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Abstract—The evolution of telecommunication networks
unlocks new possibilities for multimedia services, including
enriched and personalized experiences. However, ensuring high
Quality of Service and Quality of Experience requires intelligent
solutions at the edge. This study investigates the real-time
detection of race bib numbers using YOLOv8, a state-of-the-art
object detection framework, within the context of 5G/6G edge
computing. We train (BDBD and SVHN datasets) and analyze
various YOLOv8 models (nano to extreme) across two diverse
racing datasets (TGCRBNW and RBNR), encompassing varied
environmental conditions (daytime and nighttime). Our assess-
ment focuses on key performance metrics, including processing
time, efficiency, and accuracy. For instance, on the TGCRBNW
dataset, the extreme-sized model shows a noticeable reduction
in prediction time when the more powerful GPU is used, with
times decreasing from 1,161 to 54 seconds on a desktop computer.
Similarly, on the RBNR dataset, the extreme-sized model exhibits
a significant reduction in prediction time from 373 to 15 seconds
when using the more powerful GPU. In terms of accuracy, we
found varying performance across scenarios and datasets. For
example, not good enough results are obtained in most scenarios
on the TGCRBNW dataset (lower than 50% in all sets and
models), while YOLOv8m obtain the high accuracy in several
scenarios on the RBNR dataset (almost 80% of accuracy in the
best set). Variability in prediction times was observed between
different computer architectures, highlighting the importance of
selecting appropriate hardware for specific tasks. These results
emphasize the importance of aligning computational resources
with the demands of real-world tasks to achieve timely and
accurate predictions.

Index Terms—YOLO, object detection, bib number detection,
cognitive networks, media streaming, broadcasting, edge comput-
ing, runner segmentation, image quality.

Manuscript received 17 February 2024; revised 27 May 2024; accepted
29 May 2024. This work was supported in part by the Horizon Europe
CODECO Project under Grant 101092696; in part by the Horizon Europe
NEMO Project under Grant 101070118; and in part by the UNICO-5G I+D
TSI063000-2021-79 (B5GEMINI-AIUC) Project funded by the Ministry of
Economic Affairs and Digital Transformation of the Spanish Government
and the NextGenerationEU [Recovery, Transformation and Resilience Plan
(PRTR)]. (Corresponding author: Alberto del Rio.)

Rafael Martínez, Álvaro Llorente, and Alberto del Rio are with the Signals,
Systems and Radiocommunications Department, Escuela Técnica Superior de
Ingenieros de Telecomunicación (ETSIT), Universidad Poliécnica de Madrid,
28040 Madrid, Spain (e-mail: a.delriop@upm.es).

Javier Serrano is with the Informatic Systems Department, Escuela Técnica
Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad
Politécnica de Madrid, 28031 Madrid, Spain.

David Jimenez is with the Physical Electronics, Electrical Engineering
and Applied Physics Department, Escuela Técnica Superior de Ingenieros
de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040
Madrid, Spain.

Digital Object Identifier 10.1109/TBC.2024.3414656

I. INTRODUCTION

THE EVOLUTION of mobile communication technologies
has triggered a significant paradigm shift in multimedia

services, ushering in a new era of enriched and personalized
offerings tailored to individual preferences [1], [2]. This trans-
formation is underscored by the increasing softwarization of
mobile core network functions, which is driving the evolution
of the mobile network architecture itself. In its fifth generation
(5G) and beyond, mobile networks have transitioned towards
a service provider/consumer framework, facilitated by service-
based interfaces [3], [4].

The capabilities inherent in 5G networks, including
enhanced bandwidth, reduced latency, and improved reliability,
hold immense significance for the delivery of audiovisual
media services [5], [6]. These capabilities enable the seamless
transmission of high-quality video content and support emerg-
ing technologies such as augmented reality (AR) and virtual
reality (VR), thereby revolutionizing the landscape of media
consumption [7], [8]. Among the many applications that have
surfaced in this transformation, the integration of multimedia
broadcast enrichment through cognitive services has emerged
as a frontier [9], [10].

Central to this evolution is the proliferation of edge com-
puting capabilities, which play a pivotal role in real-time
multimedia content processing while ensuring compliance
with Quality of Service (QoS) and Quality of Experience
(QoE) standards. Moreover, the integration of edge comput-
ing (MEC) is crucial for fully leveraging the potential of
5G networks to enrich and tailor media services [11], [12].
The convergence of edge computing and 5G/6G networks
underscores the need for an infrastructure that can seamlessly
handle the increased data load and complexity associated with
sophisticated media services, thereby enhancing the overall
user experience [13].

Enhanced capabilities of MEC environments become critical
enablers for deploying Artificial Intelligence (AI) frame-
works in real-time applications. MEC’s proximity to the
end-users ensures minimal latency and high computational
efficiency, which are essential for the effective implementa-
tion of AI-driven solutions such as object detection. Within
this context, state-of-the-art object detection frameworks like
YOLO (You Only Look Once) [14] have demonstrated excep-
tional performance in various tasks (classification, detection,
segmentation. . .) along different versions, which currently is
provided on version 8.1

1https://docs.ultralytics.com/models/yolov8/
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We intend to leverage its capabilities for a specific and
practical application: race bib detection. The integration of
YOLO in our proposed system is motivated by its proven abil-
ity to outperform other tools in object detection capabilities,
and the integration of several tasks in the same framework,
ensuring accuracy and reliability. Understanding the different
YOLO model sizes, from nano to extreme, and configuring
them for varied inference scenarios is crucial. This approach
allows us to tailor the system’s performance to meet specific
needs, balancing between processing speed and accuracy,
and effectively understanding the potential baseline of MEC
configuration to deliver optimal results in diverse conditions.

A. Research Challenges

At the heart of this transformation is the integration of
Artificial Intelligence (AI) into media services, enabling intel-
ligent content processing to deliver valuable insights to both
content providers and end-users. However, challenges arise
when these edge services demand excessive resources or
fail to deliver accurate results, emphasizing the importance
of predicting real-time performance and configuring robust
service architectures [15].

To address these challenges, a specific approach to man-
aging the various layers of networking and computing
infrastructure is essential. This requires an overall intelligence
framework capable of orchestrating data, control, and service
layers to optimize performance and ensure seamless delivery
of media content. Furthermore, the validation of models and
analysis of their accuracy are critical aspects of this evolving
landscape. Rigorous testing and evaluation frameworks are
needed to assess the adaptability and robustness of cognitive
services, particularly in meeting the stringent performance
requirements of multimedia applications [16]. Racing events,
characterized by their diverse and dynamic sequences, serve as
a canvas for the analysis and application of cognitive services,
especially object detection [17], [18].

In this field, companies and developers face significant
challenges [19] when trying to implement object detection
solutions. One of the main problems is the difficulty in
selecting the most suitable model [20] for their specific use
case. This selection process is restricted by the lack of
complete documentation and detailed specifications, which are
essential for making informed decisions. Understanding the
specifics of each model, such as its performance capabilities,
processing speed and suitability for various tasks, is crucial to
optimizing your applications.

For example, when it comes to real-time processing [21],
detection in high-resolution images [22] or object identifica-
tion in high-definition videos [23], the absence of detailed
information can lead to suboptimal choices. Users need clarity
on which model is most suitable for their particular require-
ments, taking into account factors such as image characteristics
and available computational resources, whether GPU or CPU.
Without this data, implementing effective and efficient object
detection solutions becomes a complicated task.

In the context of YOLO models, although there is technical
documentation and comparisons of YOLO with state-of-the-
art datasets, the challenge lies in making these results more

accessible and understandable to users. There is a need to
make clear these data so that users can easier determine which
variant is most appropriate for their specific needs. The lack of
easily interpretable information on the speed and processing
time of each model complicates the selection process, as these
factors are essential for implementing effective solutions.

B. Objective and Contributions

The above problems show the importance of our research
objective, which is to perform an analysis of different models
and sizes of the last version of YOLO (YOLOv8), focusing
on its performance in detecting runner bibs in different race
datasets and environmental conditions.

In particular, at the forefront of our research is the real-
time object detection system known as YOLO. By offering
a spectrum of models with varying parameters such as size,
inference speed, and specific task-oriented adaptability, YOLO
provides a versatile toolkit. In our case, the main goal is to
leverage the capabilities of YOLOv82 to detect and decipher
the bib numbers worn by runners in different scenarios,
extracting several tests and results.

Our work focuses on the optimization of object detection
systems for specific tasks in racing events. For that, we
examine the efficiency, accuracy and processing time of the
YOLOv8 framework in different scenarios, ranging from
daytime clarity to nighttime challenges. Furthermore, this
study aims to determine the most effective conditions for
each YOLOv8 model size, providing guidance for improving
detection performance in real-time racing scenarios.

The use of open source datasets for both training and
evaluation purpose, together with the wide range of running
scenarios in several environmental conditions, ensures that our
results can be validated and extended to other studies and
research.

II. RELATED WORKS

A. Significance in the Context of 5G/6G Multicast/Broadcast
Services

The new emerging multimedia services and applications
differ from the traditional ones by offering an increasingly
immersive experience. 4K and 8K video streaming, virtual
reality, augmented reality and 360 omnidirectional video
applications have popularized new scenarios and media use
cases [24], [25]. Audiovisual content providers and broadcast-
ers are highly motivated to use IP-based, mobile, and cellular
distribution technologies to deliver to the end-users their media
services, for being a broadly accessible and unified distribution
platform [26].

5G mobile networks has brought a great revolution in the
communications field. High bitrates, low latency, security and
improved reliability are fulfilled by 5G technologies, enabling
success in multimedia streaming where is critically important
to guarantee the stability of the transmission [27]. 5G networks
with the new video compression standards, the evolution of
the technology and the availability of UHD portable consumer
devices provide the infrastructure for “anywhere anytime”

2https://github.com/ultralytics/ultralytics
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access to real-time broadcast media for new emerging video
services. In the current era of information explosion, applica-
tions such as 5G autonomous driving, UHD video, 4K video,
8K video, 360 video, gamming and holographic metaverse
applications bring massive data increments, imposing more
stringent requirements on the performance of 5G wireless
communications networks and seeing the need for a leap to
6G networks [28], [29].

Mobile networks are characterized by frequent changes in
latency and bandwidth conditions, which might result in an
unstable and poor video streaming [30]. For that, assure the
QoE and QoS of the applications and services in challenging
network scenarios (e.g., live streaming or video on demand)
are one of the main objectives of the 5G networks [31] to
satisfy the final perceived quality by the end-user through
intelligent network management [32], [33].

The incoming specifications of 3GPP with the Release
173 [34] include the specifications for 5G Multicast-Broadcast
Services (5G MBS) [35], a regulation for multicast and
broadcast delivery over 5G networks [36]. During these years
there has been a continuous evolution of new broadcast
and multicast technology in 5G networks [37] due to the
versatility, flexibility and efficiency of the technology, and
the easy integration with the deployed mobile communication
networks [38]. While 3GPP offers a set of specifications for
the Media Industry and for the distribution of TV services
to mobile devices, 5G Media Action Group (5G-MAG) has
undertaken the task to develop open-source implementations
of 3GPP specifications.4

B. Multimedia Applications on Edge Computing

The advent of cloud computing and virtualization paradigms
created new market gaps for multimedia applications, driving
new opportunities for the multimedia content and entertain-
ment industries [39]. The application of Network Functions
Virtualisation (NFV) and serverless paradigms for multimedia
applications over 5G, has been widely analysed [40] with
the use of open-source Function-as-a-Service (FaaS) enablers,
such as Openwhisk,5 for multimedia services. The EU H2020
5G-PPP 5G-MEDIA project [41] developed a transparent
Service Virtualisation Platform (SVP), where the vertical
service provider can deploy its virtualized service from an
application-level perspective [42]. These platforms, already
proven for multimedia content, provide in some cases a
complete 5G infrastructure for testing verticals [43]. Another
platform, in this case focused on immersive multimedia con-
tent, is the one proposed by the EU H2020 5G-PPP 5G-Xcast
project [8].

From the perspective of the vertical service provider, the
simplification of service deployment procedures is a key factor
in terms of cost reduction [44]. This simplification reduces
the time required to deploy the service [45]. Simplification
and automation techniques facilitate the deployment, execution
and analysis of vertical services [46]. In the case of multi-site

3https://www.3gpp.org/specifications-technologies/releases/release-17
4https://www.5g-mag.com/explainers
5https://openwhisk.apache.org/

virtualized architectures, it is possible to deploy monitoring
systems that allow the analysis of virtualized services in
multiple geographical locations [47]. This makes it possible
to create procedures for the use of 5G-enabled end-to-end
platforms for the creation and performance analysis of vertical
services [48].

C. Object Detection Framework

The object detection field has been a hot topic in recent
years, driven by advances in artificial intelligence [49] and
the growing need for automated solutions [50] in var-
ious applications. Many studies have focused on object
detection to provide solutions in diverse areas such as surveil-
lance [51], [52], autonomous driving [53], [54], medicine [55],
and many others. Object detection involves identifying and
classifying objects in an image or video, and has proven to be
crucial in the digital transformation of numerous industries.

Text detection is an important subcategory within object
detection, which has significant applications in document
scanning [56], translating text into images [57] and assisting
the visually impaired [58]. Although text detection is an
specific topic, it faces similar challenges [59] as general object
detection. This need has led to the development of specialized
tools for text detection and recognition.

Traditionally, object detection tools such as Tesseract and
EasyOCR have been widely used. These tools have proven
to be effective in certain contexts, such as food identification
and tracking [60] and handwritten character extraction [61].
However, the primary use of these tools is for character
recognition on car license plates [62], [63].

Despite their usefulness, these tools have significant limi-
tations in terms of accuracy and the ability to handle objects
in complex environments with high variability. Tesseract, for
example, can struggle to perform its task when encountering
low-quality images [64], as well as having fairly complex
setup and configuration for non-technical users [65], which
limits its accessibility. EasyOCR, while improving on some
aspects of ease of use and configuration, also faces similar
challenges. Its ability to handle multiple languages and diverse
fonts sometimes results in decreased accuracy [66] when faced
with non-standard text or less controlled situations.

To overcome these difficulties in object detection in general,
more complex neural network models have been developed,
which significantly improve object detection results. A prime
example of such models is YOLO, which has revolutionized
the computer vision field. YOLO is based on a convolu-
tional neural network architecture that enables real-time object
detection by analyzing an entire image in a single pass [67].
Since its introduction, YOLO has evolved through eight
versions, each improving in terms of accuracy, speed and
versatility [68]. The latest version of YOLO includes several
models and sizes, allowing it to be adapted to different needs
and hardware constraints.

The use of YOLO has been wide and varied in multiple
applications. In passenger detection and counting, its imple-
mentation makes it possible to optimize the accuracy and
efficiency of the Automation Passenger Counting (APC)
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system [69]. In the automotive industry, YOLO has been used
for various tasks. For example, a novel lightweight vehicle
detection method called MA-YOLO (MobileNet Attention
YOLO) has been proposed [70]. This tool reduces the number
of parameters by almost half compared to YOLOv8, while
maintaining similar accuracy.

In addition, in the field of license plate detection and
authentication, YOLO-V4 and YOLO-V5 have been used to
solve specific problems. In one study [71], YOLOv4 was
employed for license plate detection, while YOLOv5 was
utilized for license plate class identification for authentication
purposes. Similarly, in autonomous driving research [72], the
YOLO algorithm has been applied to detect and classify
various objects on the road using bounding boxes.

In the case of bib detection, the dynamism and variability in
bib position and appearance during a competition present sig-
nificant challenges. Similar studies, such as one on bib number
recognition in running competitions [73], have addressed these
issues. This system, which faces variability in bib appearance,
size, and deformations, improves recognition accuracy using
facial detectors and stroke width transforms (SWT).

Another study has presented modifications to SWT to
improve its performance in detecting bib numbers in racing
competition images [74]. These modifications, such as hue
channel similarity testing and stroke length limitation, have
been shown to significantly improve bib detection in assorted
images.

Finally, a multimodal technique has been presented that
combines biometric and textual features to detect and recog-
nize bib numbers in natural images of marathons and sports
competitions [75]. This technique uses face and skin features
to identify candidate text regions, improving the accuracy and
performance of bib recognition.

III. METHODOLOGY

A. Experimental Setup

Our experimental setup aimed to analyze the performance of
the YOLOv8 models under various computational constraints,
while evaluating their accuracy and efficiency in race bib
detection. We employed two different hardware configurations.

The neural networks for the bibs and numbers detection
have been trained from scratch. For this training, we used a
high-performance desktop computer equipped with an Intel
Core i9-10900 CPU and a powerful NVIDIA GeForce RTX
3090 GPU (10,496 CUDA cores, 328 Tensor cores, 24GB
RAM) graphic card. This robust system efficiently managed
the intense computation required for training. Specifically, the
training process exclusively used the GPU’s parallel process-
ing capabilities for significant speed optimization, reducing
training time to approximately 3 hours per model for bib
detection, and higher time for number detection (from half a
day, to two days for the extreme model). Our training datasets
included around 600 sequences featuring diverse bib sizes
and angles, and almost 100,000 digits in different real-world
scenarios with variations in object appearance.

For the inference phase, in addition to the desktop setup,
we adopted a more portable setup, using a laptop equipped

Fig. 1. General architecture proposal.

with an Intel Core i5-7200U CPU and an NVIDIA GeForce
MX150 GPU (384 CUDA cores, 2GB RAM). This con-
figuration met the minimum inference requirements while
offering lower computational power. This strategic choice
allowed us to evaluate the feasibility of deploying trained
models on resource-constrained edge devices, paving the way
for potential real-world implementations in resource-limited
environments.

B. Media Architecture

The research presented in this work is closely related to the
Cognitive Service module of a general multimedia broadcast-
ing architecture. Although the overall goal of the architecture
is to capture and enrich the User-Generated Content (UGC),
it is vital to contextualize the YOLO’s performance within the
broader architecture. The other components serve to illustrate
the composition of the real scenario, demonstrating how
the Cognitive Service module can operate within a dynamic
environment.

Illustrated in Figure 1, our architecture is an interconnected
set of components. First, event stream acquisition ensures that
the infrastructure manages access to the broadcast stream.
Next, the stream transcoder optimizes the media formats,
ensuring compatibility, and also adapts the bitrate of the
stream. The Cognitive Services module, the main component
of this work, assumes the fundamental role of enrich-
ing multimedia content, providing intelligent capabilities to
enhance the overall viewing experience. In this scenario, the
objective is to segment and identify the runners’ bibs.

The information bus is responsible for real-time commu-
nication and coordination between the different components,
acting as a data exchange channel. Finally, the production
control supervises the orchestration, processing, and rendering
of the content; while the media delivery manager is in charge
of distributing the selected content to the different channels
for end-users.

In this research manuscript, we focus on a singular test
case, based on the Cognitive Services module. Our objective
is to evaluate the performance of different YOLO models,
focusing on the detection and prediction aspects to enrich the
multimedia content, as shown in Figure 2. The process started
with training YOLOv8, using data coming from the BDBD
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Fig. 2. Workflow of the YOLOv8 model performance analysis.

Fig. 3. Pictures samples from BDBD dataset.

Fig. 4. Pictures samples from SVHN dataset.

(Bib Detection Big Data) dataset [76] (examples in Figure 3)
for physical bibs detection and the SVHN (Street View House
Numbers) dataset [77] (additional examples in Figure 4) for
the identification of numbers within those bibs.

To guarantee the relevance and robustness of our findings,
we chose to analyze two distinct datasets, in addition to
those employed for training. After training our different sized
models, we conducted the prediction process using images
extracted from the TGCRBNW (Trans Gran Canaria Race
Bib Number in the Wild) dataset [78] and RBNR (Racing
Bib Number Recognition) dataset [79]. The selection of these
datasets is deliberate, as they encompass images of runners
in a variety of scenarios, thus presenting intriguing challenges
for evaluating the robustness of our neural networks under
different conditions. These conditions include scenarios with
a single runner, multiple runners, daytime conditions and
nighttime conditions (check Figure 5 for visual references on
daytime, nighttime, and a crowded environment).

In this framework, an initially pre-trained YOLOv8 neural
network [80] is deployed to detect each individual runner

present in the image. Next, a detection process is performed
within each identified runner to discern the physical paper
simulating the bib. Subsequently, an additional detection is
executed within the bib to determine the number associated
with each runner. This stepwise filtering process, ranging from
the overall image to the individual, the bib and the number,
allows our tool to mitigate errors associated with the detection
of extraneous elements, such as background signs or irrelevant
objects, particularly in challenging scenarios.

Visual analysis of our two validation datasets reveals a
rich variety of conditions and scenarios, allowing us to eval-
uate the YOLOv8 detection system. We begin with daytime
races under ideal lighting conditions (Figure 5(a)), which
serve as a baseline due to their inherent ease of detection.
Subsequently, we investigate nighttime races (Figure 5(b)),
where low light, shadows, and artificial illumination pose
significant challenges. Finally, we investigated variations
in crowd density (Figure 5(c)), evaluating how well each
YOLOv8 model adapts to handle congested environments and
complex interactions between objects.

C. Cognitive Services

After having analyzed the evolution of YOLO in general
way, it is necessary to emphasize that, at this point, we
have chosen to focus on YOLOv8. The reason for this
decision lies in the advances and improvements introduced
in YOLOv8 with respect to its predecessors [82]. To go into
the details, Ultralytics, the developers of YOLOv8, introduced
several configuration sizes, each tailored to specific needs, as
illustrated in Table I.

This table presents performance metrics for different ver-
sions of YOLOv8, including nano, small, medium, large, and
extreme. The metrics include size (in pixels), mean Average
Precision (mAP) over the range 50-95 [83], speed in CPU,
speed in TensorRT, number of parameters (Params), and the
number of floating-point operations (FLOPs). These variations
in model sizes allow users to choose a specific YOLOv8
configuration that fits their needs, whether prioritizing speed,
accuracy, or a balance between both. For example, the nano
version is optimized for speed, with lower parameters and
FLOPs, while the extreme version provides higher accuracy
at the cost of higher computational complexity.

In addition to the different model configurations, YOLOv8
provides users with a set of hyperparameters [84] that can be
adjusted to further optimize the model performance based on
specific use cases. It is often necessary to experiment with
different combinations and values to find the optimal configu-
ration for a given use case. Some of the key hyperparameters
in YOLOv8 are as follows:

• Learning Rate. A crucial parameter that determines the
step size during the optimization process. Proper adjust-
ment of the learning rate is essential to achieve a balance
between fast convergence and avoiding overfitting.

• Batch Size. The number of training samples used in an
iteration. Adjusting the batch size can impact the conver-
gence speed and memory requirements during training.
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Fig. 5. Test cases scenarios on different conditions from TGCRBNW dataset.

TABLE I
YOLOV8 MODEL PERFORMANCE METRICS FOR COCO DATASET DETECTION [81]

• Input Size. The resolution of the input images. Smaller
pictures can make things quicker but might mean the
model isn’t as accurate.

• Epochs. The number of times the entire training dataset
is processed during training. Modifying the number
of epochs can significantly influence the learning and
convergence of the model. In the context of YOLO, a
common practice is to terminate the training process after
a predefined number of epochs without observing any
improvement in learning. This strategy, known as early
stopping, serves to mitigate the risk of overfitting.

Our methodology employs a set of evaluation metrics to
capture various aspects of its functionality and effectiveness.
These metrics serve as key benchmarks to evaluate the system
performance in different models and sequences.

• Time efficiency. Measure the speed at which each
YOLOv8 model processes and analyzes image sequences.

• Accuracy. Evaluate the system’s ability to accurately
identify and locate bib numbers on runners in different
scenarios.

• Real-world applicability. Evaluate the adaptability of
the YOLOv8 system to various real-world racing
environments.

D. Test Cases and Scenarios

The datasets used in this research consist of four different
sources. Two of these datasets are intended for training the
neural network for person and bib number detection. The third
and fourth datasets are intended to evaluate the performance
of the model under different conditions and image qualities.

The first dataset employed for bib detection (BDBD) con-
tains photos of runners participating in various races. Each
photo captures a runner wearing a race number on their
clothing, providing data to train and test the bib detection
model. Table II describes the details of the BDBD dataset,
indicating 440 images for training, 30 for testing, and 130
for validation. To optimize the performance of our model,

TABLE II
SPECIFICATIONS OF THE BDBD AND SVHN DATASETS

we have chosen to combine the training and testing sets for
joint training, reserving the validation set for post-training
evaluation.

Continuing with the next dataset responsible for training the
neural network to detect digits within each bib number, we
highlight SVHN. This is a dataset designed to develop machine
learning algorithms similar to MNIST [85] but incorporating
an order of magnitude more labeled data. Upon closer exam-
ination of its specifications, which are described in Table II,
it becomes evident that the digits designated for training and
testing exhibit a noticeably higher level of complexity com-
pared to their supplementary counterparts. This observation
justifies our decision to exclusively use the training and testing
digits for two main reasons: their higher complexity in terms
of discernibility and the consequent computational overhead
associated with the integration of additional digits, due to their
substantially larger volume.

In addition, the SVHN dataset offers flexibility in download
formats, with two viable options: first, the entire image
corpus in PNG format and, second, a format akin to MNIST
where all digits are uniformly resized to a fixed resolution of
32-by-32 pixels. We opted for the first format, the entire
image corpus in PNG format, for several reasons, but mostly
because by retaining the original image resolution, we allow
for more nuanced feature extraction and preserves finer details
that could be crucial for our tasks.
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TABLE III
SPECIFICATIONS OF THE TGCRBNW AND RBNR DATASETS

Finally, we proceed to explain the datasets used to test and
validate the trained models, named TGCRBNW and RBNR.
This first dataset, TGCRBNW, comprises over 3,000 samples
from more than 400 different individuals and provides a
diverse set of samples, reflecting a wide range of conditions
and scenarios (Table III). Upon further investigation, the pro-
vided dataset is divided into 5 folders simulating different race
scenarios.

Set 1 collects images of nighttime runs in which the camera
is strategically positioned at the end of a slope. This location
ensures that the runners are captured in a frontal orientation.
On the other hand, set 2 presents nighttime races, but with the
camera situated along a curve, which complicates the task of
runner detection due to their oblique position with respect to
the camera’s field of view.

Set 3 depicts daytime races that start in shadow environ-
ments and gradually transition to sunlight. Camera placement
in this scenario is skillfully chosen to provide clear frontal
views of the runners’ bibs, facilitating identification. Set
4 collects races under direct sunlight, with runners facing
directly at the camera, optimizing visibility and detection
accuracy.

Finally, set 5 depicts races during the twilight hours, starting
with ample illumination but culminating in dimmer conditions.
The camera angle in this scenario is noticeably skewed,
capturing the runners in an almost profile orientation as they
approach, posing a challenge for detection algorithms.

Moreover, in addition to the other test dataset explained, we
have the RBNR dataset, as detailed in Table III. This dataset
consists of 217 color images, each annotated with ground
truth Race Bib Numbers (RBNs) per image. The dataset is
divided into three sets, each derived from a different race. The
first and second sets exhibit similar compositions of runners
within the images, although the latter demonstrates greater
variability in terms of brightness and contrast. Lastly, the
third set encompasses images with a substantial number of
runners, potentially posing challenges for our neural network’s
detection capabilities.

E. Picture Analysis

The evolution of AI detection and recognition tasks has been
remarkable, but significant challenges persist when exposed to
real-world conditions. Factors such as brightness and contrast
of an image, or the positioning of the camera, are critical and
have a real impact on the performance of such systems. Several

Fig. 6. Image datasets analysis.

image enhancement techniques modifying these factors have
been developed to increase both the quality of images and the
efficiency of image processing-based applications [86], [87],
[88], [89], [90].

In low light environments, such as at night or in dark
scenarios, captured images often have characteristics of low
brightness, low contrast and limited visibility to the human
eyes. On the other hand, a high level of contrast is usually
associated with good visual quality [91], [92], [93].

Figure 6 shows the brightness and contrast values for the
images of the different sets used in the validation of our work
and described in Table III. In a grayscale image, we represent
the brightness as the mean luminance value and contrast as the
variance of the luminance values. The brightness information
can be used to characterize the type of scene. In that figure,
both sets from TGCRBNW, 1 and 2, include dark images in a
night scenario, while the rest contain daytime images. In these
two sets, the brightness value is below 70 on a scale from 0
to 255, where 0 indicates pure black and 255 indicates a pure
white. In addition, sets 1 and 5, also from TGCRBNW, have
the lowest contrast set of images.

This variety of scenarios and conditions under different
lighting conditions will allow us to evaluate the robustness
of our YOLOv8-based bib detection system. Results of this
evaluation are presented in Section IV.

IV. RESULTS

In this section, we will present the outcomes achieved
through analysis and experiments, representing the results of
our research.

A. Training Time YOLO

In our study, we begin by examining the training durations
necessary for various iterations of YOLOv8 applied to both the
BDBD dataset and the SVHN dataset. In this context, the mea-
sured time encompasses the entire duration of an execution,
from its initiation to completion, including periods of process
blocking such as during input/output (I/O) operations or when
other processes are active. The data presented in Table IV
provides information on the training duration of the different
versions of YOLOv8 on the two datasets.

Analyzing the results, it is evident that the training times
not vary significantly between different versions of the
YOLOv8 model. For instance, in the BDBD model, the nano
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TABLE IV
TRAINING TIME IN MINUTES

version requires 158 minutes of training, while the extreme
version requires much more time, 175 minutes. This trend is
repeated across all versions, with larger models systematically
requiring more training time.

When we consider the SVHN dataset, the training times
increase significantly across all model sizes. For example,
while the nano version of the SVHN-trained model took
800 minutes to train, the extreme version extended this
duration to 2,640 minutes. This highlights the impact of dataset
complexity on training time, with more complex datasets
requiring proportionally more training time, regardless of
model size.

B. Comparative Performance of YOLO Models During the
Training

As the YOLOv8 neural network completes its training, it
generates a set of metrics to evaluate its performance on the
given dataset and its predictive accuracy. These metrics serve
as an initial indicator of how well each model version aligns
with the characteristics of the dataset and its intended task.
They provide information about the model’s precision, recall,
and overall performance, which are essential for understanding
its suitability for real-world applications.

In the context of this study, these metrics are applied to the
validation set of the BDBD dataset and the SVHN dataset.
Before delving into the specific results for each dataset, it
is essential to provide a general explanation of the metrics
used to evaluate the performance of the YOLOv8 models.
These metrics include precision, recall, and mean average
precision (mAP) at different Intersection over Union (IoU)
thresholds [94]. Precision measures the accuracy of positive
predictions, recall quantifies the model’s ability to detect
all relevant instances, and mAP provides an assessment of
the model’s object detection capabilities across various IoU
thresholds.

When analyzing the performance of YOLOv8 models on
the BDBD dataset, as shown in Table V, it is evident that
the effectiveness of the model is similar across different size
categories. Across all size categories (nano, small, medium,
large, and extreme), the model consistently demonstrates high
precision, with scores ranging from 91.2% to 93.8%. Similarly,
recall rates remain robust, with values ranging from 89.5%
to 93.2%. In particular, the medium-sized model presents the
highest precision and recall rates among the different sizes.
Moreover, the evaluation of the Mean average precision (Map)
with thresholds of 0.5 and 0.95 reveals the effectiveness of
the model in detecting objects of different scales within the
BDBD dataset, with Map50 scores ranging from 95.1% to
96.4% and Map0.95 scores ranging from 68.7% to 72.1%.

TABLE V
METRICS OBTAINED ON THE BDBD AND SVHN TEST SET

Fig. 7. Yolo real application on non-training dataset.

Interestingly, the disparity between the Map scores at these
thresholds suggests that while the model performs well in
detecting objects with a higher confidence threshold (0.95), it
encounters challenges in maintaining precision at this thresh-
old, potentially due to increased false negatives or decreased
recall rates.

On the other hand, the evaluation on the SVHN dataset
reveals exceptional performance on all versions of the
YOLOv8 model as shown in Table V. The models consistently
achieve high precision and recall scores, indicating their
effectiveness on digit recognition tasks. Interestingly, the vari-
ation in performance across different model sizes is minimal,
suggesting that smaller models are equally effective in this
context. The elevated mean average precision scores provide
additional confirmation of the models’ precision in recognizing
digits in the SVHN dataset, underscoring the adaptability
and applicability of the YOLOv8 framework across various
datasets and tasks.

C. Application on Real-World Scenarios

In this subsection, we detail the practical application of
our trained models in real-world scenarios. After successfully
training our models to detect people, race bibs, and numbers,
we proceeded to evaluate their performance on two different
real-life datasets: TGCRBNW and RBNR. The workflow
of our application process is illustrated in Figure 7, which
shows the whole process. First, the whole image is processed,
employing segmentation to isolate individual runners. Next,
each detected runner is cropped and another neural network,
trained to detect bibs, is employed to locate and extract
the bibs. Subsequently, the identical procedure is iterated to
identify and predict the numbers within numerical values
present in the bibs. The cropping of the identified items
helps minimize detection errors, like incorrectly recognizing
advertisements or other forms that resemble numbers, thus
improving the precision of our models.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



MARTÍNEZ et al.: PERFORMANCE EVALUATION OF YOLOv8-BASED BIB NUMBER DETECTION 9

TABLE VI
PREDICTION TIME IN SECONDS

Fig. 8. Prediction time per image.

To analyze the prediction times for each scenario and
dataset, we refer to Table VI. The two computers used in this
analysis are equipped with both CPU and GPU resources,
one being more powerful than the other. The flexibility of
the YOLO tool allowed us to choose between CPU and GPU
for inference, facilitating the extraction and comparison of
inference speeds on models of different sizes. Across all
models and datasets, using the more powerful GPU results in
reduced prediction times compared to CPU-only processing.

For instance, on the TGCRBNW dataset, the extreme-
sized model shows a noticeable reduction in prediction time
when the more powerful GPU is used, with times decreasing
from 373 to 160 seconds. Similarly, on the RBNR dataset,
the extreme-sized model exhibits a significant reduction in
prediction time from 42 to 17 seconds when using the more
powerful GPU. When comparing the prediction times between
datasets, it is evident that the TGCRBNW dataset typically
requires more computational time than the RBNR dataset,
likely due to the number of images and the complexity of
them. These findings highlight the importance of resource
optimization and indicate that leveraging more powerful hard-
ware can substantially improve the efficiency of our models
in real-world applications.

With respect to the approximate prediction time per image in
each of the scenarios depending on the model used, it is should
be noted that they vary greatly depending on the computer used
and the device, whether it is GPU or CPU, as can be seen in
Figure 8. Thus, with respect to the desktop computer, we can
observe a quite significant variability of the results depending
on whether we use GPU or CPU, since for example in small
models it is hardly appreciable because there is a magnitude

of tenths, while if we move on to larger models, the magnitude
has to do with several seconds of difference. Moving on to the
case of the laptop, whose computational resources are lower,
we can see that the times increase significantly with respect to
the other computer, and something similar occurs in the CPU-
GPU relationship. However, here we can already see that for
CPU, we reach values of approximately 22 seconds to perform
a detection on an image.

As for the accuracy of the different versions of YOLOv8 in
each scenario, we have performed evaluations using also the
TGCRBNW and RBNR datasets. The accuracy results for each
model version in both scenarios are summarized in Figure 9.
These tables provide insight into the performance of each
version of YOLOv8 in different scenarios. It is clear that the
accuracy varies significantly depending on the model version
and the dataset. For instance, in the TGCRBNW dataset,
YOLOv8n shows the highest accuracy in most scenarios, while
YOLOv8x consistently exhibits lower accuracy. However, in
the RBNR dataset, the performance differs, with YOLOv8m
obtaining the highest accuracy in several scenarios.

V. ANALYSIS AND DISCUSSION

In examining the results obtained, an observation concerns
the relationship between training times and performance met-
rics. It is evident that as the model size increases, so does
the training time, with the exception of the YOLOv8s model,
which converges faster than YOLOv8n. This discrepancy
can be attributed to the early stopping mechanism, wherein
the YOLOv8s model stops training earlier as it achieves
convergence sooner. In addition, the model trained with SVHN
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Fig. 9. Accuracy results.

data requires much more time to train than the BDBD model
due to its larger dataset size, although both models return
moderately similar and generally favorable metrics.

Moreover, performing predictions solely on a CPU is
impractical due to long processing times. On the other hand,
processing times on GPU vary depending on hardware specifi-
cations. Furthermore, the choice of model version significantly
influences the processing time, as larger models require more
time due to the larger number of layers through which the
input must traverse. However, it is essential to note that larger
models do not always produce better results, as they may
require larger and more diverse datasets to efficiently learn
features.

A more detailed exploration of accuracy metrics for differ-
ent test datasets uncovers interesting trends. For example, the
difference in performance between the TGCRBNW and RBNR
datasets can be attributed to multiple factors, like camera
position (angles, distance to the runners. . .), general image
quality (brightness and contrast level) or even image resolution
differences (lower quality images on TGCRBNW). In addition,
challenges arise in the detection of subjects that are distant
or oriented to the side. Moreover, the presence of shadows
in the dorsal area significantly complicates the detection. In
particular, if a bib number is imperceptible to the human eye,
machine detection becomes equally challenging. In general,
the time taken for detection exceeds that for non-detection,
and larger models exacerbate this discrepancy.

Furthermore, it is noteworthy that the accuracy achieved on
a laptop GPU is comparable to that of a desktop CPU, which
mainly affects processing time. Consequently, the availability
of a GPU is preferred due to its ability to significantly reduce
processing time while maintaining identical metrics.

VI. CONCLUSION

The work presented in this paper performs a comparative
study of YOLOv8-based bib number detection in several races
media datasets, comparing not only the performance due to
the different dataset features, but the training performance in
terms of time and accuracy depending on the YOLOv8 model
and the hardware used for training and prediction.

Understanding the suitability of different YOLOv8 models
under varying circumstances is crucial for real-time applications.
Factors such as image resolution (e.g., High Definition or Ultra
High Definition) or video frame rates (e.g., 30 fps or 60 fps),
deployment environments (edge vs. cloud), and computational
resources availability influence the choice of model.

A set of datasets were carefully selected and analysed,
studying their characteristics in terms of size, quality and
real circumstances variability, looking to have the highest
generality of image conditions for training.

The results demonstrated the significant impact of hardware
selection on prediction times and accuracy in object detection
tasks. For instance, on the TGCRBNW dataset, the extreme-
sized model shows a significant reduction in prediction time
from 1,161 seconds (5.66 seconds per image) to 54 seconds
(0.26 seconds per image) when using a more powerful GPU
on a desktop computer. Similarly, the RBNR dataset exhibits
a reduction from 373 seconds (4.05 seconds per image) to
15 seconds (0.16 seconds per image) for the same model.
For the laptop case, the difference in prediction time between
TGCRBNW for GPU and CPU is most noticeable in the
extreme model, decreasing from 3,674 (17.92 seconds per
image) to 826 seconds (4.02 seconds per image). For RBNR,
the difference is also significantly reduced in the extreme
model, from 1,440 (15.65 seconds per image) to 239 (2.59 sec-
onds per image).

After studying the prediction phase into the two type of
hardware architectures, it becomes clear that the time needed
for prediction is much higher (on average in a factor by 3) in
the case of the laptop. One of the main reasons for this
difference lies in the hardware used to perform the predictions.
While CPUs are generally more versatile and efficient in
handling a wide variety of tasks, GPUs tend to excel in
parallelizable tasks. However, this advantage does not come
without its own implications. Unlike CPUs, GPUs tend to be
more expensive and consume more power, which can be a
limiting factor in resource-constrained environments such as
edge devices or virtualization systems.

This notable difference in prediction time between GPU
and CPU can have important implications on the feasibility
of real-time implementations. For example, while smaller
models, such as nano- or medium-sized models, exhibited
higher accuracy than large and extreme versions, this factor
should not be considered solely from an accuracy perspective.
It is also crucial to consider the prediction time associated with
each model. Considering that prediction in these models takes
1 second or less, it is possible to consider that these models are
suitable for real-time (GPU-enabled) or near real-time (CPU-
enabled) object detection in a multimedia streaming use case.
However, if the prediction time is increased by even just one
second more, it could compromise the system’s responsive-
ness, which is critical for the quality of user experience and
the ability to process a high number of images efficiently.

However, accuracy varied across scenarios and datasets. On
the TGCRBNW dataset, results were generally below 50%
across all sets and models, whereas the YOLOv8m model
achieved nearly 80% accuracy on the RBNR dataset in the
best scenario. It is important to note that these values remained
unchanged when extracting metrics regardless of the hardware
configuration selected (GPU versus CPU or between laptop
and desktop).

Our study also revealed several key insights that could
have been incorporated into our methodology, such as image
augmentation techniques [95], dataset division based on light-
ing conditions, and the integration of explainable AI to
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improve model robustness and interpretability [96]. Ensuring
image quality throughout the audiovisual transmission chain
is essential to guarantee the correct operation of our system.
A future analysis on how brightness, contrast and sharpness
affect the accuracy of the YOLOv8-based bib detection system
and apply image enhancement techniques in future work to
improve detection accuracy.

The application of the trained neural networks can be
extended beyond their initial tasks. For instance, the neural
network trained specifically for bib detection can be used
in other similar events, such as marathons or cycling races,
to identify participants by their bib numbers. Additionally,
this neural network could be adapted for detecting other
types of identifications in various contexts, such as vehicle
identifications in toll systems or product identifications in
production lines.

Similarly, the neural network trained for number detection
can be valuable in diverse scenarios, such as OCR in printed or
digital documents, vehicle license plate recognition, or barcode
reading. When these two neural networks are combined (bib
and number detection), the range of applications expands
even further. For example, in sporting events, the network
trained for bib detection could work alongside the network
trained for number detection to identify participants and
automatically record their times. In commercial environments,
the combination of both networks could facilitate automated
inventory tracking by reading barcodes and product identifi-
cation numbers.

Future research can converge into developing guidelines or
frameworks for selecting the most appropriate YOLOv8 model
based on specific application requirements and deployment
constraints. It could enable to dynamically adapt and optimize
object detection algorithms based on contextual factors such
as network conditions, user preferences, and environmental
constraints.

These new emerging trends and opportunities may enable
researchers to contribute to the advancement of the object
detection field and its integration in different areas, such as
smart cities, autonomous vehicles, healthcare systems and
video surveillance. This interdisciplinary nature will offer the
possibility to exploit the potential of YOLOv8 and similar
algorithms, driving innovation and addressing challenges in
the audiovisual sector.
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