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Abstract— This article deals with the stochastic reso-
nance (SR) phenomenon experimentally observed in HfO2-
based memristors. The SR impact on the binary spike
time-dependent plasticity (STDP) protocol at the device
level was investigated. We demonstrate that the two
extreme conductance states of the device that represent
the synaptic weights in neuromorphic systems can be bet-
ter distinguished with the incorporation of Gaussian noise
into the bias signal. This technique allows setting the mem-
ristor conductance which is directly related to the overlap
between the pre- and postsynaptic pulses. The study is
reproduced in the LTSPICE simulator using the dynamic
memdiode model (DMM) for memristors.

Index Terms— Memristor, resistive random access mem-
ory (RRAM), spike time-dependent plasticity (STDP),
stochastic resonance (SR).

I. INTRODUCTION

THE scientific community and microelectronics industry
are highly interested in novel and emerging technologies

for RAM memory devices [1], [2]. In this regard, memristors
have exceptional properties, including low power consump-
tion and high integration capacity among others. Memristor’s
conductance can be changed when exposed to a suitable
biasing scheme. When bias disappears, memristor’s conduc-
tance is maintained in a nonvolatile fashion. This makes the
memristor a very promising device to be used in a huge
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range of applications, such as data storage, unconventional
computing methods, artificial neural networks (ANNs), and
cryptography [3], [4], [5], [6]. Memristors present nonlinear
current-voltage characteristics and nonlinear dynamical behav-
ior enabling the utilization of properties linked with nonlinear
systems. Despite the noise in electronics is considered as
a major drawback and commonly needs to be eliminated,
in nonlinear systems it can play a favorable role, such as
enhancing the device performance or, in the particular case
of memristors, modifying the switching phenomenon. This
phenomenon is often referred to as stochastic resonance (SR)
and it has been observed in several research fields including
biology, physics, and engineering [7], [8], [9], [10]. A detailed
description of the well-known SR phenomenon is reported
in [11]. SR occurs in nonlinear devices whose characteristic
curves present thresholds, like occurs in memristors. From the
literature, some works have considered noise as a beneficial
element in these devices. For instance, in [12] the impact
of additive noise in memristors was investigated using a
physical model of a memory resistor. A different SR modeling
for manganite-based memristors is presented in [13], which
reports good concurrence between theory and measurements.
An experimental investigation was conducted in [14], where
memristors were exposed to sinusoidal signals with added
noise to examine SR. In [15], a study of the effect of
the SR in the resistance ratio of HfO2-based memristors is
discussed. In [16], a noisy signal was applied to zirconium and
tantalum pentoxide-based memristors. The analysis from both
experimental and theoretical viewpoints and the constructive
role of noise in these samples is reported. In addition, SR in
2-D materials-based memristors is analyzed in [17].

The use of memristor-based ANNs has gained increasing
importance in recent years due to their potential to implement
efficient and low-power computing architectures [18]. In neu-
romorphic systems, the aim consists in reproducing brain
performance. In this sense, spike-timing-dependent plasticity
(STDP), which is a learning approach inspired by biology,
it is widely accepted in the scientific community as a way to
describe the brain synapse when implemented with resistive
random access memory (RRAM) devices [19]. The STDP pro-
cess updates the synaptic weight and direction as a function of
the time difference or delays between the pre- and postsynaptic
spikes [20], [21]. In the specific case of the memristor-based

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1613-6784
https://orcid.org/0000-0002-4565-6703
https://orcid.org/0000-0003-0470-5318
https://orcid.org/0000-0001-5938-5898
https://orcid.org/0000-0003-1625-1472
https://orcid.org/0000-0002-2367-5567
https://orcid.org/0000-0001-8240-484X
https://orcid.org/0000-0003-4618-651X
https://orcid.org/0000-0002-9549-2890


5762 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024

Fig. 1. (a) Device structure and (b) example of a current-voltage
characteristic of the memristors studied in this work. (c) Memristor
schematics presenting the applied pulses (pre- and postsynaptic) at
the top and bottom electrodes, respectively. (d) Initial situation of the
applied pre- and postsynaptic pulses (no overlap) is represented with
continuous lines. Different situations with delay of the postsynaptic pulse
are presented in dash lines.

binary STDP, the resistive switching process is essential for the
achievement of the two different states: ON and OFF, which
correspond to the memristor low resistance (LRS) and high
resistance (HRS) states, respectively [22], [23] (Fig. 1).

Even though ANNs are assumed to work with no noise
or spike jitter, neurobiological systems are known to operate
in noisy environments. Thus, noise can tune the activation
threshold of neurons, enhancing the response of nonlinear
circuits. Anderson et al. [24] reported that noise produced in
the visual cortex facilitates the perception of the optical signal.
In [25], an increase in neuron sensitivity efficiency is reported,
ascribing it to the SR effect.

The aim of this work is to experimentally study in detail
the role of noise in the binary STDP implemented with HfO2-
based memristors, considering the set, reset, and complete set-
reset processes, extending our preliminary work in [26] where
only the set process was addressed. In this case, an improve-
ment of the STDP protocol was observed when noise was
added under different circumstances considering noise in both
memristive state transitions separately and jointly. Moreover,
after this analysis, we show that the study of the constructive
role of noise in the binary STDP can be reproduced using the
LTSPICE simulator with the help of the dynamic memdiode
model (DMM) [27], [28]. The external signals with noise were
applied to the device and the simulation results were compared
with the experimental data.

II. NOISE-INDUCED BINARY STDP
This section focuses on the SR effect on memristor-based

binary STDP learning rule implementation. The devices used
in our study are metal-insulator-metal (MIM) structures con-
sisting of TiN-Ti-HfO2-W layers, as shown in Fig. 1(a). These
devices were fabricated on silicon. The HfO2 layer was
deposited via atomic layer deposition (ALD). A 50 nm-W
layer acts as the bottom electrode and a 200 nm-TiN layer
over a 20 nm-Ti layer acts as oxygen-gettering material (top
electrode). The Al layer at the wafer bottom performs as
the bottom contact of the memristors in the wafer. The used
devices are square cells with an active area of 5 × 5 µm2. For

more information regarding the fabrication process visit [29].
The semiconductor parameter analyzer (SPA) Agilent 4156C
was utilized to carry out measurements. The experiments were
programmed and launched in MATLAB. Fig. 1(b) represents
the typical I –V characteristics after the electroforming event
(using a 1 mA current limitation) for the memristors analyzed
in this section [30]. Now, the voltage sweeps were from 0 to
0.7 V, 0.7 to −1.3 V, and −1.3 to 0 V. The current was
also read simultaneously to the voltage application. During
measurements, the current limitation was fixed to 25 mA to
avoid any eventual irreversible breakdown of the dielectric
film.

In the analysis of the external noise impact on binary STDP,
when no noise is applied, the memristor state is ensured
not to change. However, the application of noise allows the
memristor to switch, activating the set and/or reset processes.

We study binary STDP via the SR phenomenon follow-
ing three different approaches: 1) activating the set process;
2) activating the reset process; and 3) activating both set and
reset processes simultaneously.

To provoke binary STDP, the memristors were subjected
to set and reset pulses to reach ON and OFF states, respec-
tively. First, all the set and reset pulses are formed from a
pre-synaptic pulse (Vpre) applied to the top electrode of the
device and a postsynaptic pulse (Vpost) applied to the bottom
electrode. The resultant voltage drop at the memristor reads:
Vtot = Vpre − Vpost as illustrated in Fig. 1(c). The width of the
pre- and postsynaptic pulses was always 150 ms. In addition,
we consider two different types of set and reset pulses: fixed
and variable. The fixed ones consist of a constant pulse with a
voltage amplitude high enough to ensure the memristor state
transition. The more complicated variable pulses follow an
adaptive pulsewidth scheme that is detailed in the following
sections. Depending on each investigated case, the set and
reset pulses can be fixed or variable, and with or without noise
addition. After completing every transition pulse (set or reset),
the memristor conductance state was determined by means of a
read voltage pulse, Vread, of 150 ms duration applied to the top
electrode of the device and grounding the bottom one. In our
case Vread = −0.5 V to ensure a clear separation between HRS
and LRS. The complete sequence of applied signals will be
presented in the corresponding section.

A fresh device was used for each experiment (one for
measuring without noise and one for the noisy measure-
ment). The added noise, for all the different considered test
conditions, was Gaussian (σnoise = 150 mV), which was
found to be the suitable value for the SR observation in
these samples, after analyzing different values. The resis-
tance ratio is calculated as follows: Rratio = (RReset/RSet) =

((VRead/IReset)/(VRead/ISet)) = (ISet/IReset), where ISet and
IReset consist of the registered currents during the read pulse
after the set and reset pulses, respectively. The following sec-
tions summarize the information about the complete applied
signal and the results corresponding to the three different tests.

A. Set Process Activation
In this first approach, the focus is to improve the binary

STDP with the addition of Gaussian noise to the pulse that
provokes the set transition. We ensure that the memristor
remains in the HRS state by selecting appropriate amplitudes
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Fig. 2. Total set voltage, Vtot, (black line) and pre- and postsynaptic
pulses (blue and orange lines) for three different overlap cases (a) no
overlap, (b) intermediate, and (c) complete.

for the pre- and postsynaptic pulses without external noise.
For this reason, we selected a set voltage, Vtot = Vset, slightly
below the voltage required to activate the set transition. This
ensures that once the noise is added, there is a probability of
overcoming the set threshold voltage. In this study, we set the
maximum voltage to Vset = Vtot = 0.35 V.

To induce a change from LRS to HRS, we generate a reset
pulse by applying −0.5 V at the top electrode and 0.5 V at
the bottom electrode. Thus, the reset pulse consists of Vreset =

Vtot = −1 V during 150 ms.
However, generating the set pulse, Vset, is more challeng-

ing because the postsynaptic pulse must allow for adaptive
time-shifting to generate different overlap situations between
the pre- and the postsynaptic pulses. This overlap induces the
maximum value of Vset to have different values. In Fig. 1(d),
the initial situation of the pre- and postsynaptic pulses is
illustrated. Notice that there is no delay between pulses. The
dashed lines in the figure represent the successive delays of
the postsynaptic pulse.

For a better understanding, we describe the details of a
variable set pulse generation. The duration of the set pulse
at a maximum voltage (0.35 V) starts at 0 ms, goes up to
150 ms and drops back to 0 ms following 15 ms steps. Fig. 2
illustrates three cases for a variable set process: (a) the pre-
and postsynaptic pulses are not overlapped producing a 300 ms
pulse of Vset = V tot = 0.175 V; (b) a partial overlap situation
that generates a three-level voltage pulse. In this situation, the
maximum Vset = Vtot = 0.35 V was during approx. 60 ms;
and (c) a complete pulses overlap, where Vset = Vtot = 0.35 V
pulse that lasts 150 ms [26].

In Fig. 3(a), the complete measurement sequence for this
first approach is reported. In every postsynaptic pulse delay
(1t), the sequence is cycled 20× to allow for statistical
analysis. At the beginning of the measurement sequence, the
pre- and postsynaptic pulses do not overlap, and the 20 cycles
are performed. The postsynaptic pulse is then delayed 15 ms,
and again the 20 cycles are executed. This process is repeated
for each shift. 1t = n × 15 ms, where n starts at 0 and
grows until 21. Focusing again on Fig. 2(a) presents the initial
situation where n = 0. As 1t increases, the overlap grows until

Fig. 3. Set process activated via noise addition. (a) Complete applied
signal for this study during one cycle. The maximum value timespan
of Vset pulse varies every 20 cycles. The current during the 20 cycles
for each ∆t and mean current evaluated after a set transition, in orange,
and after a reset in blue is presented in (b) for the measurements without
noise and in (c) including noise (σ = 150 mV). (d) Mean value of Rratio
against ∆t is presented. For the measurements without including noise,
in blue, and with noise, in orange.

a maximum situation in (c) for n = 11. After the maximum
overlap situation, n keeps growing until there is no overlap
again, for n = 21.

The currents for the 20 cycles after each set and reset
processes in all the previously mentioned iterations are illus-
trated in Fig. 3(b) and (c) against 1t for experiments with-
out considering noise and including it, respectively. Orange
symbols represent the read currents after a set transition and
the blue ones after a reset transition. In addition, in the
figures, the mean value of the read current is shown with a
solid line of the same color as the respective symbols. The
comparison of both figures reveals that noise addition is crucial
in identifying resistive states. Without noise, there is no state
separation [see Fig. 3(b)]. However, with noise addition, both
ON and OFF states are clearly distinguished because the set
transition is enhanced. This state separation is proportional
to the overlap between pre- and postsynaptic pulses. It is
important to highlight that the maximum overlap situation is
shown at 1t = 150 ms. Fig. 3(d) displays the mean resistance
ratio as a function of 1t for the measurements without (in
blue) and with noise (in orange). The dashed gray line in
Fig. 3(d) represents the overlap as a function of 1t , which
supports the analysis reported in Fig. 3(b) and (c). about the
proportionality between pre- and postsynaptic pulses overlap
and the Rratio. In conclusion, the addition of noise to the set
transition improves the Rratio.
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B. Reset Process Activation
This section presents the opposite situation to the previous

approach. Set pulses are fixed while reset pulses are variable.
Now, it is the reset process the one intended to be activated via
noise addition. Hence, the applied voltages have the opposite
sign with respect to case A. The set pulse maximum voltage
is fixed to a voltage high enough to ensure the transition to
the LRS. Now, the pre- and postsynaptic pulses consist of
0.3 and −0.3 V pulses, respectively, resulting in a 150 ms
pulse of Vset = Vtot = 0.6 V, which is the same in all cycles
and iterations. However, the complexity appears now in the
reset voltage, but the methodology used for its generation is
the same as that considered in the previous section resulting,
in this case, in a negative voltage pulse with a maximum value
Vreset = Vtot = −0.55 V. This value is below the voltage
required to activate the reset process. The noise intensity is
the same as in the previous section (σnoise = 150 mV). Here,
the delay is in the postsynaptic pulse for the reset process,
generating a different overlap condition every 20 identical
cycles. In this section, the noise is applied during the reset
process.

As reported in the previous section, Fig. 4(a) shows one
cycle of the applied signal for this reset process activation,
where the set process is a fixed pulse and the reset pulse
is variable, changing every 20 cycles, as mentioned above.
Fig. 4(b) illustrates an example of a medium overlap situation
between the pre- and postsynaptic pulses to form the reset
pulses in this section and highlights the resulting voltage val-
ues. Fig. 4(c) and (d) shows the currents measured after every
transition and cycle as a function of 1t for the experiments
without and with noise, respectively. Again, the noise allows
the device to switch, but in this case from LRS to HRS with
a switching probability proportional to the overlap. This trend
is confirmed by the results shown in Fig. 4(e), where the
Rratio of the two different situations (with and without noise
inclusion) is shown as a function of the postsynaptic pulse
delay. The figure includes the dashed gray line showing the
overlap evolution as a function of the delay as well. Once it is
demonstrated that both set and reset processes can be activated
separately with the addition of noise, the key part of this work
is to combine both activations simultaneously. This study is
presented in the following section.

C. Complete Switching Activation
In this section, the combination of the two previous studies

is presented. This is the most realistic situation where a system
is always driven by a noisy signal. Hence, both set and reset
processes will be under noise influence. The applied voltages
are Vset = Vtot = 0.38 V and Vreset = Vtot = −0.58 V. Both
values are not sufficient to activate the switching. The same
noise (σnoise = 150 mV) was applied. The slight set and reset
voltage value differences with respect to the previous sections
are a consequence of the inherent device-to-device (D2D) vari-
ability. These particular values were selected so as to achieve
an initial condition as similar as possible for all the experi-
ments. From the results in several devices (∼25), we identified
the optimal voltage ranges to be: Vset from 0.35 to 0.4 V and
Vreset from −0.55 to 0.6 V. In the same line as in the previous
sections, Fig. 5 summarizes the experimental study carried out.
Fig. 5(a) illustrates the applied voltage signal where both set

Fig. 4. Reset process activated via noise addition. (a) Complete
applied signal for this study during one cycle. (b) Medium overlap
situation between the pre- and postsynaptic pulses to build the variable
reset pulse. The maximum value timespan of Vset pulse varies every
20 cycles. The current during the 20 cycles for each ∆t and mean
current evaluated after a reset transition, in orange, and after a reset
in blue is presented in (c) for the measurements without noise and in
(d) including noise (σ = 150 mV). (e) Mean value of Rratio against ∆t is
presented. For the measurements without including noise, in blue, and
with noise, in orange.

and reset durations are variable. A key point for the set and
reset pulses timing in this section is that the evolution of the
pre- and postsynaptic pulses duration is synchronized. This
means that the timespan of the maximum value in both set
and reset pulses is the same (i.e., the same overlap), for all
the cycles. Fig. 5(b) and (c) presents the measured current after
every set and reset transition against 1t for the experiments
without noise and including it, respectively. The added noise
enables both transitions simultaneously. In this section, the
overlap between pre- and postsynaptic pulses evolves equally
in both set and reset transitions.

It is worth mentioning that there are differences in the
resistance ratio values obtained with the three approaches
[see Figs. 3(d), 4(e), and 5(d)] described above. In the first
approach, where the set process is activated by noise, the
maximum resistance ratio value is approximately equal to 20.
In the second approach, where the reset process is activated,
the maximum value is around 3.5, and in the third approach,
with both transitions activated, the maximum value is 9. The
resistance ratio differences observed in the three sections
can be ascribed to the widely known intrinsic memristor
variability, the selection of noise sigma, and the voltage
values for the constant pulses for reset and set transitions in
Sections II-A and II-B, respectively. The predominant factor
is the different abruptness of the set and reset processes in the
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Fig. 5. Set and reset processes activated via noise. (a) Presents the
complete applied signal during one cycle. The duration of the maximum
values of Vset and Vreset is the same. The current during the 20 cycles
for each ∆t and mean current evaluated after a set transition, in orange,
and after a reset in blue is presented in (b) for the measurements without
noise and in (c) including noise (σ = 150 mV). (d) Mean value of Rratio
against ∆t is presented. For the measurements without including noise,
in blue, and with noise, in orange.

used memristors. Regarding the last issue, in the I –V curve
shown in Fig. 1(b), the set process is notably more abrupt than
the reset process, which is gradual. Hence, the noise activation
of the set (Section II-A) allows an HRS ratio after a complete
reset process. However, for Section II-B, the resistance ratio
values are lower because of the progressiveness of the reset
process; therefore, noise does not allow a large resistance state
change during this process.

In this section, a comprehensive investigation into the SR
effect within neuromorphic systems utilizing memristors was
presented. The study highlighted the positive impact of noise
on the binary STDP protocol. Through the strategic intro-
duction of noise in either the set pulse, reset pulse, or both
simultaneously, we demonstrated the switching activation. The
experiments detailed in this study were replicated using other
devices from the same wafer to verify the consistency and
reproducibility of the results.

III. SIMULATING STDP ACTIVATION VIA SR
As part of this study, we report in what follows simulation

results using the LTSPICE simulator. The goal is to reproduce
the same input signal used for the third and more complex
approach presented and to analyze the response of the mem-
ristor provided by the considered model. For the simulations,
we have used the DMM [27], [28] for RRAM devices, which
has demonstrated high versatility for a wide variety of input
signals [31], [32]. In this work, the model will be tested

Fig. 6. (a) Comparison of the experimental (gray) and fit (red) I–V
characteristics. (b) LTSPICE circuit schematics used to simulate STDP
activation via SR. (c) Simulated current during the 20 cycles for each ∆t
and mean current evaluated after a set transition, in orange, and after
a reset transition in blue including noise obtained using the LTSPICE
simulator and the DMM model. (d) Experimental (gray) and simulated
(red) resistance ratio against ∆t showing a good agreement between
both curves.

with complex and noisy signals. The DMM is implemented
in LTSPICE, and it basically consists of two main equations,
one for the current-voltage characteristic and another for the
memristor memory state. Detailed information about the model
and applications can be found in [27] and [28].

Before the simulations, setting the model parameters is a
necessary step. The procedure consisted of selecting the model
parameters that reproduce the behavior of the devices used in
this work, which are obtained by fitting the experimental data
to the model equations. The result of this fitting process is
shown in Fig. 6(a), where the I –V curves corresponding to
ten experimental cycles (in gray) are compared to a simulated
curve (in red). In addition, Fig. 6(b) presents the schematics of
the LTSPICE circuit used for the simulations containing four
voltage sources: the pre- and postsynaptic pulses (Vpre and
Vpost), and the noise sources for the set and reset processes
(SetVn and ResetVn, respectively).

The complex signals were generated in LTSPICE using
the piecewise linear (PWL) function, where time and volt-
age can be programmed point by point, while the white
Gaussian noise signal is added externally. Once the pulsed
signals are generated, the noise is included in the transitions,
the simulations run, and the results are externally compiled
and analyzed in MATLAB. The results reported in Fig. 6(c)
(symbols) show the reading current after every set (in orange)
and reset (in blue) transitions versus the 1t for a simulation
including noise. The continuous line corresponds to the mean
value of the LTSPICE simulation. The HRS and LRS reading
current values and dependence on the postsynaptic pulse delay
obtained through simulation show that the model is able to
reproduce the experimental behavior. Fig. 6(d) compares the
experimental and simulated resistance ratio against 1t . The
simulations demonstrate the binary STDP protocol can be
activated through external noise addition in LTSPICE, showing
a good agreement between experimental and simulated results.
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IV. CONCLUSION

In this work, the beneficial effect of the addition of an
external noise source to the base signal in the performance
of HfO2-based memristors was experimentally demonstrated.
We reported a complete experimental study of the SR in
STDP protocol implemented with memristors, showing the
beneficial role of additive noise on the binary STDP protocol.
Our study analyzes the SR phenomenon in a scenario where
the memristor’s HRS and LRS were not distinguishable.
Nevertheless, we have demonstrated that by including noise
to the set pulse, reset pulse, or both pulses simultaneously,
the resistive switching was activated. The slight impact of
the D2D variability forces to definition of a narrow range of
input signals for the set and reset transitions activation. The
results unveiled the impact of noise was different for the set
and reset transitions, being more evident for the set transition.
This effect was attributed to memristor variability, noise sigma,
selected set, and reset voltage values and to the abruptness of
the set event compared with the more gradual reset event.
We assessed the positive impact of noise by examining the
relationship between the resistance ratio and the duration
of the highest value of the noise-triggered transition pulse.
Our findings showed that as the duration of the maximum
noise-activated transitions (set, reset, or both) increases, the
resistance ratio also increases, the case where both (set and
reset) transitions were noise-activated was simulated using the
DMM in LTSPICE. The obtained results well reproduce the
experimental observations. The presented results are promising
and offer a potential avenue for further exploration of the SR
phenomenon in more complex neuromorphic systems. This
includes using multiple memristors for experimental analysis
and simulation of ANNs.
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