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Abstract— This work considers Maximum Likelihood Estima-
tion (MLE) of a Toeplitz structured covariance matrix. In this
regard, an equivalent reformulation of the MLE problem is
introduced, and two iterative algorithms are proposed for the
optimization of the equivalent statistical learning framework.
Both strategies are based on the Majorization Minimization
(MM) paradigm and hence enjoy nice properties such as mono-
tonicity and ensured convergence to a stationary point of the
equivalent MLE problem. The proposed framework is also
extended to deal with MLE of other practically relevant covari-
ance structures, namely, the banded Toeplitz, block Toeplitz,
and Toeplitz-block-Toeplitz. Through numerical simulations, it is
shown that the new methods provide excellent performance
levels in terms of both mean square estimation error (which
is very close to the benchmark Cramér-Rao Bound (CRB)) and
signal-to-interference-plus-noise ratio, especially in comparison
with state-of-the art strategies. Moreover, the estimation task
is accomplished with a remarkable reduction in computational
complexity compared with a standard approach relying on a
Semidefinite Programming (SDP) solver.

Index Terms— Toeplitz covariance matrix, maximum likeli-
hood estimation, banded Toeplitz, block-Toeplitz, Toeplitz-block-
Toeplitz, adaptive radar signal processing, array processing,
spectral estimation.

I. INTRODUCTION

ESTIMATION of the data covariance matrix has diverse
applications in radar signal processing, such as direction
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of arrival estimation, target detection, adaptive beamforming,
and sidelobe canceller design [1], [2], [3], [4]. In these
situations, the interference covariance matrix is estimated from
the secondary/training data, which are assumed target-free and
collected from spatial and/or temporal returns corresponding
to range cells close to the one of interest. When the data
follows a complex, zero-mean, circular Gaussian distribution,
it is well known that the Sample Covariance Matrix (SCM) is
the unstructured Maximum Likelihood (ML) estimate of the
covariance matrix. However, in the presence of a small number
of training data and/or when mismatches in training data
spectral properties occur, it does not always represent a reliable
choice for the covariance inference [5], [6]. A well-known
strategy, often discussed in the open literature to improve
the performance of a covariance estimator, relies on the
incorporation of some a priori knowledge about its underlying
structure. For instance, in some radar/sensing applications,
it is customary to suppose that data come from a stationary
Gaussian random process, leading to a Hermitian symmetric
Toeplitz Structured Covariance (TSC) matrix. Leveraging this
information, one can obtain (under the design conditions) a
more reliable estimator than the SCM [7]. Aside radar applica-
tions, the estimation of a TSC matrix is encountered in speech
recognition [8], spectral estimation [2], gridless compressive
sensing [9], [10], [11], and hyperspectral imaging [12].

So far, several algorithms have been proposed for estimating
a TSC matrix. Let us first discuss those for ML Estimation
(MLE). According to the Caratheodory parametrization [2],
[13], [14] a Toeplitz covariance matrix T ∈ Hm×m can always
be decomposed as1

T = AP̃AH ; [P̃]k,k ≥ 0 , (1)

where

A =


1 · · · 1

ejω1 · · · ejωr

...
. . .

...
ej(m−1)ω1 · · · ej(m−1)ωr

 , P̃ =

p̃1 . . . 0
...

. . .
...

0 . . . p̃r

,

(2)

ωi and p̃i, i = 1, 2, · · · , r ≤ m, denote some angular
frequencies and their corresponding powers while r indicates
the rank of T. Capitalizing on this parametrization, Circulant
Embedding (CE) of Toeplitz matrix ( [16], [17], [18]) can

1Notice that the parametrization is unique provided that the rank of T <
m [15].
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be used to compute approximately the ML estimate of T.
According to CE, a Positive SemiDefinite (PSD) m × m
Toeplitz matrix is modeled as

T = F̃PF̃H ; P = diag([p1, p2, · · · , pL]), pk ≥ 0, (3)

where F̃ = [Im×m 0m×L−m]F, Im×m is the identity matrix
of size m×m, 0m×L−m is the zero matrix of size m×L−m,
F is the normalized Discrete Fourier Transform (DFT) matrix
of size L ≥ 2m − 1 and P is a diagonal matrix of size
L × L with diagonal elements pk ≥ 0. Therefore, the matrix
T is completely parameterized by the diagonal matrix P.
Although estimating the Toeplitz covariance matrix using
CE seems attractive, the representation in (3) is valid only
for a subset of Toeplitz covariance matrices. This can be
intuitively justified because the Caratheodory parametrization
in (1) does not give restrictions on the frequencies spacing,
while the CE in (3) strictly requires the frequencies to lie
on the Fourier grid. Hence, for some Toeplitz matrices, the
parametrization in (3) is only approximated. Based on CE,
[19] and [20] have proposed an iterative algorithm based on
Expectation-Maximization (EM) for MLE of T. By modifying
the M step in the EM procedure, in [21] the technique has
been extended to deal with the banded Toeplitz covariance
case. In [22], still leveraging CE framework, a Majorization
Minimization (MM) based optimization, with faster conver-
gence than the EM of [19] and [20], has been introduced.
In [23] a closed-form estimator has been designed by invoking
the extended invariance principle to deal with the Toeplitz
constraint. In [24], an efficient approximation of a Toeplitz
covariance matrix under a rank constraint has been handled
forcing the eigenvectors to be the same as those of the SCM
whereas the Toeplitz constraint has been explicitly imposed
while estimating the eigenvalues. Finally, some attempts to
handle the MLE problem without frequencies restrictions have
been pursued in [25], [26]. Other than the MLE, several other
alternative paradigms have been considered for the problem at
hand. Recently, in [27] the Toeplitz structure is forced together
with a condition number constraint via SCM projection onto a
suitable constraint set. Other geometric based approaches for
the TSC estimation have also been proposed in [28] and [29].

In this work,2 two iterative algorithms referred to as
Alternating Projection Based TOeplitz Covariance Matrix
Estimation 1 (ATOM1) and ATOM2 are devised leverag-
ing a suitable reformulation of the MLE problem and the
MM framework. Both ATOM1 and ATOM2 involve the con-
struction of a bespoke surrogate function (s.f.) along with
its optimization. Specifically, the two procedures construct
distinct s.f. and therefore solve different surrogate mini-
mization problems. While ATOM1 addresses the surrogate
minimization problem using the Alternating Direction Method
of Multipliers (ADMM), ATOM2 handles it either via alter-
nating projection or Dykstra’s algorithm. However, both the
procedures directly estimate the Toeplitz covariance matrix
without forcing a reparametrization via the CE. Moreover,
ATOM2 is also extended to include other constraints, such as

2A preliminary version of the methodology introduced here was presented
in [30].

banded Toeplitz, block-Toeplitz, and Toeplitz-block-Toeplitz
structures. This is among the most valuable contributions of
this study since it addresses, via a unified framework, a quite
general problem which notably enables the incorporation of
convex constraints (in addition to the Toeplitz structure).
The major contributions of this paper can be summarized as
follows:

1) Two iterative algorithms ATOM1 and ATOM2 are pro-
posed based on the MM framework to address MLE
of a Toeplitz covariance matrix. Their computational
complexities are thoroughly discussed. Also, the con-
vergence of the procedures to a stationary point of the
equivalent MLE problem is established.

2) The extensions of ATOM2 to handle additional covari-
ance structures, such as banded Toeplitz, block-Toeplitz,
and Toeplitz-block-Toeplitz, which is the main achieve-
ment of this study, being ATOM2 capable of including
additional (other than Toeplitz) constraints (modeling
convex sets) in the estimation process with convergence
guarantees and a reasonable computational demand.

3) The derivation of the Cramér-Rao Bound (CRB) for the
estimation of Toeplitz, banded Toeplitz, and Toeplitz-
block-Toeplitz covariance matrices are provided.

4) Performance comparisons of the proposed algorithms
(included their extensions) with some state-of-the-art
procedures via numerical simulations are illustrated,
using the Mean Square Error (MSE) and the Signal-to-
Interference-plus-Noise Ratio (SINR) (for case studies
related to radar applications) as performance metrics.

The organization of the paper is as follows. The MLE prob-
lem of Toeplitz covariance matrix for complex, zero-mean,
circular Gaussian observations is formulated in Section II.
In Section III, ATOM1 and ATOM2 algorithms are proposed,
along with a discussion on their computational complexity
and implementation aspects. Also, their convergence prop-
erties are studied. At the end of this section, the extension
of ATOM2 to handle additional constraints along with the
Toeplitz requirement is discussed too. In Section IV, the CRB
for the estimation of Toeplitz, banded Toeplitz, and Toeplitz-
block-Toeplitz covariance matrices is computed. In Section V,
the proposed algorithms are compared with some state-of-the-
art techniques, and finally, concluding remarks are given in
Section VI.

A. Notation

Throughout the paper, bold capital and bold small letter
denote matrix and vector, respectively. A scalar is represented
by a small letter. The value taken by an optimization vector
x at the tth iteration is denoted by xt. Furthermore, R is
used to denote the set of real numbers, Rm and Cm are used
to represent the sets of m dimensional vectors of real and
complex numbers, respectively, whereas Rm×m, Cm×m, and
Hm×m are used to represent the sets of m×m matrices of real
numbers, m ×m matrices of complex numbers, and m ×m
Hermitian matrices, respectively. Superscripts (·)T , (·)∗, (·)H ,
and (·)−1 indicate the transpose, complex conjugate, complex
conjugate transpose, and inverse, respectively. For any x ∈ R,
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⌈x⌉ returns the least integer greater than or equal to x. The
trace and the determinant of a matrix X are denoted by Tr(X)
and |X|, respectively. The notation [X]i is used to represent
the ith column of the matrix X . The symbol ⊗ indicates
the Kronecker product while the gradient of a function f is
denoted by∇f . The symbol⪰ (and its strict form≻) is used to
denote the generalized matrix inequality: for any X ∈ Hm×m,
X ⪰ 0 means that X is a PSD matrix (X ≻ 0 for positive
definiteness). Besides, for any X ∈ Hm×m, eig(X) is the
vector collecting the eigenvalues of X (sorted in increasing
order). The Euclidean norm of the vector x is denoted by
∥x∥2, |x| indicates the element wise modulus of the vec-
tor x. The notation E[·] stands for statistical expectation.
Finally, for any X, Y ∈ Rm×m, max(X, Y ) refers to the
matrix containing the element wise maximum between X
and Y .

II. PROBLEM FORMULATION

Let us assume the availability of n independent and iden-
tically distributed vectors {y1,y2, · · · ,yn}, where3 each yi

is of size m and follows a m-variate complex, zero-mean,
circular Gaussian distribution with covariance matrix R ≻ 0.
The maximum likelihood covariance estimation problem can
be formulated as

minimize
R≻0

f̄(R)=
1
n

n∑
i=1

yH
i R−1yi + log |R|. (4)

If n ≥ m, Problem (4) has a unique minimizer with probability

one which is given by the SCM, i.e., RSCM =
1
n

n∑
i=1

yiyH
i .

However, if the random process, where each observation is
drawn, is stationary (at least in wide sense) then the covari-
ance matrix also exhibits a Toeplitz structure which can be
capitalized in the estimation process [2, Ch. 1], [34, Ch. 2].
By doing so, Problem (4) becomes

MLE: minimize
R∈Toep,R≻0

f̄(R), (5)

where Toep is used to denote the set of Hermitian Toeplitz
matrices of size m × m. The above problem has two
constraints: a structural constraint and a positive definite
constraint. Even though the structural constraint is convex, the
non-convexity of the objective function makes Problem (5)
challenging to solve and no analytical solution seems to be
available. In the following two iterative solution procedures
for (5) are designed exploiting the MM principle. Briefly, the
MM technique mainly consists of two steps

1) constructing a s.f. g(R|Rt) (where Rt is the estimate
of R at the tth iteration) for the objective function
in (5), satisfying g(Rt|Rt) = f̄(Rt),∀ Rt ≻ 0 and
g(R|Rt) ≥ f̄(R),∀ Rt ≻ 0;

2) minimizing the resulting surrogate problem at each
iteration.

For more details, [35], [36], [37] provide an in-depth discus-
sion on MM based algorithms.

3Note that, from a practical point of view, a data selection scheme [31],
[32], [33] can be employed for screening the available training data so as to
excise possible outliers.

III. ALGORITHMS FOR TOEPLITZ COVARIANCE
MATRIX ESTIMATION

In this section, ATOM1 and ATOM2 are proposed to
tackle the MLE problem of TSC matrix. Both exploit the
MM principle (applied to an equivalent reformulation of the
MLE problem) and differ in the way they construct and
handle the surrogate minimization problem. ATOM1 solves the
surrogate optimization using ADMM while ATOM2 tackles
it using either alternating projection or Dykstra’s algorithm.
Subsequently, the computational complexity and proof of
convergence of the procedures are established. Finally, the
extension of ATOM2 to deal with additional covariance con-
straints along with the Toeplitz structure is provided.

Before proceeding further, let us observe that the Hermitian
Toeplitz matrices intrinsically endow the centro-Hermitian
symmetry structure [38], i.e.,

R = JR∗J (6)

with J the m×m permutation matrix given by

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0

 . (7)

As a consequence, Problem (5) is tantamount to (see also [2,
Sec. 6.5.8])

minimize
R∈Toep,R≻0

f(R), (8)

where

f(R) = Tr(RFBR−1) + log |R| (9)

refers to the restriction of f̄(·) to the centro-Hermitian covari-
ance matrices, with RFB the forward-backward (FB) averaged
sample covariance matrix4 given by RFB = 1/2(RSCM +
JR∗SCMJ) [39].

Now, decomposing RFB = Y Y H , e.g., via LDL factor-
ization [40], with Y ∈ Cm×r, where r = rank(RFB) ≤ m,
Problem (8) can be equivalently cast as5 (see Appendix A)

min
R∈Toep,X∈Hr×r

Tr(X) + log |R|

s.t.
(

X Y H

Y R

)
⪰ 0, (10)

where the objective is a concave differentiable function of X
and R.

Before proceeding with the next important lemma, it is
worth pointing out that Problem (10) holds true even if
the Toeplitz structural constraint in Problem (5) and (10) is
replaced by any set of positive definite (centro-Hermitian)
matrices, provided that the estimation problem is solvable, i.e.,
the optimal solution exists.

4Hereafter, Problem (5) (and thus (8)) is assumed solvable, i.e., there exists
a global optimizer R∗ ≻ 0, as well as any limit point of a feasible sequence
of matrices whose corresponding objectives converge to the optimal value
is feasible to the optimization problem. As a consequence, without loss of
generality, the constraint R ≻ 0 can be relaxed into R ⪰ 0. Notably,
a sufficient condition to ensure the aforementioned properties is provided by
n ≥ ⌈m/2⌉, corresponding to RFB ≻ 0 with probability one.

5A similar constraint reformulation is used in some studies involving atomic
norm for sparse reconstruction [25], [41].
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Lemma 1: Given a concave differentiable6 function h(K) :
Hr×r → R, it can be majorized as

h(K) ≤ h(Kt) + Tr
(
∇h(Kt)H(K −Kt)

)
, (11)

where Kt∈ Hr×r. The upper bound to h(K) is linear and
differentiable with respect to (w.r.t.) K.

Proof: Since h(K) is a concave function w.r.t. K,
(11) stems from linearizing h(K) via its first order Taylor
expansion [42].

In order to tackle the challenging optimization problem (10),
MM-based methods [43], [44], denoted ATOM1 and ATOM2,
are now developed. To this end, let us observe that the term
log |R| in (10) is a concave function w.r.t. R [45]. Hence,
it can be majorized using Lemma 1 (with K = R, Kt = Rt,
h(K) = log |R|, and ∇h(Kt) = R−1

t ) to get the following
s.f.
g(X,R|Rt)=Tr(X)+Tr

(
R−1

t R
)
+c1 =Tr(AtE)+c1, (12)

where the constant c1 = log |Rt| − m, At = diag(I,R−1
t ),

whereas E = diag(X,R) is the block-diagonal matrix with
blocks X and R along the main diagonal. Given Rt, which
in our case is the value assumed by the variable Rt at the
t-th iteration of the algorithm, the MM method demands for
the solution of the following surrogate minimization task

{Rt+1, Xt+1} = arg min
R∈Toep,X∈Hr×r

g(X,R|Rt)

s.t.
(

X Y H

Y R

)
⪰ 0, (13)

which is a Semidefinite Programming (SDP) problem.
Unfortunately, the computational complexity necessary
to handle SDP using interior point methods is
O
(
(r + m)4.5 log( 1

η̃ )
)

[46], [47], with η̃ > 0 the desired
solution accuracy. In order to alleviate the computational
issue, two different approaches are pursued. The former
directly handles Problem (13) via the iterative ADMM
algorithm. The latter, by means of a suitable manipulation
of (12), constructs a different s.f. for the objective function
in Problem (10). By doing so, as clearly explained in the
following, a computationally efficient and flexible estimation
procedure capable of including additional constraints can
be developed. To this end, let us observe that, adding and
subtracting γTr(E2), (12) is equivalent to7

Tr(AtE) + γTr(E2)− γTr(E2) (14)

with γ > 0 ∈ R a parameter of the surrogate construction stage
(for γ ↓ 0, the function in (14) reduces to (12)). Now, being
−Tr(E2) a concave function of E and invoking Lemma 1
applied to the feasible solution Et = diag(Xt;Rt) with Xt =
Y HR−1

t Y and Rt provided by the t-th iteration step of the
estimation process, it is possible to construct the s.f. for (14)

g̃(X,R|Rt)=Tr (AtE)+γTr(E2)− 2γTr(EEt)−γTr(E2
t ).

(15)

6For a non-differentiable function, the inequality in (11) can be cast
as h(K) ≤ h(Kt) + Tr

(
G(Kt)H(K −Kt)

)
, where G(Kt) is the

subgradient of the concave function h(K) at Kt [35].
7Note that as γ approaches zero, the objective function (14) shrinks towards

the original one in (12). Thereby, the smaller γ, the closer the ATOM2
surrogate objective function to the ATOM1 counterpart.

It is worth pointing out that g̃(X,R|Rt) represents a
surrogate to a s.f.. Nonetheless, since g̃(X,R|Rt) is a tight
approximation of g(X,R|Rt), it is straightforward to show
that (15) provides a direct surrogate for the objective function
in Problem (12). Hence, given Rt and after some algebraic
manipulations, the resulting surrogate minimization problem
at the t-th iteration can be cast as

{Rt+1, Xt+1} = arg min
R∈Toep,X

∥E −Bt∥2F

subject to E + D ⪰ 0, (16)

where Bt = Et − γ′At, with γ′ = 0.5
γ and D =

[0, Y H ; Y ,0].
In the following subsections III-A and III-B two itera-

tive methods, i.e., ATOM1 and ATOM2, are proposed to
solve the surrogate minimization problems in (13) and (16),
respectively.

A. ATOM1

The surrogate minimization problem in (13) is solved
using ADMM [48], [49]. To this end, an auxiliary variable
U∈ H(r+m)×(r+m) is introduced in (13) and the problem is
framed in the equivalent form

min
R∈Toep,U⪰0,X∈Hr×r

Tr(X) + Tr
(
(Rt)−1R

)
s.t.

(
X Y H

Y R

)
−U = 0. (17)

The augmented Lagrangian [50, Ch. 2] associated with (17) is

Lρ(R, X, U , λ̂) = Tr(X) + Tr
(
(Rt)−1R

)
+

Tr
[̂
λ

H
((

X Y H

Y R

)
−U

)]
+

ρ

2

∥∥∥∥( X Y H

Y R

)
−U

∥∥∥∥2

F

,

(18)

where ρ > 0 is the penalty parameter and λ̂ is the Lagrange
multiplier of size (r + m) × (r + m). Problem (18) can be
further rewritten as

Lρ(E, U , λ̂)

= Tr(AtE) + Tr
(
λ̂

H
(E + D −U)

)
+

ρ

2
∥E + D −U∥2F .

(19)

The (inner) iterative steps of ADMM algorithm [48], [49] are

U t
k+1 = arg min

U⪰0
Tr
(
(λ̂

t

k)H(Et
k + D −U)

)
+

ρ

2
∥Et

k + D −U∥2F (20)

Et
k+1 = arg min

R∈Toep,X
Tr(AtE)+Tr

(
(λ̂

t

k)H(E+D−U t
k+1)

)
+

ρ

2
∥E + D −U t

k+1∥2F (21)

λ̂
t

k+1 = λ̂
t

k + ρ
(
Et

k+1 + D −U t
k+1

)
, (22)

where (·)t
k is used to denote the k-th inner-iteration of the

ADMM algorithm in correspondence of the t-th MM outer-
loop. Problems (20) and (21) have closed-form solutions which
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can be computed via the projection of appropriate matrices
onto the respective feasible sets. Indeed, Problem (20) can be
equivalently cast as

U t
k+1 = arg min

U⪰0
∥U −Ψt

k∥2F (23)

where Ψt
k = Et

k+D+ 1
ρ λ̂

t

k. Hence, solving (20) is tantamount
to performing the orthogonal projection of the matrix Ψt

k

onto the set of the PSD matrices which can be computed
as U t

k+1 = Ṽ
t

k max(diag(Ũ
t

k),0)Ṽ
tH

k , where diag(Ũ
t

k)
and Ṽ

t

k are the matrices containing the eigenvalues and the
corresponding orthonormal eigenvectors of Ψt

k, respectively.
Similarly, the update step of E in (21) can be rewritten as

Et
k+1 = arg min

R∈Toep,X
∥E −Λt

k∥2F , (24)

where Λt
k = PD−Toep

(
U t

k+1 −D − 1
ρ (λ̂

t

k + At)
)

, with
PD−Toep(Ψ) computed as follows: Partitioning the matrix

Ψ as Ψ =
(

Ψ11 Ψ12

ΨH
12 Ψ22

)
with Ψ12 of size r × m, the

orthogonal projection of interest amounts to set the upper
diagonal block to Ψ11 whereas the second diagonal block is
obtained by averaging the elements along each diagonal of
Ψ22 and constructing the corresponding Toeplitz matrix.

Now, partitioning Λt
k as Λt

k =
(

Λt
11,k Λt

12,k

ΛtH
12,k Λt

22,k

)
with

Λt
11,k and Λt

22,k being r×r and m×m matrices, respectively,
it follows that Xt

k+1 = Λt
11,k and Rt

k+1 = Λt
22,k. Before

concluding, it is worth pointing out that since the surrogate
minimization problem in (13) is convex and only an equality
constraint is forced, it is guaranteed that ADMM converges
to a supposed existing8 optimal unique solution to (13) (see
Section 3.2 in [50] and [51]). The pseudocode of the proposed
algorithm is shown in Algorithm 1.

Algorithm 1 Pseudocode of ATOM1 algorithm
Input: Data-based matrix Y and ρ
Initialize: Set t, k = 0. Initialize R0, X0 and λ̂0.
Repeat:

k ← 0
Compute At = diag(I, R−1

t ), Et
k = diag(Xt, Rt), λ̂

t
k = λ̂t

Repeat:
1) Obtain Ut

k+1 by projecting the matrix Ψt
k = Et

k + D + 1
ρ λ̂

t
k

onto the set of PSD matrices.
2) Compute Λ = Ut

k+1 −D − 1
ρ (λ̂

t
k + At)

3) Set Xt
k+1 equal to the first block Λ11 of Λ

4) Obtain Rt
k+1 by projecting the second block Λ22 of Λ

onto the set of Toeplitz matrices.
5) Obtain Et

k+1 = diag(Xt
k+1, Rt

k+1)

6) λ̂
t
k+1 = λ̂

t
k + ρ

(
Et

k+1 + D −Ut
k+1

)
7) k ← k + 1

until convergence
Set Rt+1 = Rt

k , Xt+1 = Xt
k , λ̂t+1 = λ̂

t
k

t← t + 1
until convergence
Output: RATOM1 = Rt.

From Algorithm 1 it can be seen that ATOM1 requires
initialization of the matrices R0, Xt

0 and λ̂
t

0. R0 can be
set using the initialization scheme discussed in [22] and,
as t = 0, Xt

0 can be set equal to Y HR−1
0 Y while λ̂

t

0 can

8A sufficient condition for the existence of the optimal solution to Prob-
lem (13) is provided by the solvability of (8).

be constructed as λ̂
t

0 = V V H , where the elements of V are
drawn randomly from a uniform distribution over [0, 1]. For
t ≥ 1, the matrices Et

0 and λ̂
t

0 can be initialized with their
last value after convergence at the previous ADMM iteration,
respectively. Another input parameter required by ATOM1 is
the penalty weight ρ, introduced during the construction of the
Augmented Lagrangian of the ADMM framework. It is shown
in [50], that the ADMM algorithm converges for any value of
ρ > 0. However, the numerical stability and the convergence
rate depends on the choice of ρ. Simulation results have
highlighted that for ρ = 1, the ADMM algorithm is stable
for different values of n and m. Hence, unless otherwise
stated, in all the numerical analysis ρ = 1 is used. Notably,
in the open literature, [25], [26] addressed the Toeplitz estima-
tion problem by devising optimization procedures similar to
ATOM1, where in [26] a rank constraint is also considered in
the estimation process. However, it is worth mentioning that
ATOM1 optimizes a different surrogate function exploiting
the persymmetric structure of the covariance matrix, so it
represents a different implementation of the MM plus ADMM
method to deal with the optimization problem at hand.

1) Computational Complexity and Discussion About
ATOM1: ATOM1 is iterative in nature with two loops -
the outer-loop updates the Toeplitz matrix Rt while the
inner-loop solves the surrogate minimization problem using
ADMM. Note that in the inner-loop, it is required to construct

the data-based matrix D =
(

0 Y H

Y 0

)
- which is iteration

independent and hence can be pre-computed and stored.
Let us now discuss the complexity related to the outer and
inner-loops of ATOM1. The inner-loop of ATOM1 requires
the computation of the matrix At - which is outer-loop
iteration dependent. Therefore, this matrix can be evaluated
once in each outer-loop. Consequently, apart from the
computations involved in the inner-loop, an outer-loop cycle
just involves the evaluation of the matrix R−1

t . Since Rt

is Toeplitz, its inverse can be efficiently computed with a
complexity O(m logm) [52]. The computational complexity
of an inner-loop cycle is related to the projection of Ψt

k

onto the set of PSD matrices and projection of Λt
k onto

the set of block diagonal matrices where the upper part
(of size r × r) is unconstrained, whereas the lower block
(of size m × m) is Toeplitz structured. The cost of this
latter operation mainly involves the projection of Λt

22,k

onto the set of Toeplitz matrices; thus, it is substantially
dictated by the computation of average of the elements
along the diagonals of Λt

22,k. Hence, the cost of the inner-
step 4) is O(m2). Next, the projection of Ψ onto the set
of PSD matrices mainly involves the computation of the
eigenvalues and eigenvectors of the matrix Ψt

k - whose
corresponding complexity is O((r + m)3) [40]. Therefore,
the per-outer-iteration computational complexity of ATOM1
is O(η(r + m)3) where η is the total number of inner-loop
iterations required by the algorithm to converge.

A drawback of ATOM1 is the lack of a theoretical quality
guarantee when it has to handle additional constraints on
the covariance matrix. This is because ATOM1 implements
ADMM algorithm at each inner-iteration which requires (to
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endow convergence guarantees to the process) the optimization
problem to exhibit the standard form [50], [53]

minimize
Z,E

h1(Z1) + h2(Z2)

subject to A1Z1 + A2Z2 = C (25)

where h1(Z1), h2(Z2) are convex functions and A1, A2, C
are matrices of appropriate dimensions, respectively. There-
fore, to incorporate additional inequality constraints (such as
those resulting from upper bound on the condition number of
the matrix Z1 or a lower bound to the strength of diagonal
elements, or more in general an intersection of closed convex
sets that can be described by additional auxiliary variables),
one needs to replace each inequality constraint with an appro-
priate equality constraint. This can be done by introducing a
slack variable for each inequality constraint to the existing
optimization variables Z1 and Z2. However, there is no
convergence guarantee of ADMM when there are more than
two optimization variables [54]. This issue can be addressed by
the low complexity algorithm, referred to as ATOM2, proposed
to solve Problem (16).

B. ATOM2

Problem (16) is tantamount to seeking the block diagonal
matrix E belonging to the intersection of the two sets - the
former defined by block diagonal matrices with the lower
diagonal block of size m×m fulfilling a Toeplitz structure and
the latter given by the Linear Matrix Inequality (LMI) [55]
E + D ⪰ 0 - with minimum distance from B. Being
the feasible set of (16) characterized by the intersection of
convex sets, a viable, even though heuristic, means to tackle
Problem (16) is provided by the alternating projection or
Projection Onto the Convex Sets (POCS) technique [56], [57],
[58], which has already been successfully applied in the signal
processing context, e.g., [59], [60].

Let us denote by PLMI(Ψ) the orthogonal projection of
an arbitrary matrix Ψ onto the set defined by E + D ⪰ 0.
Now, to proceed further and employ the POCS framework,
PD−Toep(Ψ) and PLMI(Ψ) projections must be employed.
Remarkably, both can be obtained in closed-form: the former is
computed as described in subsection III-A; as to the latter, the
orthogonal projection onto the set defined by LMI E+D ⪰ 0
is computed by first evaluating the EigenValue Decomposition
(EVD) of the matrix Ψ + D, i.e., obtaining [Ū , V̄ ] =
eig(Ψ + D), where Ū and V̄ are matrices containing the
eigenvalues and eigenvectors of the spectral decomposition,
respectively. Then, the orthogonal projection PLMI(Ψ) is
given by V̄ max(Ū ,0)V̄ H −D.

According to POCS method, given an initial value Tt
0 =

Bt, at the k-th inner-iteration first compute Y t
k+1 =

PD−Toep(Tt
k) and then, using Y t

k+1, determine Tt
k+1 =

PLMI(Y t
k+1) which represents the starting point Tt

k+1 of the
next inner-iteration. Hence, the POCS-based solution approach
finds a sequence of iterates {Tt

k} by alternatingly projecting
between the two convex sets. Nevertheless, as reported in [61],
POCS may suffer from slow convergence. Even more crucial,
the convergence to the global optimal solution to (16) is,
in general, not ensured [62], [63]. A possible solution to the

aforementioned shortcoming is provided by Dykstra’s projec-
tion algorithm [62], which is an iterative procedure aimed at
minimizing the distance of a given point from the intersection
of closed convex sets via appropriate projections on each sin-
gle sets. Therefore this technique is extremely effective if the
individual projections can be evaluated efficiently. Dykstra’s
method is thus a refinement of POCS capable of finding a
point closest to Bt by adding correction matrices Pk and Qk

before each projection is performed, which in-turn ensures
convergence of sequence {Tk+1} to the optimal solution
T∗= E∗ [62]. In particular, let C1 be one of the convex set
involved in the optimization procedure, at each iteration, after
performing the projection of a matrix A onto C1 obtaining
Ã = PC1(A+P (A)), with P (A) the corresponding correction
matrix (initialized to 0), P (A) is updated by computing the
difference between the matrix A + P (A) and its projection as
P (A) = A + P (A) − Ǎ.

The pseudocode of Dykstra’s algorithm is shown in
Algorithm 2. Once the optimal solution E∗ is obtained via

Algorithm 2 Pseudocode of Dykstra’s algorithm
Input: Bt

Initialize: Set Tt
0 = Bt, Pt

0 = 0 and Qt
0 = 0, k = 0

Repeat:
1) Y t

k = PD−Toep(Tt
k + Pt

k)
2) Pt

k+1 = Tt
k + Pt

k − Y t
k

3) Tt
k+1 = PLMI(Y

t
k + Qt

k)
4) Qt

k+1 = Y t
k + Qt

k −Tt
k+1

5) k ← k + 1
until convergence
Output: E∗ = Tt

k.

Dykstra’s projection, the matrix Rt+1 can be constructed from
its lower diagonal block of size m × m. This process is
repeated until the whole MM-procedure, i.e., including the
outer-loop, converges. The complete ATOM2 is summarized
in Algorithm 3. It requires the initialization of the matrix R.

Algorithm 3 Pseudocode of ATOM2
Input: Data-based matrix Y , surrogate parameter γ
Initialize: Set t = 0. Initialize R0, X0.
Repeat:

1) Compute At = diag(I, R−1
t ), Et = diag(Xt, Rt)

2) Compute E∗ from Algorithm 2 execution with Bt = Et − 0.5
γ At

3) Obtain Rt+1 from the lower diagonal block of E∗

4) Obtain Xt+1 from the upper diagonal block of E∗

5) t← t + 1
until convergence
Output: RATOM2 = Rt

In this respect, a similar scheme as in ATOM1 is followed, i.e.,
at each outer-iteration, the initial guess required to determine
Rt+1 in the inner-loop is obtained starting from Rt.

C. Computational Complexity of ATOM2

Like ATOM1, ATOM2 is an iterative algorithm with outer-
and inner-loops. The outer-loop updates the Toeplitz matrix Rt

and the inner-loop implements the Dykstra’s algorithm - which
requires the computation of the matrices D and R−1

t . The
former is a iteration independent data matrix and therefore can
be pre-constructed. The latter is outer-loop iteration dependent
and therefore can be computed once in each outer-loop.
Consequently, apart from the inner-loop computations, the
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TABLE I
COMPARISON AMONG COMPUTATIONAL COMPLEXITY OF ATOM1 AND

ATOM2 WITH OTHER STATE-OF-THE-ART ITERATIVE ALGORITHMS

outer-loop demands only the computation of R−1
t - which can

be computed efficiently with complexity O(m logm). Mean-
while, the computational load of the inner-loop stems from
the evaluation of EVD of the matrix (Y k + Qk) plus a data
matrix D - which has a complexity of about O((r + m)3).

In Table I, the computational complexity of ATOM1 and
ATOM2 is compared with that of the state-of-the-art iterative
algorithms [19], [22]. Unlike the proposed algorithms, the
state-of-the art methods are single loop iteration algorithms.
Therefore, in the case of [22] and [19] η is used to represent
the number of iterations required by the algorithm to converge.
Inspection of Table I shows that ATOM1 and ATOM2 have
the highest complexity when compared to MELT and EM.
Nevertheless, it is worth anticipating that this complexity
increase is complemented by a superior performance in terms
of generality of the problem solved (ATOM1 and ATOM2
do not exploit the CE, ATOM2 permits to handle additional
structural constraints with quality guarantee, as shown in
subsection III-E), covariance matrix MSE, and achieved SINR.

D. Proof of Convergence

In this subsection, the proof of convergence of ATOM1 and
ATOM2 is established. In this regard, it is worth pointing
out that both the algorithms differ in the way they construct
and optimize the s.f. for the Problem (5). Nonetheless, since
ATOM1 and ATOM2 are based on the MM framework, the
proof of convergence based on the following Theorem will
hold for both algorithms.

Before stating the Theorem, let us first introduce the
first-order optimality condition for minimizing a function over
a convex constraint set. A point X is a stationary point of f(·)
if f ′(X; D) ≥ 0 for all D such that X + D ∈ C, where C
is the convex constraint set and f ′(X; D) is the directional
derivative of f(·) at point X in direction D and is defined
as [36]

f ′(X; D) = lim
λ↓0

inf
f(X + λD)− f(X)

λ
. (26)

Based on the following theorem, relying on the key results
in [36] and assuming that the inner-loop achieves the global
optimizer, both ATOM1 and ATOM2 are guaranteed to con-
verge to a stationary point of Problem (5).

Theorem 1: Denoting by {Rt} the sequence of matrices
generated by either ATOM1 or ATOM2, then the objective
function of Problem (5) monotonically decreases along the
iterations. Besides, any positive definite cluster point9 to Rt

is a stationary point to Problem (5).
Proof: See Appendix B for details.

9Under the assumption m ≥ n/2, all the cluster points are demanded to
be positive definite.

E. Extensions of ATOM2

The augmentation of ATOM2 to handle additional con-
straints other than the Toeplitz structure in the covariance
estimation process is now addressed. In particular, it is
shown that ATOM2 can be generalized10 to account for
the following scenarios: Banded Toeplitz, block-Toeplitz, and
Toeplitz-block-Toeplitz matrices. On the other side, as already
mentioned in subsection III-A.1, ATOM1 cannot be directly
extended to tackle the general constraints as for instance an
upper bound requirement to the condition number [64], [65]
or, in a “cognition-driven-processing” application, a similarity
constraint [66], [67] to exploit some prior knowledge of the
stationary process, whose statistical characteristics inference
represent the task at hand.

1) MLE of Banded Toeplitz Covariance Matrix: The covari-
ance matrix is constrained to exhibit a banded Toeplitz
structure of bandwidth b (see [21], [68], [69] for relevant
applications). For instance, assuming a bandwidth b = 2 and
dimension m = 5 the covariance matrix enjoys the following
structure

R =


r1 r2 r3 0 0
r∗2 r1 r2 r3 0
r∗3 r∗2 r1 r2 r3

0 r∗3 r∗2 r1 r2

0 0 r∗3 r∗2 r1

 .

Then, the MLE problem for banded Toeplitz covariance matrix
can be formulated as

minimize
R∈Band−Toep, R≻0

1
n

n∑
i=1

yH
i R−1yi + log |R| , (27)

where Band − Toep is used to denote the set of banded
Toeplitz matrices. Like in (10), the above problem can be cast
in the following equivalent form

minimize
R∈Band−Toep,X

Tr(X) + log |R|

subject to
(

X Y H

Y R

)
⪰ 0. (28)

Hence, (28) is handled via MM framework solving the fol-
lowing surrogate minimization problem

minimize
E

∥E −B∥2F
subject to E + D ⪰ 0

E = diag(X,R) with R being a
banded Toeplitz matrix (29)

The above problem involves two convex sets: the set defined
by the LMI E+D ⪰ 0 and the set of block diagonal matrices
where the second block has a banded Toeplitz structure with
bandwidth b. Consequently, Dykstra’s projection algorithm or
POCS can be used to solve Problem (29). The projection
of a matrix onto the LMI set can be calculated as dis-
cussed earlier in Subsection III-B. The projection of a matrix

Ψ̂=

(
Ψ̂11 Ψ̂12

Ψ̂
H

12 Ψ̂22

)
onto the set of block diagonal matrices

with the second banded Toeplitz block can be obtained as
follows. The first diagonal block is the same as Ψ̂11 and the

10If it is not required that R satisfies the centro-Hermitian property, Y
in (10) is obtained via the LDL factorization of RSCM rather than RFB .
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second diagonal block is constructed by averaging the entries
of the main and the first b upper-diagonals of the matrix Ψ̂22

and computing the corresponding Toeplitz matrix [68].
2) MLE of Block-Toeplitz or Toeplitz-Block-Toeplitz Covari-

ance Matrix: In space-time adaptive processing radar applica-
tions, the covariance matrix exhibits a block-Toeplitz (BT) [70]
or a Toeplitz-block-Toeplitz (TBT) structure. An example of a
BT-structured covariance matrix with p blocks is shown below

R =


R0 R1 . . . Rp−1

RH
1 R0 . . . Rp−2

...
. . . . . .

...
RH

p−1 . . . RH
1 R0

. (30)

When each block exhibit a Toeplitz structure, then R is
TBT [71], [72].

The MLE problem of a BT or a TBT covariance matrix is
formulated as

minimize
R∈BT (TBT ),R≻0

1
n

n∑
i=1

yH
i R−1yi + log |R|, (31)

where the notation BT (TBT ) is used to indicate the set
of BT (TBT ) matrices. A feasible solution to Problem (31)
can be obtained by solving at any given step the following
surrogate optimization problem

minimize
E

∥E −B∥2F
subject to E + D ⪰ 0

E is a block diagonal matrix with
the second diagonal BT (TBT) block. (32)

Problem (32) exhibits two constraints - 1) a LMI constraint
and 2) a structural constraint - where the optimization variable
E is confined to be a block diagonal matrix with the second
block having a BT (TBT) structure. Since both the constraints
are convex, Dykstra’s projection or POCS can be applied to
solve Problem (32). The projection of a matrix onto the LMI
set can be calculated as discussed earlier in Section III-B.
The projection of a given matrix Ψ̄ onto the set of matrices
whose second diagonal block has the BT (TBT) constraint
can be obtained as follows. For the first diagonal block, the
submatrix Ψ̄11 is directly used. Then, the second diagonal
block is obtained following two (three) steps. First, p matrices
are obtained by averaging the (upper-right) diagonal blocks of
the matrix Ψ̄22. Then, only for TBT, each of the p matrices are
projected onto the Toeplitz set as described in subsection III-B.
Finally, the resulting matrix is constructed according to (30).

IV. CRB CALCULATION

In this section, the CRB is derived11 for the estimation of
Toeplitz structured covariance matrix (the interested reader
may refer to Appendix C with reference to the CRBs com-
putation of Banded Toeplitz, BT, and TBT covariance model).

11Bespoke parametrization of the unknowns are exploited to compute
CRBs. It is noteworthy to highlight that the general framework to handle
CRB computation in the presence of parameters restrictions/relationships is
provided by the constrained CRB (the interested reader may refer to [73],
[74], [75], and [76]).

The CRB provides a lower bound on the variance of any
unbiased estimator [77]. To proceed further, let θ represent
the real value vector parametrizing a given covariance matrix
structure of interest. Then, the CRB is the inverse of the Fisher
Information matrix (FIM) whose (i, k)th element is

[F]i,k = E
[

∂2 log f̄(R)
∂θi∂θk

]
, (33)

where ∂ log f̄(R)
∂θi

denotes the partial derivative of log f̄(R)
w.r.t. θi, with θi the i-th element of θ. Due to the Gaussian
assumption, the (i, k)th element of the FIM can be computed
using the Slepian-Bangs formula [2]

[F]i,k = nTr
(
R−1 ∂R

∂θi
R−1 ∂R

∂θk

)
. (34)

In the following subsection, the FIM is derived for the
Toeplitz covariance structure.

A. Toeplitz Matrix

As the entries of the TSC matrix are completely charac-
terized by its first row, i.e., [r1, r2, · · · rm]T , the covariance
matrix R ∈ Hm×m can be parameterized by θ =
[r1,ℜ(r2), · · · ℜ(rm),ℑ(r2), . . . ,ℑ(rm)]T ∈ R2m−1 where
ℜ(ri) and ℑ(ri) denotes the real and imaginary parts of ri,
respectively. Then, the covariance matrix R can be expressed
in terms of θ and basis matrices BToep

g (defined as in (36)),
g = 1, 2, · · · , m [20]

R =
m∑

g=1

θgℜ(BToep
g ) + j

2m−1∑
g=m+1

θgℑ(BToep
g−m+1) . (35)

The (i, k)th element of the matrix BToep
g is given as

[BToep
g ]i,k =


1 + j i− k = g − 1 = 0
1 + j k − i = g − 1 ̸= 0
1− j i− k = g − 1 ̸= 0
0 otherwise

. (36)

Using (35), ∂R
∂θi

can be obtained as

∂R
∂θi

=

{
ℜ(BToep

i ) 1 ≤ i ≤ m

jℑ(BToep
i−m+1) m + 1 ≤ i ≤ 2m− 1

.

Substituting ∂R
∂θi

in (34), yields the FIM for Toeplitz covariance
matrix.

V. NUMERICAL SIMULATIONS

In this section, the performance of the proposed covari-
ance matrix estimators ATOM1 and ATOM2 is numerically
analyzed in comparison with the following state-of-the-art
algorithms: EM-based [19], [78], MELT [22], the SCM, and
the FB estimators [39]. First, a convergence analysis of the
derived methods is provided, also in comparison with the
aforementioned counterparts. Then, the estimation capabilities
are analyzed in three different scenarios, using the MSE as
performance metric, defined as12

MSE = E
[∥∥∥θ − θ̂

∥∥∥2
]

, (37)

12In the following, (37) is computed via Monte Carlo technique.
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where θ̂ indicates the estimate of the unknown θ, obtained
according to one of the aforementioned strategies. First of
all, the covariance matrix is assumed to share the Toeplitz
structure. Then, the banded Toeplitz, the BT, and the TBT
constraints are considered. The CRB-based benchmark, com-
puted as CRB = Tr(F−1), is reported too, whereby, for each
case study, the FIM is appropriately derived, see Section IV.

Furthermore, assuming a typical radar signal processing
scenario, the performance is also evaluated in terms of average
achievable SINR by an adaptive spatial filter.

It is also worth reporting that, in the aforementioned scenar-
ios, ATOM1 and ATOM2 procedures are initialized using the
FB estimate RFB , projected onto the set of Toeplitz matrices.
Moreover, for the execution of ATOM2, the parameter γ is
updated adaptively in each outer-loop iteration according to
the following law13

γ = γ0(t log t + k1)2. (38)

To illustrate the role of γ in the optimization process per-
formed by ATOM2, a notional representation of the objective
function (conceptually depicted as a one-dimensional curve
and corresponding to a specific portion of a restriction of the
multivariate objective) and the s.f. of ATOM1 and ATOM2,
is reported in Fig. 1. Remarkably, the value of γ affects
the trade-off between performance and convergence speed of
ATOM2. Indeed, while a smaller γ leads to a better perfor-
mance (ATOM2 s.f. approaches the ATOM1 one as γ → 0),
it demands more inner-loop iterations to achieve convergence,
due to the almost singular resulting metric. On the other
hand, a larger γ reduces the overall computational cost, but
introduces a growth in the approximation error. However,
as the outer-loop iterations increase, the approximation error
of the ATOM2 s.f. w.r.t. the objective function decreases as the
updated point becomes closer and closer to a local minimum
at which the sequence is “converging”. That said, slowly
increasing γ with the number of iterations allows to speed-up
its computational burden without decreasing its performance.

A. Assessment of Iterative Algorithms Convergence for
on-Grid and off-Grid Frequencies

In this simulation, the convergence of ATOM1 and ATOM2
(whose inner-loop was implemented via Dykstra’s algorithm)
is assessed in comparison with MELT and EM algorithms.
To this end, each data snapshot yk ∈ Cm is modeled as

yk = R
1
2 nk, k = 1, 2, · · · , n (39)

where nk ∈ Cm, k = 1, . . . , n are independent and iden-
tically distributed zero-mean circularly symmetric Gaussian
random vectors with unit mean square value.

Two different experimental setups are considered, assuming
m = 6 and n = 20. In the former, the true underlying
Toeplitz covariance matrix R is constructed by choosing the

13As to the adaptive ATOM2 surrogate construction stage, it has been
empirically shown that the updating rule (38), with γ0 = 10−4 and k1 =
5, provides satisfactory performance in all the scenarios; therefore, unless
otherwise stated, ATOM2 s.f. (and the subsequent processing) is constructed
using (38) with the aforementioned values.

Fig. 1. A notional representation of the objective function of Problem (10)
and the corresponding s.f. of ATOM1 and ATOM2, with the latter employing
γ ∈ {0.5, 1, 10}, for a one-dimensional optimization problem.

Fig. 2. Negative log-likelihood (9) and the objective function of (10) vs.
outer-iterations for m = 6, n = 20, and on-grid frequencies scenario.

2-nd, 3-rd, 5-th, 7-th, 8-th and the 11-th column of the DFT
matrix with L = 2m − 1 in (3), corresponding to the fre-
quencies [0.5712, 1.1424, 2.2848, 3.4272, 3.9984, 5.7120] rad,
and as powers [p1, . . . , p6]T = [3, 6, 4, 1, 7, 5]T, respectively.
Figs. 2a and 2b show the negative log likelihood (9) and
the objective function of problem (10) versus the number of
iterations, respectively. It can be seen that all the algorithms
numerically improve the negative log-likelihood as the number
of iterations increases and almost converge to the same value,
with negligible differences. Moreover, Fig. 2b indicates that
the proposed algorithms monotonically decrease the problem
objective function, which is expected since they optimize (10)
using the MM framework.

In the other experimental setup, the true underlying Toeplitz
covariance matrix is constructed such that two of the fre-
quencies are not on the Fourier grid. Therefore, the same
parameters used in case study 1 are considered, with the excep-
tion that the Fourier frequencies 0.5712 rad and 3.9984 rad are
replaced with 0.5 rad and 5.3 rad, respectively. For the case
study at hand, the negative log-likelihood (9) and the objective
function of (10) are reported in Figs. 3a and 3b versus the
number of iterations, respectively. Inspection of Fig. 3a reveals
that while MELT and EM converge to a value of ≈ 22.4,
ATOM1 and ATOM2 converge to 22. Therefore, when two
of the frequencies do not lie on the Fourier grid, the state-
of-the-art iterative algorithms converge to a larger value of
the negative log-likelihood than the proposed methods. This
is due to the fact that unlike the counterparts, the proposed
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TABLE II
COMPARISON OF THE AVERAGE RUN TIME (IN SECONDS) OF THE ITERATIVE ALGORITHMS

TABLE III
COMPARISON OF THE AVERAGE MSE OF THE ITERATIVE ALGORITHMS

Fig. 3. Negative log-likelihood (9) and the objective function of (10) vs.
outer-iterations for m = 6, n = 20, and off-grid frequencies scenario.

algorithms estimate the Toeplitz covariance matrix without
reparametrizing it via the CE technique and thus they are
able to cover the whole set of Toeplitz covariance matrices.
Furthermore, remarks similar to those made for the on-grid
case hold true with reference to the results depicted in Fig. 3b.

In the following, the mean computational time14 (averaged
over 1000 Monte Carlo trials) of the proposed techniques and
the counterparts is examined. As case studies, four different
values of m are considered, i.e., m ∈ {4, 8, 16, 32}. Moreover,
the data samples yk are generated as (39) using n = 4m
samples, with R = T + I . The Toeplitz covariance matrix
T is generated assuming 3 equal power sources, i.e., with
p = [5, 5, 5], whose frequencies are randomly selected (at each
trial) such that two of them lie on the Fourier grid of the DFT
matrix, with L = 2m−1, whereas the third one is drawn from
a uniform distribution over [0, 2π]. The iterative algorithms
have been run until the following condition is met15

p(Rt−1, Xt−1)− p(Rt, Xt) ≤ 10−4 (40)

with p(R, X) = Tr(X) + log |R| the objective function of
problem (10), or until the maximum number of iterations (set
equal to 1000) is reached. The average computational time
of the different algorithms (possibly with different values of
the hyperparameters) are reported in Table II. The results

14The simulation has been executed using MATLAB R2020b on a desktop
computer equipped with an Intel i5 processor and 16 GB of RAM.

15For the execution of EM and MELT procedures, the exit condition is set
as f(Rt−1)− f(Rt) ≤ 10−4.

show that ATOM2 has, in general, a longer execution time
than ATOM1. This is because the inner-loop of ATOM2
(based on Dykstra’s algorithm) requires an higher number
of iterations and hence a longer run time to converge than
ATOM1 inner-loop (implemented via ADMM), and similar to
those of EM/MELT when γ0 is small, where the distance is
minimized in a metric space is ill defined more and more.
However, when γ0 = 10−1, the run times of ATOM1 and
ATOM2 are comparable and similar to those of MELT and
EM. Interestingly, Table III pinpoints that, for γ0 sufficiently
small, i.e., 10−4, ATOM2 is generally able to reach MSE
values smaller than ATOM1, reasonably to its adaptive step-
size strategy (38), which allows it to provide better quality
estimates than ATOM1 as the outer-loop iteration increases.
It can also be seen that EM has the least computational time
(at large values of m). Nevertheless, as shown in Table III,
although the proposed algorithms have a slight longer compu-
tational time, the obtained estimates are superior, in terms of
MSE, to those provided by MELT and EM.

Interestingly, as the data dimension increases, the resulting
average MSE values reached by the ATOM2 using different
γ0 parameters becomes closer and closer. Therefore, for a
sufficient larger data size, i.e., m ≥ 32, γ0 = 10−1 represents
an appropriate choice for ATOM2 implementation, as it offers
a good performance with a reduced computational burden.

To further corroborate the computational efficiency of
ATOM1 also from a practical point of view, several numer-
ical examples are provided in the following by considering
specific instances of problem (13), with Rt provided by the
starting point of the estimation process. In particular, using
the same setup parameters as in Tables II-III with m = 8 and
n = 4, Table IV shows the average computational times and
the average values of the objective function (12), computed
over 500 Monte Carlo trials, achieved by either solving the
SDP directly with the SeDuMi/SDPT3 solver or by employing
ATOM1. Results reveal that the average value of the objective
function achieved by ATOM1 substantially concides with that
attained by the SDP solvers, but with a considerably faster
processing time, reflecting its lower computational complexity
as compared with the counterparts.
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TABLE IV
AVERAGE COMPUTATIONAL TIMES AND AVERAGE VALUES OF THE OBJEC-

TIVE FUNCTION (12) ACHIEVED BY SEDUMI, SDPT3 AND ATOM1
FOR THE m = 8, n = 4 CASE

Fig. 4. MSE vs. number of samples n for Toeplitz covariance matrix. a)
on-grid frequencies; b) off-grid frequencies.

B. MSE Versus n for Toeplitz Covariance Matrix

For this case studies, it is assumed m = 15 and the number
of samples n ranging between 50 and 500 in steps of 50.
The data yk ∈ C15 are again simulated according to (39).
Precisely, two different experiments are considered whereby
the true Toeplitz covariance matrix is generated using on-
grid16 and off-grid frequencies,17 respectively. The resulting
MSE, computed over 1000 Monte Carlo trials, are illustrated in
Fig. 4. Inspection of the curves depicted in Fig. 4a shows that,
regardless of the number of samples n, in the first experiment
ATOM1 and ATOM2 almost reach the CRB, whereas EM
and MELT yield a slightly better performance, resulting in

16The frequencies used in the first experiment are:
[0.2167, 0.6500, 1.0833, 1.3, 1.5166, 1.9500, 2.3833, 2.8166, 3.2499,
3.68324.1166, 4.5499, 4.9832, 5.4165, 5.8499] rad. Their corresponding
powers increase linearly from 1 to 15 with a unit step.

17For the off-grid simulation, the frequencies [1.3, 2.8166, 4.9832, 5.8499]
rad are replaced with [1.25, 3.01, 5.20, 5.8] rad, respectively.

Fig. 5. MSE vs. number of samples n for banded Toeplitz covariance matrix.

Fig. 6. MSE vs. number of samples n for TBT covariance matrix.

a deviation from the CRB. This can be explained observing
that the derived CRB does not exploit the information that the
frequencies lie on-grid. Fig. 4b highlight that in the second
experiment, ATOM1 attain the best performance, with results
quite close to the CRB and slightly better than ATOM2, with
a limited gap between the corresponding curves. Furthermore,
MELT and EM exhibit similar MSE values which seem to
saturate as n increases. The performance behavior of Fig. 4b
stems from the observation that, unlike MELT and EM,
ATOM1 and ATOM2 are gridless methods, delivering the same
performance regardless of the sources frequencies.

C. MSE Versus n for Banded Toeplitz Covariance Matrix

This subsection analyzes the performance in the case of
covariance matrix belonging to the set of banded Toeplitz
matrices. In particular, the same simulation setup as in
Section V-B is considered, but enforcing the underlying
covariance matrix to have a bandwidth b = 6. To this
end, R is constructed by alternately projecting a random
Hermitian matrix onto the set of banded Toeplitz matrices
and the set of PSD matrices. Moreover, for this study case,
ATOM2 is implemented according to the procedure described
in Section III-E.1, namely explicitly including the banded
Toeplitz structure in the constraint set.

Fig. 5 highlights that the bespoke implementation of
ATOM2 delivers the best performance, with MSE values really
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Fig. 7. Average SINR vs θ in the presence of two jammers, assuming m = 6 and a) n = m b) n = 2m, and c) n = 3m.

close to the CRB. Furthermore, MELT and EM share the same
performance with a noticeable gap w.r.t. ATOM2, which is
expected since the aforementioned algorithms do not leverage
the banded structure of the covariance matrix.

D. MSE Versus n for BT (TBT) Covariance Matrix

Here, the capabilities of ATOM2 are analyzed in the context
of covariance matrix with TBT structure. To this end, assuming
m = 16 and p = 4 blocks (each having block-size l = 4), the
covariance matrix is modeled as R = T1 ⊗T1, where T1 ∈
Cl×l is a Toeplitz matrix constructed as in subsection V-A,
with frequencies [0.6, 1.4, 3.2, 5.1] rad and powers [3, 6, 4, 1].
Thus, each data snapshot yk is drawn according to (39).
The resulting MSE values (averaged over 1000 Monte Carlo
trials) are displayed in Figure 6 versus the number of snap-
shots. Specifically, the performance of both the BT and the
TBT extension of ATOM2 (described in Section III-E.2) are
reported and compared with the CRB (see Appendix C) as
well as with two EM-based estimators, tailored respectively
for BT/TBT covariance matrix [78]. Inspection of the results
reveals that ATOM2 TBT uniformly achieves the least MSE,
with ATOM2 BT ranking second. As previously highlighted,
the superior performance of the proposed method stems from
the design criterion which does not require reparametrizing
the covariance matrix using the CE.

E. Radar Application

In this subsection, the performance of the covariance esti-
mation algorithms is evaluated with reference to the average
achievable SINR in adaptive radar spatial processing context.
To this end, let us consider a radar system equipped with a
uniform linear array with m = 6 sensors, pointing toward the
boresight direction. The inter-element distance between each
sensor is set equal to d = λ/2, where λ is the radar operating
wavelength.

For this simulation scenario, the interference covariance
matrix is modeled as R = Rs + σ2

aI where σ2
a is the power

level of the white disturbance noise (assumed without loss
of generality equal to 0 dB) and Rs is given by Rs =
J∑

l=1

σ2
l s(ϕl)s(ϕl)H , where J is the number of uncorrelated

narrow-band jammers and, for the l-th jammer,

s(ϕl) =
1√
m

[1, ej 2π
λ d sin(ϕl), . . . , ej(m−1) 2π

λ d sin(ϕl)]T (41)

is the steering vector in its direction-of-arrival ϕl, and σ2
l the

corresponding interferer power.
The capabilities of the estimation methods are analyzed by

means of the average SINR, computed as

SINRavg =
1
K

K∑
i=1

|ŵi
Hs(θ)|2

ŵH
i Rŵi

, (42)

where K = 500 is the number of Monte-Carlo trials and
ŵi = R̂−1

i s(θ) is the estimate of the optimal weight vector
for adaptive spatial processing with R̂i the estimate of the
interference-plus-noise covariance matrix for the i-th trial,
computed either via the sample covariance matrix or enforcing
the Toeplitz structure in the covariance matrix and employing
the estimators ATOM1, ATOM2, EM, and MELT.

More precisely, J = 2 jammers, with powers σ2
1 = 30 dB

and σ2
2 = 20 dB, respectively, impinging on the array from

θ1 = 9.8◦ and θ2 = −8.8◦, is considered. As comparison
terms, the optimum SINR, i.e., SINROPT = s(θ)HR−1s(θ)
and the performance of the Sample Matrix Inversion (SMI)
beamformer, are included too.

The average SINR versus θ ∈ T , with T =[−π/2, π/2]
discretized with 500 equally-spaced points, is shown in Fig. 7,
for n ∈ {m, 2m, 3m}. Inspection of the plots highlights that
as the number of samples n increases, the results achieved by
ATOM1 and ATOM2 gets closer and closer to the optimum,
yielding superior performance w.r.t. the counterparts.

VI. CONCLUSION

In this paper, the MLE problem for TSC matrices has
been addressed. Precisely, by reformulating appropriately the
MLE optimization problem and leveraging the MM frame-
work, two iterative algorithms ATOM1 and ATOM2 have
been developed. Both inherit the key properties of MM i.e.,
they monotonically decrease the underlying cost function with
guaranteed convergence to a stationary point of the equivalent
MLE problem. Subsequently, ATOM2 has been extended to
handle covariance matrix MLE forcing other Toeplitz-related
structures, such as banded Toeplitz, BT, and TBT. Simulation
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results have indicated that the proposed algorithms can per-
form better than some state-of-the-art techniques in terms of
MSE and the SINR metrics.

Some of the possible future research directions are now
outlined. In particular, ATOM2 could be further extended to
include the cases of low rank TSC, with the rank assumed
either known or unknown at the design stage, as well as
covariance matrix with an upper bound to the condition
number. Another possible extension of the proposed technique
could be MLE of a Toeplitz covariance matrix assuming
a compound Gaussian distribution for the underlining data
which has a significant application in low-grazing angle
target detection [79], [80]. Moreover, acceleration methods
inspired for instance by the SQUAREd iterative Methods
(SQUAREM) [81] could be investigated. In addition, the
design of sub-optimal optimization strategies (e.g., based on
the gradient projection method) with an improved computa-
tional burden (a valuable feature for real-time applications)
is definitely worth to be pursued. Finally, it would be of
great interest to apply the devised gridless framework to the
problems of direction of arrival/frequency estimation [26], [82]
[83], [84] and to compare the subsequent performance with
existing methods already available in the open literature.

APPENDIX

A. Proof of Equivalence Between (8) and (10)

Let R⋆ be an optimal solution to (8), then (X⋆,R⋆), with
X⋆ = Y HR⋆−1Y , is feasible for (10) and the two problems
have the same objective values. This means that

v(8) ≥ v(10), (43)

where v(·) indicates the optimal value of the corresponding
optimization problem.

Moreover, for any fixed R1 ≻ 0, concentrating the objective
function of (10) with respect to X (which is tantamount to
placing X = Y HR−1

1 Y ), it follows that the concentrated
optimization problem is

minimize
R1⪰0

Tr(RFBR−1
1 ) + log |R1|, (44)

due to Schur complement Theorem and the monotonicity of
the trace operator with respect to generalized matrix inequality
“⪰”. Finally, being by assumption (8) solvable, any minimizer
of (44) satisfies R⋆

1 ≻ 0 with a corresponding optimal solution
to (10) given by (R⋆

1, Y
HR⋆−1

1 Y ). This implies that

v(8) ≤ v(10). (45)

Capitalizing on (43) and (45) as well as the above consid-
erations, it follows that v(8) = v(10) and given an optimal
solution (R⋆

1, X
⋆
1) to (10), R⋆

1 is also optimal to (8) and
viceversa, given an optimal solution R⋆ to (8) (X⋆,R⋆) is
an optimal point to (10).

B. Proof of Theorem 3.2

To begin with, let us denote by h(E|Et) either the objective
function involved in the surrogate optimization problem of
ATOM1 (12) or ATOM2 (15), where E = diag(X,R). This

function, regardless of the method, satisfies the following two
inequalities

h(Et|Et) = l(Et) (46)
h(Et+1|Et) ≥ l(Et+1), (47)

where l(E) = Tr(X)+log |R|. Leveraging the above inequal-
ities, it follows that

l(Et+1)
(a)

≤ h(Et+1|Et)
(b)

≤ h(Et|Et)
(c)
= l(Et). (48)

In (48), the inequality (a) and equality (c) stem from (47)
and (46), respectively; besides, the inequality (b) is obtained
by exploiting the fact that ATOM1 and ATOM2 globally solve
the corresponding convex surrogate optimization problem.
Therefore, (48) implies that the sequence of objective value
of Problem (16) generated by the proposed algorithms is
monotonically decreasing, i.e.,

l(E0) ≥ l(E1) ≥ l(E2) ≥ · · · (49)

Next, let us denote by Z a cluster point to {Et} and let {Ert
}

be a subsequence of {Et} converging to Z. Then, from (46),
(47), and (49)

h
(
Ert+1 |Ert+1

)
= l
(
Etj+1

)
≤ l (Ert+1)

≤ h (Ert+1|Ert
) ≤ h (E|Ert

) ,∀ feasible E. (50)

Thus, letting t →∞

h(Z|Z) ≤ h(E|Z), (51)

which implies that h′(Z|Z; D) ≥ 0, for any feasible direction
D from any feasible Z, where h′(G|Z; D) denotes the
directional derivative in a feasible direction D from G of the
surrogate function at point Z. Finally, by Proposition 1 in [36],
the surrogate function h(E|Z) and the objective function
l(E) have the same first order behavior at E = Z since
both of them are differentiable at any feasible E. Therefore,
h′(Z|Z; D) ≥ 0 implies that l′(Z; D) ≥ 0. Hence, Z is a
stationary point of the objective function l(E).

C. CRB of Banded Toeplitz and TBT Covariance Model

Herein, the CRB of Banded Toeplitz and TBT covariance
model are provided.

1) Banded Toeplitz Matrix: In the case of banded
Toeplitz matrix with bandwidth b, the first row of the
covariance matrix R ∈ Hm×m has only b + 1 non-
zero terms. Therefore, R can be parameterized via
θ = [r1,ℜ(r2), · · · ℜ(rb+1),ℑ(r2), . . . ,ℑ(rb+1)]T ∈ R2b+1.
Besides R can be expressed in terms of basis matrices BToep

g

and real coefficients θ

R =
b+1∑
g=1

θgℜ(BToep
g ) + j

2b+1∑
g=b+2

θgℑ(BToep
g−b ) (52)

and consequently

∂R
∂θi

=

{
ℜ(BToep

i ) 1 ≤ i ≤ b + 1
jℑ(BToep

i−b ) b + 2 ≤ i ≤ 2b + 1
.

Substituting ∂R
∂θi

in (34), yields the FIM for banded Toeplitz
covariance matrix.
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2) Toeplitz-Block-Toeplitz Matrix: Before proceeding fur-
ther, it is worth noting that a TBT matrix composed of p
blocks of size l can be parameterized by the vector θ =
[θT

0 , θT
1 , . . . ,θT

P−1]
T ∈ R2l−1+(p−1)(4l−2) whereby

θ0 = [r0,1,ℜ(r0,2), . . . ,ℜ(r0,l),ℑ(r0,2), . . . ,ℑ(r0,l)]T ∈
R2l−1 and θp = [ℜ(rp,1), . . . ,ℜ(rp,l),ℑ(rp,1), . . . ,ℑ(rp,l),
ℜ(cp,2), . . . ,ℜ(rp,l),ℑ(rp,2), . . . ,ℑ(rp,l)]T ∈ R4l−2, p =
1, . . . , P −1, with rp,n and cp,n the n-th row and n-th column
of Rp, respectively. Indeed, the TBT covariance matrix can be
expressed as

RTBT = C0 ⊗R0 +
p−1∑
w=1

((
Cw ⊗RH

w

)
+
(
CT

w ⊗Rw

))
,

(53)

where

R0 =
l∑

g=1

θ0,gℜ(BToep
g ) + j

2l−1∑
g=l+1

θ0,gℑ(BToep
g−l+1) (54)

and, for w = 1, . . . , p− 1,

Rw =
l∑

g=1

[θw,g + jθw,g+l]ℜ(Dg)

+
3l−1∑

g=2l+1

[θw,g + jθw,g+l−1]ℑ(Dg−2l+1) (55)

with θw,g the g-th element of θw, Dg = BToep
g as long as

g = 1 and 1/2((BToep
g )T + j(BToep

g )T ) elsewhere, whereas
the (i, k)th element of the matrix Cw ∈ Rl×l is given by

[Cw]i,k =

{
1 i− k = w

0 otherwise
.

That said, ∂RTBT

∂θw,g
is given by

∂RTBT

∂θw,g

=



C0 ⊗ℜ(BToep
g ) 1 ≤ g ≤ l, w = 0

C0 ⊗ jℑ(BToep
g−l+1) l + 1 ≤ g ≤ 2l − 1, w = 0

Cw ⊗ℜ(Dg)T

+CT
w ⊗ℜ(Dg) 1 ≤ g ≤ l, w > 0

Cw ⊗ (−j)ℜ(Dg−l)T

+CT
w ⊗ jℜ(Dg−l) l + 1 ≤ g ≤ 2l, w > 0

Cw ⊗ℑ(Dg−2l+1)T

+CT
w ⊗ℑ(Dg−2l+1) 2l+1≤g≤3l − 1, w > 0

Cw ⊗ (−j)ℑ(Dg−3l+2)T

+CT
w ⊗ jℑ(Dg−3l+2) 3l ≤ g ≤ 4l − 2, w > 0

which, employed in (34), yields the FIM for TBT covariance
matrix.
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