
IEEE TRANSACTIONS ON EDUCATION 1

Sucre4Stem: A K-12 Educational Tool for
Integrating Computational Thinking and

Programming Across Multidisciplinary Disciplines
Sergio Trilles , Aida Monfort-Muriach, Enrique Cueto-Rubio, Carmen López-Girona , and Carlos Granell

Abstract—This article discusses the latest developments of the
Sucre4Stem tool, as part of the Sucre initiative, which aims to pro-
mote interest in computational thinking and programming skills
in K-12 students. The tool follows the Internet of Things approach
and consists of two prominent components: 1) SucreCore and
2) SucreCode. SucreCore incorporates an advanced microcon-
troller packaged in a more compact design and enables wireless
connectivity. SucreCode, the block-based visual programming
tool, supports two different sets of blocks depending on the
education grade, and facilitates wireless communication with
SucreCore. At the educational level, Sucre4Stem fosters new group
dynamics and encourages students to experiment real-world
projects by promoting the “programming to learn” approach to
concepts from other disciplines as opposed to the strategy widely
applied in schools of “learning to program” in isolation.

Index Terms—Computational thinking, Internet of Things
(IoT), K-12, multidisciplinary disciplines, programming
promotion.

I. INTRODUCTION

WHEN observing today’s younger generations, it is
evident that Information Technology (IT) and mobile

devices play a significant role in their daily lives. IT is
everywhere, in and out of school. Indeed, computer science
pioneers predicted that IT and programming will become even
more pervasive in the future, serving as a universal means
in both professional and personal settings [1]. Central to this
vision is the concept of computational thinking, which is gen-
erally about “thinking” as a computer scientist or information
technologist would [2]. Moreover, this way of “thinking”
involves skills and competencies that provide benefits beyond
the field of computing [3]. In short, computational thinking
involves breaking down complex problems into smaller, more
intellectually manageable parts and using logical reasoning

Manuscript received 14 July 2023; revised 31 January 2024; accepted
27 June 2024. This work was supported by the Research Promotion
Plan of the Universitat Jaume I under Grant UJI-B2022-64. The work of
Sergio Trilles was supported in part by the Juan de la Cierva—Incorporación
Postdoctoral Programme of the Ministerio de Ciencia e Innovación—Spanish
Government under Grant IJC2018-035017-I funded by MCIN/AEI/10.13039/
501100011033; in part by the “ERDF, a way of making Europe”; and in part
by the European Union. The work of Enrique Cueto-Rubio was supported in
part by the “Programa Yo Investigo” under Grant INVEST/2022/424 funded
by the Generalitat Valenciana government, Spain, and in part by the European
Union, NextGeneration EU. (Corresponding author: Sergio Trilles.)

The authors are with the Insitute of New Imaging Technologies, Universitat
Jaume I, 12071 Castellón de la Plana, Spain (e-mail: strilles@uji.es).

Digital Object Identifier 10.1109/TE.2024.3422666

and problem-solving techniques to solve them. It also involves
recognising problem and solution patterns and using them
to create computational algorithms and programs. Here, the
term computational algorithm is vital to clearly highlight
a key aspect of computational thinking; Denning [4], [5]
emphasised that an algorithm is a series of steps that control
an abstract machine that implement a computational model
without human intervention. Computational algorithms are
then designed to be executed partially or completely by a
computing machine. Therefore, as Denning proposed, compu-
tational thinking also includes “designing the computational
model, not just the steps to control it” [5, p. 33]. By developing
these skills and patterns in K-12 education [6], preuniversity
students can become better prepared for the challenges of
university-level courses and beyond; these skills can thus be
applied to various professions, such as engineering, mathemat-
ics, economics, architecture, journalism, to name a few, and
be crucial in preparing the next generation of professionals for
the unpredictable challenges they may face in their careers.

After a decade of implementing policies and actions to
incorporate computer literacy and computational thinking into
national educational curricula in many countries around the
world [7], the expected impact and benefits of introducing
computational thinking in schools do not make yet the above
vision a reality. Although there are different strategies to
deploy computational thinking education in schools, such as
coding and programming, robotics [8], [9], games and puz-
zles, “the boundary between programming and computational
thinking is somewhat blurry” [10, p. 30] when it comes to
teaching and assessing computational thinking in practice.
Programming is not always required to acquire computational
literacy [11], but it facilitates its acquisition because it is the
most visible part of computational thinking. As a result, com-
putational thinking and programming are in practice largely
considered overlapping terms in education [10].

Some critical voices try to demystify that widely accepted
unique relationship between programming and computational
thinking. For example, Guzdial et al. [12] conveyed the idea
of integrating computing and computational thinking into
other fields, rather than teaching it in isolation in computing
courses. Similarly, Tissenbaum and Ottenbreit-Leftwich [13]
envisioned the future of computer science education for
K-12 students as a way “to understand computer science
beyond simple learning to code.” [p. 42]. They reinforce the
idea of considering computer science more than just coding

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-9304-0719
https://orcid.org/0009-0002-5324-3738
https://orcid.org/0000-0003-1004-9695

2 IEEE TRANSACTIONS ON EDUCATION

“to be integrated into a range of other disciplines rather
than just a stand-alone subject” [13, p. 43]. Repenning and
Basawapatna [10] aptly summarised this argument with the
change from learning to program to programming to learn.
While the former equates programming with computer science
education and it is easily adopted and implemented in schools
(i.e., teaching programming skills and concepts using, for
instance, Scratch [14]), the latter pursues the ultimate goal
of computational thinking seen as an “instrument of thought
to understand powerful ideas in typical K-12 disciplines
truly” [10, p. 30], which is very in line with the idea of
“computational fluency” [15]. For example, versatile tools like
BBC:Micro Bit [16] help students explore and experiment with
multidisciplinary projects well beyond teaching them only spe-
cific computing concepts [17]. On the downside, this vision,
programming to learn, “has not yet achieved a systemic impact
in schools because it requires understanding how to mean-
ingfully connect computer science and computational thinking
with other disciplines” [10, p. 31]. Although attractive, the
vision of programming to learn still represents an enormous
challenge for K-12 educators and teachers. The Sucre initiative
that we present here contributes precisely to the vision of
programming to learn to support pre-university students to
understand and explore concepts in other disciplines through
computational thinking and programming.

The Sucre initiative (Sense yoUr Context and REact,
www.programasucre.com) aimed to promote computational
thinking as a problem-solving tool through the use of com-
putational algorithms and programming together with sensors
and actuators, encouraging the interest and curiosity of pre-
university students in STEM disciplines (science, technology,
engineering, and mathematics), and promoting their scientific
vocation and commitment to science [18], [19], [20]. The
initiative was built around four key pillars, including electronic
devices capable of sensing or measuring the environment
along with the maker movement (“do it yourself”) [21],
computational thinking skills and competencies (such as logic,
abstraction, decomposition, creativity, evaluation, generaliza-
tion, and design of computational algorithms), communication
and collaboration between groups based on projects, and the
scientific method. Another defining aspect behind Sucre was
to democratise educational technologies by breaking barri-
ers to access learning resources for computational thinking
for socioeconomically disadvantaged schools. Sucre provides
teachers and students with digital resources (e.g., online mate-
rials, videos, and tools) and physical resources (e.g., sensors
and microcontrollers) that can be applied in the classroom so
that students acquire computational thinking skills and know
the principles of the scientific method.

Since this inception in 2016, the Sucre initiative has under-
gone significant changes, resulting in two complementary tools
–Sucre4Kids and Sucre4Stem– that serve different educational
stages and learning needs. Sucre4Kids is aimed at school chil-
dren aged 5–10 years, covering the last year of preschool and
the first four years of primary school. Sucre4Stem is designed
for secondary school students (10–16) as well as intermediate
vocational education and training (VET) courses. The bound-
ary between Sucre4Kids and Sucre4Stem is somewhat blurry,

especially for students in the last two years of primary school
(10–12 years old), who can explore the advanced features of
Sucre4Kids while simultaneously engaging with the basics of
Sucre4Stem.

Our focus here is on the Sucre4Stem tool. To describe its
design principles and technical features, and, most importantly,
how Sucre4Stem can serve as a tool to realise the vision of
programming to learn. So teachers and students can design and
develop collaborative projects that bridge the K-12 disciplines
through computational thinking and programming. In what
follows, we briefly review the evolution of Sucre up to the
present day, and then delve into the technical building blocks
of the Sucre4Stem tool. Subsequently, we discuss a series of
interventions among researchers and teachers to encourage the
use of Sucre4Stem as a tool to promote computational thinking
and programming for learning multidisciplinary concepts.

II. OVERVIEW OF Sucre

When designing educational activities, it is essential to
consider how individuals learn. Over time, various educational
theories have been developed to explore and understand
how people learn best in different contexts. A theory that
interests us specially is constructionism, which emphasises the
importance of creation and experimentation in the learning
process [22]. Constructionism suggests that students learn best
when they actively construct or explore real-world objects,
especially if they are meaningful to them. By tapping into
their interests and passions, students are more likely to enjoy
and be motivated by the learning process. At Sucre, our initial
goal was to design a tool to encourage students to learn by
doing through experimental and participatory sessions [23]
that fostered critical thinking, collective work, and social
interaction. By creating important projects for students, they
can develop a greater interest and passion for learning coding
and computational concepts [15], [24].

Already in the preliminary prototypes developed in the
realm of the Sucre initiative [25], we considered tangible
computing to spark student interest in programming and
computing concepts. Relevant initiatives in the market at that
time, such as Cubelets1 or LittleBits2 prioritised the tangible
aspect of programming by allowing students to touch and
connect with sensing technology to code. Sucre also uses
microcontrollers and electronic components to develop compu-
tational projects that prioritise tangible interaction. Indeed, the
initial approach consisted of a convenient briefcase containing
various electronic components (Fig. 1), paired with a visual
block-based programming tool [20]. The briefcase contained
all the necessary elements to replicate the minimum operation
of a computer: a core and input/output devices. The core
was an Arduino UNO mounted on a shield called Grove that
simplified the connection of I/O devices to the core. The
sensors served as input devices, while the actuators as output
devices. The briefcase included four sensors for measuring
air and soil humidity, sound, light, and proximity, as well
as two actuators, a multicolored LED, and an LED bar. It

1https://modrobotics.com
2https://bit.ly/3CRwa9L

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRILLES et al.: Sucre4Stem: A K-12 EDUCATIONAL TOOL 3

Fig. 1. Screenshot of the first version of the Sucre briefcase (2016–2017).

also had four badges with specific roles for students to assign
for collaborative projects, nine informative cards about the
included sensors and actuators, and a type-B USB cable.

In the course of development, several activities were carried
out to improve the methodology, target audience, and char-
acteristics of the prototype being developed, reaching almost
400 high school students per year (see details in [18] and [20]).
Due to a recent change in the education law in Spain [26],
in which computational thinking is an integral part of the
educational curricula, we have recently held training sessions
for teachers to jointly explore the concept of computational
thinking to take advantage of the Sucre initiative as a tool for
programming to learn, as we describe in Section V.

Based on the experience gained with past interventions,
along with the advancement of IT, efforts were made to tailor
the solution to different educational levels. It is important to
keep in mind that programming concepts cannot be taught the
same way to infant, primary, and secondary school students.
Effective communication that is adapted to the audience is
crucial when introducing technical concepts. In this sense,
Mercer-Mapstone and Kuchel [27] identified essential aspects
to consider to convey scientific concepts to a nonscien-
tific audience effectively. These include understanding the
audience’s prior knowledge about the subject, distinguishing
between essential and nonessential concepts, using appropriate
language and communication methods, and considering the
social, cultural, and physical context of the activity. The format
of an intervention is also significantly influenced by the daily
work and environment of a nursery/primary classroom. This
often involves working without screens, arranging groups at
shared tables, using cards to develop literacy and recognise
phonemes and letters, and using sensory and tangible learning
techniques to promote good mobility in using routine utensils,
such as pencils and scissors.

Therefore, we decided to divide the Sucre initiative into
two tools, Sucre4Kids and Sucre4Stem, to serve different
educational levels and needs. Technologically speaking, one
of the challenges was to determine which parts of Sucre4Stem
could be adapted for Sucre4Kids and what aspects had to
be designed from scratch, given the prior knowledge and
context of primary school students. As a result, both tools
share the SucreKit, consisting of sensors, actuators, and a

Fig. 2. Screenshot of the SucreKit for Sucre4Kids version.

microcontroller, which is essential for students to assemble
the components. However, while many components of the
briefcase (Fig. 2) were retained, changes were made to how
primary school students interact with them, such as using
pictograms to pair sensors with corresponding pins and reduc-
ing the assembly complexity to one sensor and actuator at a
time. The most significant change was in the programming
part; Sucre4Kids employs a set of tangible cards for program-
ming instead of the visual block-based programming tool in
Sucre4Stem. Each card (called SucreCards) has an NFC tag
on the back that encodes the type of programming element
it represents. Working with cards is more familiar to younger
students, as the cards are designed to be visually appealing
and easily understandable for them, featuring pictograms, large
format, and flexible puzzle pieces that can be combined to
form the word “sucre.” As the cards include visual cues, such
as outer frames or dashed lines to help match them, students
find it doable to arrange the cards in sequence on the table to
specify the program’s logic. After establishing the algorithm,
students pass each card sequentially through the SucreCore
reader to read the logic associated with a card. Finally, the
program is executed using the special “Execute” card.

Regarding the Sucre4Stem tool, we updated it technolog-
ically to bring more functions and overcome the identified
limitations detected over past interventions. This was achieved
by, including the Internet of Things (IoT) paradigm. By
amplifying the communication and network capabilities of
SucreCore and developing a new comprehensive visual pro-
gramming tool named SucreCode to support this paradigm.
These advancements related to Sucre4Stem are explained in
more detail below.

III. Sucre4Stem: TECHNICAL BUILDING BLOCKS

As noted above, Sucre4Stem consists of two parts:
1) SucreKit, a compact briefcase that includes all the essen-
tial hardware components needed to build assemblies and
2) SucreCode, a Web-based tool for visual block-based pro-
gramming across various devices. This section presents a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EDUCATION

Fig. 3. SucreKit version of Sucre4Stem tool: Sensors (blue), actuators (green),
and the SucreCore.

Fig. 4. SucreCore: microcontroller mounted on the custom shield (left)
enclosed in the white 3D-printed box.

comprehensive overview of both components and their latest
features.

A. SucreKit

The SucreKit briefcase (Fig. 3) contains sensors and actu-
ators that can be wired to the microcontroller SucreCore
(Fig. 4). The sensors included in the SucreKit are: a button, a
distance sensor, a light sensor, a temperature/humidity sensor,
a rotation angle sensor, and a noise sensor. It also has actuators,
such as a simple LED, a multicolor LED, a buzzer, and
a segment display. Magnetic connectors are built into each
sensor/actuator to help wire them to the SucreCore (Fig. 3),
facilitating assembly.

SucreCore is powered by the Particle Argon microcon-
troller [28], which has a 32-bit 64 MHz ARM Cortex-M4F
CPU, 1 MB of flash memory, 256 KB of RAM, and a
20-pin GPIO mixed signal (6 × analogue, 8 × PWM),
UART, I2C, and SPI. The microcontroller is connected to a
custom-made shield with a suitable pin-out to facilitate the
addition of magnetic connectors. The SucreCore also includes
a battery (located below the shield, not visible in Fig. 4) with
a power switch, providing students with greater ease of use
and independence from external power. All the components
are enclosed in a 3D-printed box made of PLA designed by
the authors.

Fig. 5. Screenshot of the main interface of the SucreCode app.

SucreCore differs from similar solutions by incorporating IP
connectivity, which allows it to function as an IoT device. This
is done by using Wi-Fi for IP/Internet protocol connectivity
and bluetooth LE (BLE) for additional connection options.
This advanced connectivity gives users with a variety of
cutting-edge capabilities, such as the ability to initiate over-
the-air (OTA) updates with new codes or sketches without the
need for a wired computer connection.

B. SucreCode

While the SucreKit allows students to build an assembly,
the SucreCode allows them to define the logic to make the
assembly operational. SucreCode (Fig. 5) is a Web-based
(Angular) application for students to develop their coding
skills. It simplifies programming tasks using the same prin-
ciples as Scratch/Blockly: drag and drop blocks to visually
create a program by combining them. This application is
compatible with both desktop computers and touchscreen
tablets commonly used in classrooms as it follows mobile-first
principles using HTML5 responsive libraries.

The main view of SucreCode, where the user’s projects
are listed, is shown in Fig. 5. Users can tag their projects
with keywords for better categorization and, for example,
use tags to identify student groups or classrooms. SucreCode
supports user management with varying privilege levels. The
SuperAdmin has permission to assign devices to users, view
all users, and change their roles or delete them. CenterAdmins,
typically teachers, can manage users in their high school,
add or delete users, change device assignments, and create
predefined tag sets for users. Finally, RegularUsers, reserved
for students, are assigned a SucreCore and can start using
the platform immediately without any additional configuration.
They can share their projects publicly and use predefined tags
to categorise them. These improvements were implemented
using different Angular views and Firebase for user manage-
ment and project persistence.

SucreCode is aimed at students from 10 to 18 years old,
including the last years of primary school (10–12 years old).
To meet the needs of this broad group of students, two
sets of blocks, i.e., instructions, have been designed. The
“Basic” set (Fig. 6) simplifies programming and avoids the
use of constructs, such as variable definition, which can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRILLES et al.: Sucre4Stem: A K-12 EDUCATIONAL TOOL 5

Fig. 6. Screenshot of the SucreCode application, displaying a program built
using the basic block set.

more difficult to understand for students who are exposed
to programming for the first time. Blocks add functionality
to represent sensor and actuator states using more easily
understood pictograms. Blocks that reference sensors do not
require threshold values to be entered in conditions; the
threshold value and the conditional statement are embedded
in the block, so the block only returns a True/False value
whether or not the condition is met. For example, the “Sun”
block (Fig. 6) returns True if the light sensor detects more
light than the predefined threshold value, and False otherwise.
In this way, the use of such aggregate blocks simplifies the
programming process by focusing students’ attention on high-
level constructs, which is especially useful for beginners who
are first exposed to coding. The actuator blocks have also been
simplified in the same way as the sensor blocks.

When users log into the SucreCode application, they select
which set of blocks to use for their projects before starting
a new project. When the “Advanced” option is selected
(Fig. 7), students are shown the full set of blocks in greater
detail. Technically, the basic blocks (high-level of abstraction)
are made up of advanced blocks (low-level of abstraction),
hiding the inner details of the computing instructions. Yet,
by exposing advanced students to the full range of advanced
blocks or instructions, they can create more nuance and
complex programs, have full control of the algorithms they
want to develop, and access to sophisticated constructs, such
as functions and definitions of shared variables (see below).

Enabling Internet access for SucreCore offers multiple
possibilities. The most important is the ability to remotely
update the code to be executed by a SucreCore without needing
a wired connection. SucreCode generates a new program (text
code) based on the combination of visual blocks and packages
it with the corresponding sensor/actuator libraries. This code
package and the microcontroller identifier are sent through the
cloud service’s update operation to compile and release the
code update on the corresponding SucreCore. The SucreCode
Web interface includes an icon bar in the program creation
view, which facilitates one-click updates (top blue icon in
Figs. 6 and 7). This bar provides additional actions, such as
accessing online documentation, sharing a project between
users of the same school or classroom, and saving a project

Fig. 7. Screenshot of the SucreCode application, demonstrating a program
created using the advanced block set.

to resume work later. Additionally, a status bar (not shown
in Figs. 6 and 7) displays status messages for update and
save actions. Combined with the ability to support different
client devices, SucreCode becomes a versatile, flexible, and
user-friendly tool for different learning environments, such as
homes, regular classrooms, and computer labs.

As part of the advanced block set, student groups can share
sensed data with each other through shared variables. Data
captured by a sensor connected to a SucreCode can be shared
with multiple SucreCores. A couple of special blocks allow
students to convert a local variable into a shared variable via
the publish/subscribe paradigm [29]. For example, consider
the simplest case where two SucreCores are involved, one
assuming the role of publisher or producer of data, and
the other the subscriber or consumer of data. To make a
previously defined variable shareable in a SucreCore publisher,
the “Publish” block is attached to the block representing a
local variable. This block specifies a name used for other
SucreCores to subscribe to that variable. This means that
unique name defines a type of communication channel shared
between SucreCores through an MQTT connection, the chosen
technology for developing this functionality. Subscribers only
need to use the “Subscribe” block and indicate such a name
in the block’s configuration. Like the “Publish” block, the
“Subscribe” block is also attached to a local variable to
store the received values. Therefore, this feature turns isolated
SucreCores into collaborative IoT-powered devices. Groups
of students, whether located in the same room or apart, can
cooperate to create a larger project as the sum of the parts,
which is one of the drivers of computational thinking.

Once a collaborative project with shared variables collects
and shares data, these values are not permanently saved by
default. Once publishing stops, shared values are no longer
accessible. To enable explicit data persistence, both for local or
shared variables, another special block was created that stores
values persistently in a database. This block requires students
to specify the saving frequency (e.g., every few minutes) to
avoid excessive data storage and server overload. For example,
depending on the intended use, a temperature observation can
be safely saved once per hour and still have a complete time

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EDUCATION

Fig. 8. Screenshot of the SucreCode app showing the chart view of values
saved using the persistence block.

Fig. 9. Screenshot of the SucreCode application’s tabular view which displays
the values stored through the persistence block.

series of that phenomenon. Therefore, the “Persistence” block
allows students to store data for later visualisation or analysis.
To this end, SucreCode provides two views to display stored
data in graphical or tabular format (Figs. 8 and 9). Stored data
can also be downloaded as a comma-separated values (CSVs)
file for analysis using other tools. The InfluxDB database and
the Node-red flow editor were used to develop the services
required for data persistence.

IV. Sucre4Stem: COMMUNITY FEEDBACK

During January and February 2023, the authors visited
three secondary schools in the region (IES Miralcamp and
IES Professor Broch i Lluc, Vila-real, Spain; IES Serra
d’Irta, Alcalà de Xisvert, Spain). A program consisting of
7 sessions of 3 h each was deployed to train the science
and technology teachers of each school. The training focused
on the possibilities of the Sucre4Stem tool to design creative
learning situations in classroom that integrate computational
thinking at its core. Added to these visits, the authors organised
a 20-h training course at the university premises from March
to May 2023. Ten teachers from different schools in the region
actively participated in the 5 sessions of the training course.
In total, 23 teachers with different profiles (mathematics,
physics, chemistry, biology, technology, etc.) participated in
the different training activities.

Fig. 10. Previous knowledge on computational thinking practices (N = 23).

Before starting, all participants took a simple survey with
the following three questions to get an idea of their initial
knowledge and any misconceptions related to computational
thinking: (Q1) does being able to use technological devices
mean having developed computational thinking skills?; (Q2)
can computational thinking skills be developed in your class-
room now?; and (Q3) do you feel prepared to develop
computational thinking with your students?. Moreover, the
survey included a free-form question “from your point of view,
computational thinking is. . ..” Fig. 10 illustrates a Likert-scale
plot for the previous survey questions. Almost 60% of respon-
dents disagree with Q1, which equates computational thinking
with generic digital skills, such as the use of digital tools.
However, regarding the free-form question, most respondents
defined computational thinking as programming or learning
to program, which, as we noted earlier, is a narrow view
of what computational thinking really encompasses. Since
teachers’ perceptions regarding computational thinking were
strongly connected to mere programming, this made us doubt
the results of questions Q2 and Q3, since the respondents
probably did not see computational thinking as a multiskilled
approach (Section I), including programming skills, to learn
multidisciplinary concepts.

Given this widespread misconception, after the initial sur-
vey, the next topic of discussion was to find a common
understanding of the meaning and multiskilled characterisation
of computational thinking linked to the vision of “program-
ming to learn,” so that participants could reflect on their
previous misconceptions about what computational thinking
actually covers and recognise the potential of Sucre4Stem to
achieve the vision of “programming to learn.” Subsequent ses-
sions were intentionally informal, which encouraged a lively
discussion between participating teachers and researchers on
how to use and combine Sucre4Stem in classroom. Many
ideas for integrated and multidisciplinary projects emerged,
especially for secondary education where the subjects of math-
ematics, biology and technology are integrated into the same
scientific-technical area in the Spanish secondary education
system [30]. Table I summarises the most relevant project
ideas raised during the training sessions between researchers
and teachers. As Repenning and Basawapatna [10] argue,
devising activities that adequately mix computational thinking
and programming on the one hand with concepts from other
disciplines, on the other hand, was not an easy exercise.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRILLES et al.: Sucre4Stem: A K-12 EDUCATIONAL TOOL 7

TABLE I
SUMMARY OF MULTIDISCIPLINARY PROJECTS

Fig. 11. Programming blocks for the music creation project.

Indeed, the activities proposed in the following section did not
arise spontaneously but were the result of a reflection and con-
tinuous exchange of ideas by all participants, i.e., researchers
and teachers.

V. Sucre4Stem AS TOOL FOR PROGRAMMING TO LEARN

A. Music Creation

The first proposal for a transversal project was to explore
the potential of the Sucre4Stem’s set of basic blocks (see
Section III-B) in musical notation and melody generation.
This project involves using the basic blocks (see Fig. 11) that
encode various musical notes and tones. The process for gen-
erating melodies is straightforward, with a focus on working
with the available blocks and sequencing. Additionally, loops
can be used to create choruses while retaining the number of
blocks required. Assembling the project basically involves the
buzzer actuator to produce the desired tones.

B. Heartbeat Simulation

The second project is a heartbeat simulator, which uses
Sucre4Stem’s advanced blocks like the other projects below.
This simulator can be adjusted to simulate a faster or slower
heartbeat, depending on whether we want to simulate physical
activity or rest. To build the simulator, concepts of maths and
biology are required. The heart beats in two phases, which can
be heard with a stethoscope as “lup-DUP,” followed by a brief
silence until the next beat. Heart rate is the number of beats
that occur in one minute. Generally, the heart rate ranges from
50 to 100 beats per minute (bpm) under resting conditions

Algorithm 1 Heartbeat Simulation Pseudocode
1: while True do
2: RotaryAngleInput← Get rotary angle input.
3: ShortTime = 60.000

10·RotaryAngleInput
4: LongTime = 7 · ShortTime
5: Power on LED for ShortTime milliseconds (First pump-

ing).
6: Turn LED off for ShortTime milliseconds.
7: Power on LED for ShortTime milliseconds (Second

pumping).
8: Turn off LED for LongTime milliseconds (Time

between beats).
9: end while= 0

or everyday activities, depending on physical condition and
age. During physical activity or stress periods, the heart rate
can range between 160 and 220 bpm, depending on age and
physical condition.

Maths are also required to calculate and adjust beat times
to the simulated heart rate, which are operations that can
be coded. To keep the example simple, we assume that the
time between heartbeats (LongTime) is approximately seven
times the length of each heartbeat (ShortTime). To simulate
this, we use an LED that will turn on and off in a time
proportional to the simulated heart rate, according to the
following pseudocode. (Algorithm 1).

The assembly is made up of the rotary angle, an LED, and
the four-digit display, all wired to the SucreCore. Classical
programming constructs can be used to code the above
algorithm. Beyond this, computational thinking patterns, such
as modularization, decomposition, and abstraction can enrich
the learning experience through, for example, the definition of
functions (see Fig. 12). The function GetFrequency calculates
the simulated frequency using the rotary angle sensor and
displays it on the four-digit screen, separating that logic
(line 2, Algorithm 1) from the heartbeat simulation (lines 3–8,
Algorithm 1). The other function CalculateTime computes the
two waiting times, ShortTime and LongTime.

C. Carbon Dioxide Impact on Greenhouse Effect

Another experiment discussed among teachers and
researchers was to model the impact of carbon dioxide on
the greenhouse effect (inspired by [31]) as a way to integrate
computer science and environmental science. The idea of
the experiment was to allow students to evaluate carbon

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EDUCATION

Fig. 12. Programming blocks for the heartbeat simulation project.

Fig. 13. Assembly of the carbon dioxide impact on greenhouse effect project.

dioxide’s contribution to air warming by recreating three
different situations (samples). Each sample consisted of a
plastic bottle with a different object inside: nothing (control
sample), a plant, and a carbonated drink can (Fig. 13). The
experiment consisted of taking the temperature inside the
bottle at regular intervals for 2 h to evaluate in which sample
the temperature increases the most. Here, Sucre4Stem was
used to construct an assembly composed of a temperature
sensor to periodically take (every 5 min, for example) the
temperature inside each bottle and persist the collected values
so that students can analyse and compare later (for example,
via graphs and basic descriptive statistics) the temperature
measurements of the three samples and discuss which sample
affected the most to the heating of the air inside each
bottle. Abstraction, programming constructs, data collection,
persistence, and analysis are computational thinking skills and
patterns embedded in this greenhouse effect model to simulate

Fig. 14. Programming blocks for the carbon dioxide impact on greenhouse
effect project.

Fig. 15. Programming blocks for the geometry project.

that phenomenon under different circumstances. Fig. 14 shows
the programming blocks used to develop this project.

D. Geometry

The fourth project idea focused on mathematics, specifically
in the branch of geometry. The goal was to use a distance
sensor, button, and 4-digit display to calculate areas or vol-
umes. Length and width distances (and height for volumes)
are captured using the ultrasonic distance sensor and stored
when pressing the button. In particular, students measure the
width of their classroom, for example, and press the button to
store the value. They do the same to capture the length. After
the second press, the area is calculated and displayed on the
4-digit screen. Fig. 15 shows the corresponding block-based
program. This project can be expanded to volumes by adding a
third value –height– and computing the volume accordingly. It
can also be carried out collaboratively, obtaining the distances
from distinct SucreCores and having another SucreCore to
compute the area or volume.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRILLES et al.: Sucre4Stem: A K-12 EDUCATIONAL TOOL 9

Fig. 16. Programming blocks for the motion detection alarm project:
SucreCore that monitors distance.

E. Motion Detection Alarm

This example recreates a remote motion detection alarm,
which works similar to a real burglar alarm installed in
homes. The novelty here is the remote aspect, which implies
two SucreCore devices communicate each other through
shared variables (see Section III-B). This example adheres
to Tissembaum and Ottenbreit-Leftwich [13]’s vision that
computer science education must go beyond the classroom to
meet the world which “allows students to see how computer
science operates in the world as a means to solve real-world
problems” [13, p. 43].

As the assembly comprises two IoT devices, each device
is configured with a set of sensors/actuators for the task
it performs. One device models the motion detection by
installing a SucreCore near, for example, the access door
to a room that it monitors. In particular, this SucreCore is
equipped with a distance sensor that continuously measures
the distance (in cm) between the SucreCore and the door, and
with a multicolor led actuator to indicate whether the motion
is authorised (green) or not (red). When someone enters or
passes through the door, the observed distance value will
be lower than usual (without presence), which will indicate
motion detected (see Fig. 16).

The captured distance value is published as a shared variable
so that the second SucreCore can consumes it. This second
Sucrecore manages the received alerts and it is wired with a
button sensor and a buzzer actuator (see Fig. 17). When the
received value is lesser than a certain threshold, the buzzer
is activated, emitting a continuous beep to signal a motion
alert. As such, the button controls the activation/deactivation
of the alarm, whose value is transmitted as a shared variable
to the first SucreCode so that it activates the multicolor
LED accordingly. Therefore, in this example students explore
real-time, bi-directional communication of data between two
remote IoT-powered devices to recreate a real situation.

VI. CONCLUSION

This article provides an overview of the current status of the
Sucre initiative. More specifically, we detail the Sucre4Stem
tool, designed to promote computational thinking and pro-
gramming among pre-university students. Sucre4Stem, through

Fig. 17. Programming blocks for the for the motion detection alarm project:
SucreCore that manages alerts.

SucreCore, is based on the IoT paradigm, which simplifies
microcontroller programming (using OTA) and enables remote
communication between devices. Its design also facilitates
collaborative projects, promoting interactive group learning.
The Web-based tool SucreCode uses SucreCore’s connec-
tivity features to send code to microcontrollers wirelessly.
Additionally, it provides advanced features, such as user
authentication, password protection, project saving, and shared
variable generation.

Sucre4Stem has been adapted to serve a broader audience
with the creation of two sets of blocks. The basic set generates
simpler and more direct statements, eliminating the need to
create variables and simplifying programming for beginners.
The advanced set offers full support for traditional program-
ming statements, such as declarations of variables, functions,
etc. The advanced mode has also been enhanced to enable
shared variables between SucreCores and the storage of sensor
data values.

It should be noted that the Sucre4Stem tool is aligned
with the vision of programming to learn, in which compu-
tational thinking and programming concepts are integrated
into multidisciplinary projects to allow students to experiment
and learn key concepts from other domains. Through a
series of training sessions, we put this vision into practice
with high school teachers who initially struggled to inte-
grate programming into their disciplines. However, through
discussion and collective reflection, a series of multidisci-
plinary projects progressively emerged to explore disciplines
as diverse as music, biology, mathematics, and environmental
science through programming, thus taking advantage of the
potential of computational thinking in the classroom beyond its
classic role in computer science and programming education in
isolation.

REFERENCES

[1] V. G. Cerf, “Computer science in the curriculum,” Commun. ACM,
vol. 59, no. 3, pp. 7–7, 2016.

[2] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49,
no. 3, pp. 33–35, Mar. 2006. [Online]. Available: https://doi.org/10.1145/
1118178.1118215

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EDUCATION

[3] A. V. Aho, “Computation and computational thinking,” Comput. J.,
vol. 55, no. 7, pp. 832–835, 2012.

[4] P. J. Denning, “Beyond computational thinking,” Commun. ACM,
vol. 52, no. 6, pp. 28–30, Jun. 2009. [Online]. Available: http://dx.doi.
org/10.1145/1516046.1516054

[5] P. J. Denning, “Remaining trouble spots with computational think-
ing,” Commun. ACM, vol. 60, no. 6, pp. 33–39, May 2017. [Online].
Available: http://dx.doi.org/10.1145/2998438

[6] C. Wang, J. Shen, and J. Chao, “Integrating computational thinking in
STEM education: A literature review,” Int. J. Sci. Math. Educ., vol. 20,
no. 8, pp. 1949–1972, 2022.

[7] M. U. Bers, “Coding and computational thinking in early childhood:
The impact of ScratchJr in Europe,” Eur. J. STEM Educ., vol. 3, no. 3,
p. 8, 2018.

[8] Y. H. Ching and Y. C. Hsu, “Educational robotics for developing com-
putational thinking in young learners: A systematic review,” TechTrends,
vol. 68, pp. 423–434, May 2024.

[9] M. Chevalier, C. Giang, A. Piatti, and F. Mondada, “Fostering com-
putational thinking through educational robotics: A model for creative
computational problem solving,” Int. J. STEM Educ., vol. 7, p. 39,
Dec. 2020.

[10] A. Repenning and A. Basawapatna, “Explicative programming,”
Commun. ACM, vol. 64, no. 11, pp. 30–33, Nov. 2021. [Online].
Available: https://dl.acm.org/doi/10.1145/3486642

[11] A. G. Chakarov, M. Recker, J. Jacobs, K. Van Horne, and T. Sumner,
“Designing a middle school science curriculum that integrates computa-
tional thinking and sensor technology,” in Proc. 50th ACM Tech. Symp.
Comput. Sci. Educ., 2019, pp. 818–824.

[12] M. Guzdial, A. Kay, C. Norris, and E. Soloway, “Computational
thinking should just be good thinking,” Commun. ACM, vol. 62, no. 11,
pp. 28–30, Oct. 2019. [Online]. Available: https://dl.acm.org/doi/10.
1145/3363181

[13] M. Tissenbaum and A. Ottenbreit-Leftwich, “A vision of K-12 computer
science education for 2030,” Commun. ACM, vol. 63, no. 5, pp. 42–44,
Apr. 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3386910

[14] M. Resnick et al., “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[15] M. Resnick and N. Rusk, “Coding at a crossroads,” Commun. ACM,
vol. 63, no. 11, pp. 120–127, 2020.

[16] N. Kvaŝŝayová, M. Cápay, S. Petrík, M. Bellayová, and E. Klimeková,
“Experience with using BBC micro:bit and perceived professional
efficacy of informatics teachers,” Electronics, vol. 11, no. 23,
p. 3963, Nov. 2022. [Online]. Available: http://dx.doi.org/10.3390/
electronics11233963

[17] A.-M. Cederqvist, “An exploratory study of technological knowledge
when pupils are designing a programmed technological solution using
BBC micro: Bit,” Int. J. Technol. Design Educ., vol. 32, no. 1,
pp. 355–381, 2022.

[18] S. Trilles and C. Granell, “SUCRE4Kids: El fomento del pensamiento
computacional a través de la interacción social y tangible,” Actas de
las Jornadas Sobre Enseñanza Universitaria de la Informática, vol. 3,
p. 14, Jul. 2018.

[19] S. Trilles, D. Tortosa, and C. Granell, “La evolución del proyecto
Sucre4Kids mediante el paradigma del Internet de las Cosas,” Actas de
las Jornadas sobre Enseñanza Universitaria de la Informática, vol. 5,
pp. 53–60, Jul. 2020.

[20] S. Trilles and C. Granell, “Advancing preuniversity students’ computa-
tional thinking skills through an educational project based on tangible
elements and virtual block-based programming,” Comput. Appl. Eng.
Educ., vol. 28, no. 6, pp. 1490–1502, 2020.

[21] C. Anderson, Makers. Amsterdam, The Netherlands: Nieuw, 2013.
[22] E. Ackermann, “Piaget’s constructivism, Papert’s constructionism:

What’s the difference,” Future Learn. Group Publ., vol. 5, no. 3, p. 438,
2001.

[23] P. J. Sotorrio-Ruiz, D. Trujillo-Aguilera, C. García-Berdonés,
F. J. Sanchez-Pacheco et al., “Aproximación a la técnica ‘Aprender
Haciendo’ para la docencia en microprocesadores,” in Proc. Congreso
Universitario de Innovación Educativa en las Enseñanzas Técnicas,
2017, p. 25.

[24] M. Tissenbaum, J. Sheldon, and H. Abelson, “From computational think-
ing to computational action,” Commun. ACM, vol. 62, no. 3, pp. 34–36,
Feb. 2019. [Online]. Available: https://doi.org/10.1145/3265747

[25] S. Trilles, C. Granell, and E. Aguilar, “Sucre4kids: Tres años de
experiencia en la incentivación del pensamiento computacional en
edades preuniversitarias,” in Proc. TICAI TICs Para El Aprendizaje de
la Ingeniería, 2019, pp. 49–56.

[26] “Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley
Orgánica 2/2006, de 3 de mayo, de Educación [National education act],”
Boletín Oficial del Estado, vol. 340, pp. 122868–122953, Dec. 2020.
[Online]. Available: https://www.boe.es/eli/es/lo/2020/12/29/3

[27] L. Mercer-Mapstone and L. Kuchel, “Core skills for effective science
communication: A teaching resource for undergraduate science educa-
tion,” Int. J. Sci. Educ. B, vol. 7, no. 2, pp. 181–201, 2017. [Online].
Available: https://doi.org/10.1080/21548455.2015.1113573

[28] “Particle argon,” Accessed: May 1, 2020. Online]. Available: https://bit.
ly/31xX4RW

[29] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A
publish/subscribe protocol for wireless sensor networks,” in Proc. 3rd
Int. Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE),
2008, pp. 791–798.

[30] “Real Decreto 217/2022, de 29 de marzo, por el que se establece la orde-
nación y las enseñanzas mínimas de la Educación Secundaria Obligatoria
[Curricular organization of compulsory secondary education],” Boletín
Oficial del Estado, vol. 76, pp. 41571–41789, Mar. 2022. [Online].
Available: https://www.boe.es/eli/es/rd/2022/03/29/217

[31] A. M. Ortiz Espín, “Existe el cambio climático? [is there climate
change?]” Accessed: Jul. 13, 2023. [Online]. Available: https://
descargas.intef.es/recursos_educativos/ODES_SGOA/ESO/BG/3A.2_-
_Cambio_climtico_3ESO/index.html

Sergio Trilles received the Doctoral degree in geospatial information integra-
tion from Universitat Jaume I (UJI), Castellón de la Plana, Spain, in 2015.

After several postdoctoral fellowships at different levels, he is currently a
Juan de la Cierva-Incorporation Postdoctoral Researcher with the GEOTEC
Group, UJI.

Aida Monfort-Muriach received the master’s degree in geospatial technolo-
gies in a joint programme run by the Universitat Jaume I (UJI), Castellón de la
Plana, Spain, Westfälische Wilhelms-Universität Münster, Münster, Germany,
and Universidade Nova de Lisboa, Lisbon, Portugal, in 2015.

She is a Computer Engineer. Since 2016, she has been an Associate
Researcher with the GEOTEC Group, UJI.

Enrique Cueto-Rubio received the B.S. degree in computer engineering from
Universitat Jaume I (UJI), Castellón de la Plana, Spain, in 2022, where he is
currently pursuing the master’s degree in intelligent systems.

He is a member of the GEOTEC Research Group, UJI, where he directly
worked on the Sucre4Stem development in 2021. He rejoined the group in
2022 to work with data science and GIS technologies with a “Programa Yo
Investigo” grant.

Carmen López-Girona is currently pursuing the B.S. degree in computer
science with Universitat Jaume I (UJI), Castellón de la Plana, Spain, where
she completed an internship with UBIK Geospatial Solutions to work on
Sucre4Stem development.

Her research interests revolve around teaching strategies and methodologies
for secondary education.

Carlos Granell received the degree in computer engineering in 2000, and
the Ph.D. degree in computer science from the Universitat Jaume I (UJI),
Castellón de la Plana, Spain, in 2006.

He is an Associate Professor with UJI, and a member of the GEOTEC
Group. His research interests lie in the multidisciplinary application of
geographic information science, spatial analysis and visualisation of new
forms of spatial data, and in the search for synergies between education and
science dissemination projects.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

