

N

)−1

. (19)

A proof of Theorem 6 is presented in Appendix B.
3) Step 3. QCSA Scheme as ‘Over-the-Air’ CSA: Using the

MIMO MAC with channel matrix MQCSA identified in Step 2,
we now describe how to achieve ‘over-the-air’ decoding of
several instances of CSA schemes. Since the MIMO MAC is
actually an N -sum box, which in fact represents a quantum
protocol with communication cost N qudits, a QCSA scheme
is automatically implied for the QMAC through the N -sum
box abstraction.

First consider the case where we are given a CSA scheme
with L ≤ N/2. With 2 instances of the CSA scheme we have(

A1

A2

)
=

(
GCSAq

N,L(α,f) 0
0 GCSAq

N,L(α,f)

)(
X1

δ,ν

X2
δ,ν

)
, (20)

which retrieves 2L desired symbols at the download cost of
2N symbols. Now the corresponding QCSA scheme (over-
the-air MIMO MAC) is obtained as follows.

y = MQCSA

(
diag(u) 0

0 diag(v)

)(
A1

A2

)
︸ ︷︷ ︸

x

(21)

= MQCSA

(
diag(u) 0

0 diag(v)

)
·

(
GCSAq

N,L(α,f) 0
0 GCSAq

N,L(α,f)

)(
X1

δ,ν

X2
δ,ν

)
(22)

= MQCSA

(
Qu

N 0
0 Qv

N

)(
X1

δ,ν

X2
δ,ν

)
(23)

=


IL 0L×⌈N/2⌉ 0 0 0 0
0 0 I⌊N/2⌋−L 0 0 0
0 0 0 IL 0L×⌊N/2⌋ 0
0 0 0 0 0 I⌈N/2⌉−L


·
(
X1

δ,ν

X2
δ,ν

)
=
(
δ11 , · · · , δ1L,ν1

(↽), δ
2
1 , · · · , δ2L,ν2

(↽)

)⊤
. (24)

where the N entries of u are non-zero, v is specified in
Equation (17), ν1

(↽) represents the last ⌊N/2⌋−L symbols of

G
QCSAq

N,L
(α,β,f)

:=


β1

f1−α1

β1
f2−α1

· · · β1
fL−α1

GGRSq
N,⌊N/2⌋

(α, β)︷ ︸︸ ︷
β1 β1α1 · · · β1α

⌊N/2⌋−1
1 β1α

⌈N/2⌉−1
1 β1α

⌈N/2⌉
1 · · · β1α

N−L−1
1

β2
f1−α2

β2
f2−α2

· · · β2
fL−α2

β2 β2α2 · · · β2α
⌊N/2⌋−1
2 β2α

⌈N/2⌉−1
2 β2α

⌈N/2⌉
2 · · · β2α

N−L−1
2

...
...

...
...

...
...

...
...

...
...

︸ ︷︷ ︸
H̃β

C

βN

f1−αN

βN

f2−αN
· · · βN

fL−αN ︸ ︷︷ ︸
GGRSq

N,⌈N/2⌉(α,β)

βN βNαN · · · βNα
⌊N/2⌋−1
N βNα

⌈N/2⌉−1
N ︸ ︷︷ ︸

H̃β
V

βNα
⌈N/2⌉
N · · · βNα

N−L−1
N

 (15)



1132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 2, FEBRUARY 2025

the vector ν1 =
(
ν1
1 , . . . , ν

1
N−L

)
, and ν(↽)(2) represents the

last ⌈N/2⌉ − L symbols of the vector ν2 =
(
ν2
1 , . . . , ν

2
N−L

)
.

Multiplication by diag(u,v) in Equation (21) simply involves
each server j ∈ [N ] scaling its answers of the two instances of
the CSA scheme A1

j , A
2
j by uj , vj , respectively, and applying

ujA
1
j , vjA

2
j to the inputs of the N -sum box (MIMO MAC)

corresponding to that server. Evidently, all 2L desired symbols
are recovered, and the total download cost is N qudits (one
qudit from each server), for a normalized download cost
of N/(2L) qudits per desired dit. The improvement from
N/L (classical CSA) to N/2L (QCSA) reflects the factor of
2 superdense coding gain in communication efficiency.

If L > N/2, we discard ‘redundant’ servers (cf. Remark 14)
and only employ N ′ = 2N−2L < N servers, choosing a CSA
scheme with L′ = N ′/2, such that N−L = N ′ −L′, i.e., the
dimensions of interference are preserved, which results in a
download cost of N ′/(2L′) = 1 qudit per desired symbol.

D. QCSA Scheme Application

Based on the approach described above, existing achiev-
ability results based on CSA schemes in the classical setting
translate into corresponding achievability results for QCSA
schemes in the quantum setting. In particular, the fol-
lowing corollaries follow immediately from this approach.
Appendix C provides a proof of Corollary 1 and Section C-A
provides a proof of Corollary 2.

Corollary 1: For the (N,M,K,X, T ) MDSXSTPIR [38],
where N > X + T +K − 1, a QCSA scheme achieves rate

RQ = min
{

1, 2
(

1−
(
X + T +K − 1

N

))}
, (25)

i.e., the user is able to recover L = NRQ q-ary symbols of
desired information for every N q-dimensional qudits that it
downloads from the servers.

Remark 17: In an MDSXSTPIR problem, there are M
messages and N servers. Every K symbols of one message,
together with X random noise symbols, are encoded according
to an [N,K + X] MDS code and each codeword symbol
is stored at one of the N servers. Thus, the storage cost of
every server is 1

M of the size of all the M messages, and any
group of up to X colluding servers learn nothing about the M
messages. A user wishes to retrieve one of the M messages
by querying the N distributed servers such that any group of
up to T colluding servers can learn nothing about the desired
message index.

Remark 18: In addition to establishing achievable rates
for quantum versions of XSTPIR [37], MDS-XSTPIR [38]
that have not been previously explored, Corollary 1 recovers
existing achievability results in Quantum PIR for the cases of
TPIR [21] and MDS-TPIR [24]. Relative to prior works, the
field size required by the QCSA scheme is linear in N , because
an even q ≥ L+N where L ≤ N

2 guarantees the existence of
the QCSA matrix, while in [21], the field size is exponential
in N , due to an O(N) fold field extension step. It is also
noteworthy that prior quantum PIR schemes employ mixed
quantum states to achieve symmetric privacy, i.e., the user does
not learn more than his desired information. While the QCSA
scheme does not automatically ensure symmetric privacy, the

same can be accomplished by noise alignment based on
shared common randomness among servers as in [39]. In
Section VI-B we discuss how we can achieve symmetric
privacy automatically with a non-maximal stabilizer based
construction. Shared (classical) common randomness among
servers is not difficult to achieve when the servers share
quantum entanglements.

Corollary 2: For the (N,XA, XB), N > XA + XB

SDBMM (secure distributed batch matrix multiplication) prob-
lem defined in [5], where L matrices A1, . . . ,AL ∈ Fλ×η

q

are XA-securely shared among N servers, another L matrices
B1, . . . ,BL ∈ Fη×µ

q are XB-securely shared among the same
N servers, and the user wants to compute the L products
A1B1,A2B2, . . . ,ALBL ∈ Fλ×µ

q by querying the N >
XA +XB servers, a QCSA scheme achieves the rate

RQ = min
{

1, 2
(

1−
(
XA +XB

N

))}
, (26)

i.e., from every N · (λµ) q-dimensional qudits downloaded
from N servers, the user recovers L = NRQ desired product
matrices in Fλ×µ

q .
Let us note that in the original problem defined in [5], the
S matrices A1, . . . ,AS ∈ FL×K

q and another S matrices
B1, . . . ,BS ∈ FK×M

q are to be pairwise multiplied. The
parameters (S,L,K,M) from [5] are mapped to (L, λ, η, µ)
to fit the notation in this work.

Remark 19: In both corollaries, the rate achieved with the
QCSA scheme can be expressed as RQ = min{1, 2RC},
where RC is the rate achieved by the CSA scheme in the
corresponding classical setting. Considering that rates greater
than 1 are not possible according to the Holevo bound [41],
it is apparent that the QCSA scheme achieves the maximal
superdense-coding gain relative to the classical CSA scheme.

VI. NON-MAXIMAL-STABILIZER-BASED
CONSTRUCTIONS

In Section II we noticed that the output of the measurement
associated with a non-maximal stabilizer has less digits than
one would expect. The reason is that the states that form
a basis for the space W (cf. Equation (5)) associated to a
non-maximal stabilizer are mixed states, so the remaining
N − κ output digits result as uniformly random and can be
discarded. Thus, non-maximal stabilizers can be useful to
describe black boxes that output only κ q-ary digits while
discarding the last N − κ digits, which we call (κ,N)-sum
boxes.

Furthermore, given a maximal stabilizer with N generators
S(V ′), one can always obtain a non-maximal stabilizer S(V)
by choosing κ of those. Conversely, given a non-maximal
stabilizer with κ generators S(V), one can always complete
the generator basis to obtain a maximal stabilizer S(V ′).

These two observations suggest that, in order to obtain the
stabilized state of a non-maximal stabilizer S(V), one can start
with N qudits in the mixed state |0⟩ ⟨0| ⊗ IqN−κ

qN−κ and apply
the same unitary as one would use to generate |0⟩W from |0⟩
in a maximal stabilizer S(V ′) that completes S(V). After we
apply a unitary W̃(s) for some s ∈ F2N

q and measure using
PV′ , the output will have N − κ uniformly random digits.
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Example 5: Let G =
(
1 1 0 0

)⊤
as in Example 3 and

V = ⟨G⟩col. Clearly G is a submatrix of the matrix determined
by S in Example 4, so we can take S as the maximal-stabilizer
completion of S(V). Consider s = (x1, x2, x3, x4) ∈ F4

2. Let
ρ = |0⟩ ⟨0| ⊗ I

2 be the original state, and let ρ′ = |φ⟩ ⟨φ| be
its purification, where |φ⟩ = |0⟩ ⊗ (|00⟩ + |11⟩)/

√
2. Here

we consider a purification to clarify the evolution of the state
before the measurement. By applying the same gates as one
would use to prepare the initial entangled state for the two-sum
transmission protocol, i.e., a Hadamard gate on the first qubit
and a CNOT gate with the first qubit as control and the second
qubit as target (cf. Example 4), we obtain the initial pure state

|φ′⟩ = (|000⟩+ |110⟩+ |101⟩+ |011⟩)/2,

which is stabilized by the three independent Weyl operators
W(1, 1, 0, 0, 0, 0), W(1, 0, 1, 0, 0, 0) and W(0, 1, 1, 0, 0, 0).
Notice that applying the Hadamard gate and the CNOT gate
is equivalent to a change of base of the qubits from the com-
putational base to the Bell base, thus the PVM is performed
by first applying those gates in reverse order to change the
basis back to the computational basis, and then applying the
classic measurement over the computational basis.

The state evolves in the following way:

|φ′⟩ Z(x3)⊗Z(x4)⊗I→ (|000⟩+ (−1)x3+x4 |110⟩
+ (−1)x3 |101⟩+ (−1)x4 |011⟩)/2

X(x1)⊗X(x2)⊗I→ (|x1x20⟩+ (−1)x3+x4 |x1x20⟩
+ (−1)x3 |x1x21⟩+ (−1)x4 |x1x21⟩)/2

CNOT1,2⊗I→
(
|x1(x1 + x2)0⟩
+ (−1)x3+x4 |x1(x1 + x2)0⟩
+ (−1)x3 |x1(x1 + x2)1⟩
+ (−1)x4 |x1(x1 + x2)1⟩

)
/2

=
((
|x1⟩+ (−1)x3+x4 |x1⟩

)
/
√

2
)

⊗
(
(|(x1 + x2)0⟩

+ (−1)x4 |(x1 + x2)1)⟩)/
√

2
)

=
(
X(x1)

(
|0⟩+ (−1)x3+x4 |1⟩

)
/
√

2
)
⊗(

(X(x1 + x2)Z(x4)⊗ I)(|00⟩+ |11⟩)/
√

2
)

H⊗I⊗I→ (Z(x1) |x3+x4⟩)⊗(
(X(x1 + x2)Z(x4)⊗ I)(|00⟩+|11⟩)/

√
2
)
,

where the first two steps are equivalent to the Weyl operator
W(s) over the first two qubits and the last two steps are
equivalent to the change of basis from the Bell basis to
the computational basis before the measurement. Thus, after
applying the Weyl operator W(s) and reverting the initial
CNOT and Hadamard gates we end up with the qubits in the
state

|φ′′⟩ = (−1)x1(x3+x4) |x3 + x4⟩

⊗
(
W(x1 + x2, 0, x4, 0)(|00⟩+ |11⟩)/

√
2
)
.

Let tr : H → R be the trace operator that maps a state to
the trace of its density matrix. Let tr : H1 ⊗ H2 ⊗ H3 →

H1⊗H2 the partial trace over the third quantum system. In this
case, given the density matrix D, the partial trace is given by

tr(D) =
1∑

x=0

(I⊗ I⊗ ⟨x|)D(I⊗ I⊗ |x⟩).

Notice that, by the properties of the tensor product, the state
over the first qubit has density matrix |x3 + x4⟩ ⟨x3 + x4| after
applying the partial trace operator. On the other side,

1
2

1∑
x=0

(I⊗ ⟨x|)(W(x1 + x2, 0, x4, 0)(|00⟩+ |11⟩)

(⟨00|+ ⟨11|)W†(x1 + x2, 0, x4, 0))(I⊗ |x⟩)

=
1
2
W(x1 + x2, x4)

(
1∑

x=0

(I⊗ ⟨x|)(|00⟩+ |11⟩)

(⟨00|+ ⟨11|)(I⊗ |x⟩)

)
W†(x1 + x2, x4)

=
1
2
W(x1 + x2, x4)IW†(x1 + x2, x4) =

I
2
.

We conclude that, by tracing out the third qubit, the state has
the density matrix

ρout = |x3 + x4⟩ ⟨x3 + x4| ⊗
I
2
,

which outputs the bit x3 + x4 and a random bit.

A. Stabilizer-Based (κ,N )-Sum Boxes

The setting for (κ,N)-sum boxes is similar to the one
described for N -sum boxes in Section III, with the difference
that the transfer matrix M has dimensions κ×2N and N −κ
outputs of the measurement are discarded. The following
theorem generalizes Theorem 1 to non-maximal-stabilizer-
based sum boxes. The proof is omitted, as it is the same as
the one provided for Theorem 1.

Theorem 7: Let G ∈ F2N×κ
q and G⊥ ∈ F2N×2N−κ

q be
matrices satisfying the conditions of Proposition 2, i.e., such
that
• G = G⊥( Iκ

0

)
,

• G⊤JG⊥ = 0,
• there exists H ∈ F2N×κ

q such that
(
G⊥ H

)
is full rank.

Then there exists a stabilizer-based construction for a (κ,N)-
sum box over Fq with transfer matrix

M =
(
0κ×2N−κ Iκ

)(
G⊥ H

)−1 ∈ Fκ×2N
q .

The following example shows the implementation of a
(1, 2)-sum box over 2 qubits.

Example 6: Suppose we have two parties, Tx1 and Tx2,
both possessing two bits a = (x1, x3), b = (x2, x4) ∈ F2

2,
respectively. Let S = ⟨W(1, 1, 0, 0)⟩ be a 1-dimensional sta-
bilizer over 2 qubits. Notice that its generator is the restriction
to the first two qubits of W(1, 1, 0, 0, 0, 0), i.e., the first Weyl
operator that fixes |φ′⟩ defined in Example 5. The stabilizer
has a generator matrix that can be completed to a symplectic
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matrix F as follows:

F =


1 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0

.
Thus, we can choose matrices G⊤ and H as

G⊤ =


1 0 1
1 0 0
0 1 0
0 1 0

, H =


0
0
0
1

.
The output of the box is then given by(

03×1 I1

)(
G⊤ H

)−1
x

=
(
0 0 0 1

)
0 1 0 0
0 0 1 0
1 1 0 0
0 0 1 1



x1

x2

x3

x4

 = x3 + x4.

Now, notice that the Weyl operator W(a) ⊗W(b) applied
by the transmitters together and the non-maximal stabilizer S
correspond, respectively, to the Weyl operator W(s) and the
stabilizer S(V) in Example 5. As the outputs match, it is easy
to see that the (1,2)-sum box simplifies the description of the
non-maximal-stabilizer construction.

Remark 20: From the discussion above, one can see that
maximal stabilizers exhaust the scope of stabilizer-based con-
structions for black boxes of the form Y = MX, where M ∈
Fκ×2N

q . More precisely, consider matrices G,H that satisfy
the conditions of Theorem 1, i.e., the matrices associated
to a stabilizer-based construction for an N -sum box. Then
there is a correspondence between UG,H and the chosen
maximal stabilizer S, where UG,H is the unitary that prepares
the initial state |0⟩W = UG,H |0⟩ for the N -sum box and
S = S(⟨G⟩col). If we want N−κ of the outputs of an N -sum
box to be discarded, we can consider the initial state |0⟩W′ =
UG,H

(
|0⟩ ⊗ IqN−κ

qN−κ

)
, as operations on the qudits initially

prepared in the mixed state do not affect their mixedness and
measuring them at the end of the sum-box operations outputs
random digits. Thus, (κ,N)-sum boxes can be obtained from
N -sum boxes by changing the initial (unentangled) state to a
mixed state and their description (as in Theorem 7) can be
formalized by using a submatrix of G as the generator for the
chosen non-maximal stabilizer.

B. Applications of (κ,N )-Sum Boxes

The utilization of a (κ,N)-sum box may be perceived
as inefficient due to the presence of non-informative qudits
among the total N qudits being transferred. Nevertheless,
it has some meaningful applications, e.g., it is useful to
make symmetric QPIR protocols which use the N -sum box
construction without the need for shared randomness among
the servers like in classical PIR [39].

Remark 21: Notice that, in this case, we do not need to
provide any additional information to the servers to provide
symmetry for the protocol. In fact, we only need to change
the initial entangled state distributed to the servers, rather than

providing additional shared randomness to the servers which
requires additional computations and storage.

For instance, consider the output of a QCSA scheme as
given in Equation (24), i.e.,(

δ11 , · · · , δ1L,ν1
(↽), δ

2
1 , · · · , δ2L,ν2

(↽)

)⊤
,

where νb
(↽) represents the last ⌊N/2⌋ − L symbols of the

interference vector νb =
(
νb
1, . . . , ν

b
N−L

)
for b ∈ [2]. This

interference contains linear combinations of other files stored
in the server that might be retrieved over many rounds by
a malicious user. Thus, we want to “hide” the interference
outputs by replacing them with random digits, which can be
achieved in the following way. Some details are omitted, as the
procedure is similar to the one shown in Appendix B.

Consider two GRS codes C1 = GRSq
N,L(α,u) and C2 =

GRSq
N,L(α,v) where v is generated by u according to

Equation (13), then we have that C2 ⊆ C⊥1 or, equivalently,
G⊤
C⊥1

GC2 = 0(N−L)×L for L ≤ ⌊N/2⌋. Similarly, we have
that C1 ⊆ C⊥2 or, equivalently, G⊤

C⊥2
GC1 = 0N−L×L. Let

GC⊥b
=
(
GCb

G′
Cb

)
, b ∈ [2].

Consider the matrices

G =
(
GC1 0
0 GC2

)
∈ F2N×2L

q ,

G⊥ =
(
GC1 0 G′

C1 0
0 GC2 0 G′

C2

)
∈ F2N×2(N−L)

q ,

H =
(
H̃u

C 0
0 H̃v

C

)
∈ F2N×2L

q ,

where H̃u
C and H̃v

C are the Cauchy submatrices of QCSA
matrices defined in Equation (15). This matrix satisfies the
conditions of Theorem 7, then there exists a (2L,N)-sum box
with transfer matrix

M =
(
0κ×2N−κ Iκ×κ

)(
G⊥ H

)−1
.

Clearly there exists a permutation matrix Pπ as defined in
Equation (27) such that

(
G⊥ H

)
=

(
GQCSAq

N,L(α,u,f) 0
0 GQCSAq

N,L(α,v,f)

)
Pπ.

The transfer matrix is given by

MQCSA =
(

IL 0 0 0
0 0 IL 0

)(
Qu

N 0
0 Qv

N

)−1

.

It is easily verified that the output of the (2L,N)-sum box is
just (

δ11 , . . . , δ
1
L, δ

2
1 , . . . , δ

2
L

)⊤
,

without the interference terms that appear in Equation (24).
The QCSA scheme is thus symmetric, as the remaining N−2L
outputs are randomized by construction.
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VII. CONCLUSION

In this paper we considered a quantum protocol based
on the stabilizer formalism to improve the communication
rates of classical many-to-one networks employing quantum
communication. Although the protocol proposed in this study
may be considered obvious from a quantum coding-theoretic
perspective, as noted in Remark 8, it may not be as straight-
forward for the classical-coding community. The N -sum box
represents a quantum black-box with classical inputs and
classical outputs that can communicate N sums from N
transmitters, each holding 2 symbols from a finite field. In a
classical setting, assuming that the transmitters cannot talk to
each other, the only way to achieve the communication of N
linear combinations of 2N inputs is to send all the 2N symbols
from the transmitters to the receiver, compared to sending only
N qudits with the N -sum box. We presented an application
of such black box to improve the rates of CSA-based PIR
and SDMM using the underlying superdense-coding gain.
Furthermore, we showed how we can create a symmetric
CSA-based QPIR protocol by using a non-maximal-stabilizer-
based (κ,N)-sum box instead of sharing common randomness
among the servers.

APPENDIX A
PROOF OF LEMMA 3

Proof: The first two claims (9) and (10) are true not just
for a particular Σ, but for every diagonal Σ with elements in
{0, 1}.

Let Λ =
(

I−Σ Σ
−Σ I−Σ

)
. First, we prove Equation (9) by

testing the LIT condition on Λ. We have that det((I−Σ)2 +
Σ2) = det(I − 2Σ + 2Σ2) = det(I) = 1, since Σ2 = Σ by
the fact that Σ is a diagonal matrix with entries in {0, 1}.

Equation (10) follows by the fact that ΛJΛ⊤ = J (that is,
Λ⊤ is symplectic), which can be easily proved by employing
Σ2 = Σ.

Finally, we prove that there exists a signed column-swap
operation (Σ) that gives us M′

l, the desired full-rank left
half-matrix of (M′)⊤ =

(
Ml Mr

)
∈ FN×2N

q . For this
we proceed according to Algorithm 1, which tries at most
N different signed-swap operations before declaring either
success or failure.

If the algorithm exits with success, then we obtain a full-
rank M′

l as desired. To show that the algorithm cannot fail,
let us show that failure would lead to a contradiction. Suppose
the algorithm fails and exits with the value i < N . At this
point, the first i− 1 columns of M′

l are linearly independent,
but the ith column of Ml and the ith column of Mr are
each linearly dependent on the first i columns of Ml. Notice
that since the only manipulations performed by the algorithm
are signed-swap operations, by Equation (10) we have that
(M′)⊤ ∈ Mo. The remainder of the proof of (11) uses the
following two facts.

1) Since (M′)⊤ ∈ Mo, the columns of the 2N × N
matrix (M′)⊥ = (M′J)⊤ span the null-space of (M′)⊤.
Moreover, (M′)⊥ ∈ Mo, since multiplication by an
invertible matrix preserves rank and

M′JJ(M′J)⊤ = M′JJJ⊤(M′)⊤ = M′J(M′)⊤ = 0.

Algorithm 1 Signed Column Swap

input : M =
(
Ml Mr

)
∈ FN×2N

q

output: M′ =
(
M′

l M′
r

)
∈ FN×2N

q : det(M′
l) ̸= 0

M′ ←M;
M′

l ←Ml;
M′

r ←Mr;
i← 1;
while i ≤ N do

if (M′
l)·,i is linearly independent of the first

i− 1 columns of M′
l then

i← i+ 1;
else if (M′

r)·,i is linearly independent of the first
i− 1 columns of M′

l that are already fixed then
(M′

l)·,i, (M
′
r)·,i ← (−M′

r)·,i, (M
′
l)·,i;

i← i+ 1;
else

return Failure;
end

end
return Success;

Thus, any matrix V ∈ F2N×κ
q for κ ∈ [N ] whose

columns are null-vectors of M must satisfy V⊤JV.
2) For a matrix V =

(
Vl Vr

)⊤ ∈ F2N×κ
q , with κ ∈ [N ],

such that V⊤JV = 0, the dot product between the ith

row of Vl and the jth row of Vr is equal to the dot
product between the jth row of Vl and the ith row of
Vr. In fact, V⊤JV = 0 implies that

V⊤JV = 0 =⇒
(
Vr −Vl

)(
Vl Vr

)⊤ = 0

=⇒ VrV⊤
l −VlV⊤

r = 0

=⇒ (VrV⊤
l )i,j = (VlV⊤

r )i,j , ∀i, j ∈ [N ]
=⇒ (Vr)i · (Vl)j = (Vl)i · (Vr)j , ∀i, j ∈ [N ].

Since the (i + 1)th column of Ml and the (i + 1)th column
of Mr are each linearly dependent on the first i columns of
Ml, there exists a 2N × 2 matrix V such that

V⊤ =
(
Vl Vr

)
=
(
α1 · · · αi αi+1 0 0 · · · 0 0 0
β1 · · · βi 0 0 0 · · · 0 βi+1 0

)
,

αi+1βi+1 ̸= 0, and M′V = 0. In fact, since the first
(i + 1) columns of Ml are linearly dependent, there exists
a non-trivial linear combination of them with coefficients
α1, . . . , αi+1 that produces the zero vector. Notice that αi+1

cannot be zero because the first i columns are linearly inde-
pendent by assumption. Thus, the first column of V is in the
null-space of M′ and αi+1 ̸= 0. The second column of V is
similarly in the null-space of M′ and βi+1 ̸= 0. So, V satisfies
V⊤JV = 0 by fact 1), but the dot product of the first row
of Vl with the second row of Vr is αi+1βi+1 ̸= 0, whereas
the dot product of the second row of Vl with the first row of
Vr is 0, which contradicts fact 2). This contradiction proves
Equation (11). □
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APPENDIX B
PROOF OF THEOREM 6

For a permutation π : [2N ]→ [2N ], define,

Pπ :=
(
eπ(1) eπ(2) · · · eπ(2N)

)
, (27)

where ei is the ith column of I2N . When Pπ is multiplied
to the right of a 2N × 2N matrix A, the columns of A
are permuted according to the permutation π. Also, note that
P−1

π = Pπ−1 = P⊤π , where π−1 is the inverse permutation of
π.

Now let us prove Theorem 6 by specifying the N -sum box
construction according to Theorem 1. Define,

G̃ =

(
GGRSq

N,⌈N/2⌉(α,u) 0
0 GGRSq

N,⌈N/2⌉(α,v)

)
, (28)

where GGRSq
N,⌈N/2⌉(α,u) and GGRSq

N,⌈N/2⌉(α,v) are
sub-matrices of Qu

N and Qv
N , respectively. If N is even,

then G̃ is a 2N × N square matrix, and we choose G = G̃
for the N -sum box construction. If N is odd, then G̃ is a
2N × (N +1) matrix, i.e., it has an extra column. In this case
we choose G as the 2N × N left-sub-matrix of G̃, leaving
out the (N + 1)th column. Thus,

G =

(
GGRSq

N,⌈N/2⌉(α,u) 0
0 GGRSq

N,⌊N/2⌋(α,v)

)
. (29)

Note that G is a sub-matrix of diag(Qu
N ,Q

v
N ) =

(
Qu

N 0
0 Qv

N

)
.

Let H in Theorem 1 be chosen as the remaining columns of
diag(Qu

N ,Q
v
N ) after eliminating the columns that are present

in G. Thus,(
G H

)
=
(

G̃ H̃u
C H̃u

V

0 0
0

H̃v
C

G̃·,N+1
0

H̃v
V

)
(30)

=
(
Qu

N 0
0 Qv

N

)
Pπ. (31)

The column G̃(:, N+1) does not appear in Equation (30) (i.e.,
it is empty) if N is even, because in that case G̃ has only N
columns. The matrices H̃u

C, H̃
v
C and H̃u

V, H̃
v
V are the respective

Cauchy and Vandermonde matrices specified in Equation (15).
Evidently, the 2N × 2N matrix

(
G H

)
has full rank 2N

as required for an N -sum box construction Theorem 1, since
the rank of a block-diagonal matrix is the sum of the ranks
of its blocks and Qu

N ,Q
v
N have full rank N , while Pπ is an

invertible square matrix which preserves the same rank. The
permutation π is explicitly expressed as

π = (π(1), . . . , π(2N))
=
(
L+ 1, L+ 2, . . . , L+ ⌈N/2⌉,

N + L+ 1, N + L+ 2, . . . , N + L+ ⌊N/2⌋
1, 2, . . . , L, L+ ⌈N/2⌉+ 1, L+ ⌈N/2⌉+ 2, . . . , N,
N + 1, N + 2, . . . , N + L,

N + L+ ⌊N/2⌋+ 1, N + L+ ⌊N/2⌋+ 2, . . . , 2N
)
.

(32)

Note that Pπ moves the columns of
diag(Qu

N ,Q
v
N ) with indices in [L+ 1 : L+ ⌈N/2⌉] ∪

[N + L+ 1 : N + L+ ⌊N/2⌋] to the left-most part.
Now, notice that G is SSO, i.e., G ∈Mo, since

(
G H

)
has full rank 2N by the previous discussion and G⊤JG = 0
by Equation (18). It follows that this N -sum box is feasible
according to Theorem 1.

For the specified G,H matrices, the transfer matrix M of
the resulting N -sum box is

M =
(
0N IN

)(
G H

)−1

=
(
0N IN

)
P−1

π

(
Qu

N 0
0 Qv

N

)−1

(33)

Recall that P−1
π = Pπ−1 . The expression of the permutation

π−1 can be written explicitly as

π−1 =(
N + 1, N + 2, · · · , N + L, 1, 2, · · · , ⌈N/2⌉,
N + L+ 1, N + L+ 2, · · · , N + ⌊N/2⌋,
N + ⌊N/2⌋+ 1, N + ⌊N/2⌋+ 2, · · · , N + ⌊N/2⌋+ L,

⌈N/2⌉+ 1, ⌈N/2⌉+ 2, · · · , N,
N + L+ ⌊N/2⌋+ 1, N + L+ ⌊N/2⌋+ 2, · · · , 2N

)
. (34)

Now it is easily verified that
(
0N IN

)
P−1

π in Equation (33)
is the same as the matrix in Equation (19). Theorem 6 is thus
proved. □

APPENDIX C
PROOF OF COROLLARY 1

Before we move forward to the general scheme translation,
let us start from a specific example, (N = 5,M,K = 2, X =
1, T = 1)-MDSXSTPIR to give an intuition of how are the
messages stored among servers and what do the parameters
mean. Other details are omitted and can be found in [38,
Section IV].

1) (N = 5,M,K = 2, X = 1, T = 1) MDSXSTPIR: In
this example, we have L = N − (X + T + K − 1) = 2.
Thus, in the classical setting, we will use the CSA scheme
based on the CSAq

N=5,L=2(α, f) matrix. In this setting, for
the bth instance of a CSA scheme, there are M messages
Wb,1, . . . ,Wb,M . For any b ∈ [2], i ∈ [M ], message

Wb,i =

(
W b,i

1,1 W b,i
1,2

W b,i
2,1 W b,i

2,2

)
∈ FL×K

q (35)

consists of LK = 4 symbols from Fq .
For any l ∈ [L], k ∈ [K], b ∈ [2], let

Wb
l,k =

(
W b,1

l,k W 2
l,k · · · W b,M

l,k

)
∈ F1×M

q , (36)

be the 1×M row vector that contains the (l, k)th symbol of
all the M messages in the bth instance of a CSA scheme.

There are N = 5 servers and the storage at server n ∈ [N ]
is Sn = (S1

n,1, S
1
n,2, S

2
n,1, S

2
n,2), where for any l ∈ [2], b ∈ [2]

Sb
n,l =

1
(f1 − αn)2

Wb
l,1 +

1
f1 − αn

Wb
l,2 + Zb

l ∈ F1×K
q , (37)
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and Zb
1,Z

b
2 are independent random noise vectors that are

uniform over F1×K
q . Thus, it is obvious that the storage cost at

each server is 2LM = 4M q-ary symbols. Comparing with the
replicated storage, the storage cost is reduced to 1

K = 1
2 , since

the M messages consist of 2LKM = 8M q-ary symbols in
total. Also, due to the fact that the messages are padded with
random noise, any X = 1 server learns nothing about the M
messages.

A user wishes to retrieve the θth message by querying
the N = 5 servers, without letting any T = 1 server learn
anything about θ. In the scheme of [38], for one instance of
MDSXSTPIR there are K = 2 rounds of retrieval. In each
round, the user downloads 1 q-ary answer symbol from each
server. In the first round the user recovers W θ

1,1,W
θ
2,1, while in

the second round the user recovers W θ
1,2,W

θ
2,2. Thus, in each

round, the user recovers L = 2 symbols of the desired message
Wθ by downloading 5 symbols in total from the servers. The
total downloaded symbols are NK = 10, while the retrieved
desired symbols are LK = 4, thus achieving a rate of

RC =
2
5

=
LK

NK
=
N − (X + T +K − 1)

N
.

Clearly, the rate is the same for two instances of the same
scheme.

2) QCSA Scheme for General MDSXSTPIR: Let us briefly
introduce the general CSA code-based classical MDSXSTPIR
scheme [38], whereupon the translation to the quantum scheme
is obtained as described in Section V-C. In the classical scheme
there are K rounds of retrieval. In round κ, κ ∈ [K] a CSAN,L

scheme is applied, where 0 < L = N − (X + T + K −
1). Specifically, according to [38, Equations (65),(66)], the N
answer symbols from the N servers in the κth round of the
bth instance of a CSA scheme are(
A

b,(κ)
1 · · · A

b,(κ)
N

)⊤
︸ ︷︷ ︸

Ab,(κ))

=


1

f1−α1
· · · 1

fL−α1
1 α1 · · · αN−L−1

1
1

f1−α2
· · · 1

fL−α2
1 α2 · · · αN−L−1

2

...
...

...
...

...
...

...
1

f1−αN
· · · 1

fL−αN
1 αN · · · αN−L−1

N


︸ ︷︷ ︸

GCSAN,L(α,f)



W b,θ
1,κ
...

W b,θ
L,κ

∗
...
∗



+


∑

l∈[L]

∑
k∈[κ−1]

1
(fl−α1)κ−k+1W

b,θ
l,k∑

l∈[L]

∑
k∈[κ−1]

1
(fl−α2)κ−k+1W

b,θ
l,k

...∑
l∈[L]

∑
k∈[κ−1]

1
(fl−αN )κ−k+1W

b,θ
l,k


︸ ︷︷ ︸

Rb,(κ)

(38)

=


1

f1−α1
· · · 1

fL−α1
1 α1 · · · αN−L−1

1
1

f1−α2
· · · 1

fL−α2
1 α2 · · · αN−L−1

2

...
...

...
...

...
...

...
1

f1−αN
· · · 1

fL−αN
1 αN · · · αN−L−1

N


︸ ︷︷ ︸

GCSAN,L(α,f)

·



W b,θ
1κ + F

b,(κ)
1 = δ

b,(κ)
1

...
W b,θ

Lκ + F
b,(κ)
L = δ

b,(κ)
L

∗+ F
b,(κ)
L+1 = ν

b,(κ)
1

...
∗+ F

b,(κ)
N = ν

b,(κ)
N−L


︸ ︷︷ ︸

X
b,(κ)
δ,ν (i)

, (39)

= GCSAN,L(α,f)X
b,(κ)
δ,ν (40)

where W b,θ
1,κ, · · · ,W

b,θ
L,κ are the L = N − (X + T + K − 1)

symbols of the desired message Wb,θ, ∗ represents undesired
information (interference) whose explicit expression is redun-
dant, Rb,(κ) is an N × 1 column vector which only depends
on the message symbols that are decodable from the previous
κ − 1 rounds (to be proved for the quantum scheme later),

and Fb,(κ) =
(
F

b,(κ)
1 F

b,(κ)
2 · · · F

b,(κ)
N

)⊤
is acquired by

projecting the Rb,(κ) along the columns of GCSAN,L(α,f), i.e.,

Fb,(κ) = G−1
CSAN,L(α,f)R

b,(κ). (41)

With the answers in the form of Equation (39) it is clear
that in round κ ∈ [K], with 2 instances of the CSA scheme,
2L “desired” symbols δ1,(κ)

1 , . . . , δ
1,(κ)
L , δ

2,(κ)
1 , . . . , δ

2,(κ)
L can

be recovered by using the N -sum Box specified in Theorem 6
when L ≤ N

2 , according to Section V-C.
Note that when κ = 1 we have that Rb,(κ) = 0,

which implies Fb,(κ) = 0. Thus, in the first round, 2L
message symbols W 1,θ

1,1 = δ
1,(1)
1 , . . . ,W 1,θ

L,1 = δ
1,(1)
L ,W 2,θ

1,1 =
δ
2,(1)
1 , . . . ,W 2,θ

L,1 = δ
2,(1)
L are decodable.

Let us then prove the decodability of 2L symbols
W 1,θ

1,κ , . . . ,W
1,θ
L,κ,W

2,θ
1,κ , . . . ,W

2,θ
L,κ in the κth round by induc-

tion for κ ∈ {2, . . . ,K}.
Suppose that in the first (κ− 1) rounds 2L(κ− 1) symbols{
W b,θ

l,k

}
l∈[L],k∈[κ−1],b∈[2]

are successfully decoded, then the

user can find the values Rb,(κ), b ∈ [2] in the κth round as
they only depend on the message symbols that are decoded
in the previous (κ − 1) rounds. The user is then able to find
Fb,(κ), b ∈ [2], as Fb,(κ) is just a deterministic function of
Rb,(κ). Then by subtracting F

b,(κ)
l from δ

b,(κ)
l , the user is

able to recover W b,θ
l,κ for all l ∈ [L], b ∈ [2]. That is to say,

in the first κ rounds, the user is able to decode 2Lκ symbols{
W b,θ

l,k

}
l∈[L],k∈[κ],b∈[2]

. The induction is thus completed.

Thus, the rate when L = N − (X + T +K − 1) ≤ N
2 can

be computed as 2L
N = 2

(
1− X+T+K−1

N

)
.

For the case where L > N
2 , we can eliminate “redun-

dant” servers and construct a rate 1 scheme as mentioned in
Section V-C. Corollary 1 is thus proved. □

A. Proof of Corollary 2

Without loss of generality, let us prove that the specified rate
is achievable for retrieving the (1, 1)th entry of the L products
A1B1, . . . ,ALBL. Other entries are similarly retrieved.
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For any l ∈ [L], let Cl = AlBl, and let cl be the
(1, 1)th entry of the matrix Cl. According to [5, Equa-
tions (103),(110),(112)], after applying a CSAN,L scheme
with 0 < L = N − (XA +XB), the N answer symbols from
the N servers regarding the (1, 1)th entry of the L products
are(
Ab

1 · · · Ab
N

)⊤︸ ︷︷ ︸
Ab

=


1

f1−α1
· · · 1

fL−α1
1 α1 · · · αN−L−1

1
1

f1−α2
· · · 1

fL−α2
1 α2 · · · αN−L−1

2

...
...

...
...

...
...

...
1

f1−αN
· · · 1

fL−αN
1 αN · · · αN−L−1

N


︸ ︷︷ ︸

GCSAN,L(α,f)

·
(
cb1 = δb

1 · · · cbL = δb
L ∗ = νb

1 · · · ∗ = νb
N−L

)⊤︸ ︷︷ ︸
Xb

δ,ν

,

(42)

where cb1 = δb
1, · · · , cbL = δb

L are the (1, 1)th entry of the
L products in the bth instance of the CSA scheme, i.e., the
L desired symbols, and ∗ denotes the undesired information
(interference) whose explicit expressions are redundant.

Thus, with 2 instances of the CSA scheme, 2L desired
symbols can be recovered by using the N -sum Box specified
in Theorem 2 when L = N − (XA + XB) ≤ N

2 , according
to Section V-C. The rate of retrieving one entry of the L

products is thus 2L
N = 2

(
1− XA+XB

N

)
when L ≤ N

2 . Again,

we can achieve rate 1 by eliminating “redundant” servers when
L > N

2 , as mentioned in Section V-C. Corollary 2 is thus
proved. □
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