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Abstract—Deep learning models based on convolutional
neural networks (CNNs) have been used to classify Alzheimer’s
disease or infer dementia severity from T1-weighted brain
MRI scans. Here, we examine the value of adding
diffusion-weighted MRI (dMRI) as an input to these models.
Much research in this area focuses on specific datasets such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which assesses people of North American, largely European
ancestry, so we examine how models trained on ADNI,
generalize to a new population dataset from India (the
NIMHANS cohort). We first benchmark our models by
predicting “brain age” - the task of predicting a person’s
chronological age from their MRI scan and proceed to AD
classification. We also evaluate the benefit of using a 3D
CycleGAN approach to harmonize the imaging datasets before
training the CNN models. Our experiments show that
classification performance improves after harmonization in
most cases, as well as better performance for dMRI as input.

Keywords— Magnetic Resonance Imaging, Diffusion Tensor
Imaging, Deep Learning, Harmonization

I. INTRODUCTION
Alzheimer’s disease (AD) is the most prevalent

age-related neurodegenerative condition, responsible for
around 70% of dementia cases globally [1]. At present,
about one in three elderly individuals in the United States
eventually develop AD or a related type of dementia. As
such, there is a pressing need to uncover factors that
promote or resist dementia. To assist with this task,
approaches are required to objectively diagnose AD at
earlier stages, as well as assess disease progression and
prognosis. Machine learning and deep learning models offer
great potential in AD research, and MRI-based diagnostic
tools would also benefit clinical practice, as accurate
diagnosis is key to assigning optimal treatments for each
patient. In clinical research, automatic classifiers of disease
could be used to rapidly screen imaging databases and
biobanks to identify genetic or environmental factors that
may influence disease progression or resilience. Deep
learning can also be directly applied to raw or minimally
pre-processed images, bypassing the time-consuming
processes of parcellation and quality control involved in
traditional region-of-interest methods for brain

morphometry. A recent study [2] trained a deep
convolutional neural network (CNN) based on the
Inception-ResNet-V2 architecture on 85,721 brain MRI
scans from 50,876 participants. Through transfer learning
and subsequent fine-tuning for AD classification, the model
achieved an impressive accuracy of 91.3% in leave-sites-out
cross-validation.

In 2020, Wen et al. reviewed [3] over 30 papers
that applied convolutional neural networks to classify
patients with AD relative to matched healthy controls, using
neuroimaging data. They noted two limitations in the field:
(1) data leakage leading to inflated accuracy estimates, and
(2) insufficient testing of models on diverse cohorts and
data from different scanners. With a few recent exceptions
[4,5], most CNNs developed for detecting rely on
T1-weighted brain MRI, the most commonly collected type
of brain scan. Nevertheless, others [6,7] have found initial
evidence that dMRI, which is more sensitive than
T1-weighted MRI to subtle alterations in the brain's white
matter microstructure, can provide metrics strongly
correlated with age, dementia severity, and even levels of
brain amyloid—a primary contributor to AD pathology not
detectable on standard MRI. Here, we set out to investigate
the potential advantages of dMRI for two common
AD-related deep learning tasks: brain age estimation and
AD classification. Intuitively, training a CNN on diffusion
MRI (dMRI) might yield superior results than training
solely on T1-weighted MRI.

Brain MRI protocols vary considerably, and
models trained on data from a specific scanner may perform
more poorly when tested on data acquired from a different
site or using a different scanning protocol. This 'domain
shift' problem has prompted the development of domain
adaptation methods. These techniques aim to mitigate the
differences between multisite brain MRI datasets by
adjusting some properties of the testing data to match a
reference dataset or the training data. By doing so, domain
adaptation improves the generalizability of machine
learning models when tested across diverse imaging
protocols and acquisition sites. Various Generative
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Adversarial Network (GAN)-based approaches have been
used for medical image harmonization. Liu et al. [8] used
style transfer techniques to adjust brain MRI scans to match
a designated reference dataset. Sinha et al. [9] found that
AD classification improved after using attention-guided
GANs for MRI harmonization. Dinsdale et al. [10] included
an adversarial subnetwork to predict scan sites from the
predictors used for classification, and defeating this
adversary generated site-invariant features for classification.
Zhao et al. [11] showed that adversarial subnetworks could
also adjust for confounding effects of age and sex as well as
site, as these features can also be confounded with site and
lead to classifiers that do not generalize well. Here, we also
examined GAN-based strategies to address domain
differences and make our predictive models more robust.
We used a 3D unsupervised CycleGAN model developed by
Komandur et al. [12] to harmonize the two datasets. We
compared the results for both tasks on harmonized and
non-harmonized data acquired at the NIMHANS center
(India).

II. DATA AND PREPROCESSING
Diffusion tensor imaging (DTI) – the most widely-used
model of brain tissue microstructure – approximates the
local diffusion process through a spatially-varying diffusion
tensor (principally a 3D Gaussian approximation). Although
the tensor model slightly simplifies the diffusion model and
higher-order models (NODDI [13], MAP-MRI [14]) are
used in research, diffusion tensors can be computed from
single-shell dMRI, which is faster and most convenient to
collect clinically. Four standard measures are typically used
to characterize the diffusion process: fractional anisotropy
(FA), and mean, axial, and radial diffusivity (MD, AxD, and
RD), which quantify the shape of the tensors at each voxel.
These measures are computed from the three principal
eigenvalues of the tensor (Figs. 1 and equations 1 to 4),
indicating the primary directions of water displacement or
diffusion at each voxel. FA summarizes the directionality of
diffusion, while MD is sensitive to cellularity, edema, and
necrosis. Radial diffusivity is increased by processes such as
demyelination or dysmyelination. Changes in axonal
diameters or density also impact radial diffusivity. AxD is
also increased by white matter pathology. We evaluate each
of these DTI metrics in comparison to T1w images.

Fig. 1. Diffusion tensor components. Tensor components are fitted to
the raw diffusion-weighted MRI data, and the eigenstructure of the
tensor (right) is used to compute summary metrics of diffusion based
on the eigenvalues (the lengths of the 3D vectors in the ellipsoid)
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The standard formulae for calculating the diffusion metrics
using the diffusion tensor eigenvalues are given in (1) to (4).
To evaluate the performance of our deep learning
techniques, we first trained and tested CNNs on the task of
predicting brain age. In this work, we focus on CNNs as
they are widely used and well understood, but other
networks (such as vision transformers [15]) have also been
used for these and related tasks. While a person's
chronological age is typically known and may not hold
immediate clinical utility, predicting brain age in healthy
control subjects is a standard benchmarking task, as ground
truth is known. When such a trained model is applied to
patients at varying stages of dementia, the disparity between
the predicted age (referred to as the individual's
"BrainAge") and their actual chronological age has been
associated with subsequent clinical deterioration, the
progression of dementia, and even mortality [16].

The primary dataset for our experiments is the
widely-used, publicly available Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset – a multisite study
launched in 2004 designed to improve clinical trials for the
prevention and treatment of Alzheimer’s disease [17]. We
used data from a total of 1,195 participants (age: 74.36
±7.74 years; 600 F/595 M), who had both structural T1w as
well as dMRI with a distribution of (633 CN/421 MCI/141
dementia) for our analysis. The second dataset comes from
an Indian population assessed at NIMHANS in Bangalore,
India [18,19] – a population not typically well represented
in neuroimaging studies. This cohort had 301 participants
(age: 67.23 ±7.86 years; 169 F/132 M) with a distribution of
(123 CN/88 MCI/90 AD). We also analyzed MRIs from
10,000 CN subjects from the UK Biobank [20] for training
for the Brain Age experiment, and this had a distribution of
age: 64.11 ±7.42 years (5050 F/4950 M).

T1w brain MRI volumes were pre-processed using
the following steps [21]: nonparametric intensity
normalization (N4 bias field correction), ‘skull stripping’ for
brain extraction, nonlinear registration to a template with 6
degrees of freedom and isometric voxel resampling to 2
mm. The pre-processed images were of size 91x109x91.
The T1w images were scaled using min-max scaling to take
values between 0 and 1. All T1w images were aligned to a
common template provided by the ENIGMA consortium
[22]. dMRI were non-linearly registered to the T1w images.
The dMRI processing pipeline is extensively detailed in
[6,7,23].



III. DEEP LEARNING ARCHITECTURES

The 3D CycleGAN model [12] (Fig. 2) used for
harmonization consists of two generators (GX: X→Y and GY:
Y→X) and two discriminators (DX and DY) corresponding to
the source domain X (ADNI) and target domain Y
(NIMHANS). The primary objective was to generate an
image representative of the target distribution, when
provided an image from the source domain distribution. To
achieve this, the model employed an adversarial GAN loss
in conjunction with a cyclic consistency loss term.
Additionally, it incorporated a patch-based discriminator
and identity loss to regularize model training. During
training, the model was applied to both pre-processed T1w
and DTI map scans obtained from both the source and target
datasets separately. The Adam optimizer [24] was used to
train both generators and discriminators, with a learning rate
of 1x10-4 and a batch size of 4. We trained the model for 100
epochs using a multi-step learning rate scheduler with a
gamma of 0.1, and steps occurring at 35 and 75 epochs.
Overall, the model had 16 million (M) parameters. Each
generator and discriminator comprised 5M and 3M
parameters, respectively.

Fig. 2. The CycleGAN architecture, with two generators and two
discriminators, reproduced from [12].

The 3D CNN architecture (Fig. 3) consisted of four 3D
Convolution layers with a 3x3 filter size, followed by one
3D Convolution layer with a 1x1 filter, and a final Dense
layer. All layers used the ReLu activation function and
Instance Normalization. Dropout layers, with a dropout rate
of 0.5, and a 3D Average Pooling layer with a 2x2 filter size
were added to the 2nd, 3rd, and 4th layers. Models were
trained with a learning rate of 10-4, and test performance was
assessed using balanced accuracy. We trained this CNN
model for 100 epochs, with a batch size of 8. The learning
rate was exponentially decayed with a decay rate of 0.96.
The Adam optimizer [24] and mean square error loss
function were used for training. To deal with overfitting,
dropout between layers and early stopping were used. Test
performance on Brain age was assessed using the mean
absolute error (MAE) to compare results for different
modalities. After registering the images to a common
template, the data was split into independent training,
validation, and testing sets in the ratio of approximately
70:20:10. The 3D-CNN model was first pretrained on T1w
scans from 10k subjects in the UK Biobank cohort for age
prediction. This pretrained model was then used to predict

age in the ADNI and NIMHANS cohort and model
performance was assessed. For the AD/CN classification
task, the final Dense layer of the model had a sigmoid
activation function and the hyperparameters were tuned
using grid search.

Fig. 3. 3D CNN Architecture used in the work..

For the dual modality experiments, where two different
modality inputs were fed in simultaneously, a concatenated
model architecture was used. The 3D CNN architecture
(Fig. 4) consisted of four 3D Convolutional layers. After
flattening, the outputs of these layers were concatenated and
passed through a Dense Layer with a sigmoid activation
function. This Y-shaped architecture uses distinct CNNs to
extract predictive features separately from the anatomical
MRI and dMRI. Subsequently, these features are merged for
disease classification purposes. The 3D-CNN was trained
for 100 epochs with the Adam optimizer, incorporating
weight decay regularization. A batch size of 4 was used, and
the training process was halted when the validation loss
failed to demonstrate improvement for 10 consecutive
epochs.

Fig. 4. The Concatenated (‘Y-shaped’) 3D CNN Architecture.

IV. EXPERIMENTAL RESULTS

In the first experiment, we trained the model on the UK
Biobank cohort CN subjects’ T1w scans in increasing
sample sizes of 2,000 to 10,000, and then used these trained
models to predict individual age for ADNI, NIMHANS and
harmonized NIMHANS CN subjects’ MRIs separately. The
MAE results are shown in Fig. 5 (note that despite this quite
poor performance, subsequent experiments improve on this
baseline).



Fig. 5. Graph of MAEs for results of training on increasing buckets of UK
Biobank CN subjects. The column heads represent the number of subjects
in the bucket.

The results show that the distribution of NIMHANS is
closer to UK Biobank than ADNI, but both these models
need to be finetuned on the respective datasets to improve
performance. There may be evidence for an overfitting point
for the trained model, which is around 6k subjects, after
which the MAEs on the test datasets start increasing again.
Harmonization brings the distribution of NIMHANS dataset
closer to ADNI.

In the second experiment, we trained the model on ADNI
CN subjects, and tested the generalizability of the model on
NIMHANS, as a separate test cohort. We trained the model
for 100 epochs; MAE results are shown in Table I.

TABLE I. Results of brain age prediction for a 3D CNN model trained on
ADNI CN data. For both datasets, the diffusion MRI methods perform best,

although all metrics perform poorly for the NIMHANS dataset.

T1 DWI-
FA

DWI-
MD

DWI-
RD

DWI-
AxD

ADNI 5.63 3.39 4.72 4.37 4.13

NIMHANS 9.77 8.16 7.91 18.80 7.80

The results show that model performance is generally better
when DWI-derived maps are used as inputs as compared to
the T1w images. The MAEs for models trained on the
ADNI dataset were notably lower compared to the
corresponding dMRI modalities from the NIMHANS
dataset. This performance gap shows the need to train the
model on a more diverse range of data to enhance the
model's ability to generalize across different datasets and
settings, as in our next experiment.

In the third experiment, we trained the model on a
combination of ADNI and NIMHANS CN subjects. The
model was then tested separately on a hold out ADNI and
NIMHANS test set. MAE results for the experiment are as
shown in Table II. The experiments were repeated for the

ADNI and the harmonized NIMHANS dataset, as shown in
Table II.

TABLE II. Results of brain age prediction for a 3D CNN model
trained on combined ADNI and NIMHANS CN data.

T1 DWI-
FA

DWI-
MD

DWI-
RD

DWI-
AxD

Trained on ADNI and NIMHANS

ADNI 6.28 3.87 5.77 6.13 5.11

NIMHANS 6.56 4.27 6.27 6.59 6.14

Trained on ADNI and harmonized NIMHANS

ADNI 6.43 3.43 4.92 4.61 4.89

Harmonized
NIMHANS

4.48 4.95 6.76 4.16 4.37

We compared the performance of our model with two
different models from the literature - Peng et al. [25] and
Yin et al. [26]. The Peng et al. model was originally trained
on data from UK Biobank T1ws, whereas the Yin et al.
model was originally trained on ADNI T1ws. On the same
three test sets of T1ws as our experiments, using trained
model weights without any re-training, the performance is
shown in Table III.

TABLE III. Results of brain age prediction from models from
literature.

T1ws Peng et al. Model Yin et al. Model

ADNI 5.50 21.25

NIMHANS 3.92 27.58

Harmonized
NIMHANS

5.46 29.73

The best task performance was achieved when DWI-FA was
used as the input. This was found for both test datasets in
the case of training on ADNI and NIMHANS, with an MAE
generally lower than when using other input maps. The
performance of the model is better on the test NIMHANS
dataset, as compared to results from the second experiment
as would be expected with the inclusion of data from the
cohort in training. So, despite the model generalizing better,
the overall performance of the model is close to the results
for the best brain age prediction models as seen in Table III.
One caveat is that those models are trained on larger
datasets, so as more data is provided for training, the
performance may improve. Performance improves when the
harmonized NIMHANS dataset is used during training with
ADNI. In most cases, the MAE goes down. The lowest
MAE for ADNI is obtained when the DWI-FA maps are
used as inputs, in this case.



In the fourth experiment, we used the concatenated model
(Fig. 4) to predict Brain Age. We trained the model
separately for combinations of T1 and DWI image inputs,
for both harmonized and non harmonized NIMHANs along
with ADNI separately. The MAE results for the experiments
are shown in Table IV.

TABLE IV. Results of brain age prediction for the Concatenated
3D CNN Model

T1 +
DWI-FA

T1 +
DWI-MD

T1 +
DWI-RD

T1 +
DWI-AxD

Trained on ADNI and NIMHANS

ADNI 11.97 4.94 5.11 5.18

NIMHANS 12.64 4.75 5.01 5.11

Trained on ADNI and harmonized NIMHANS

ADNI 6.31 5.13 4.73 4.85

Harmonized
NIMHANS

6.32 5.90 6.10 4.95

Performance on this task is better for the concatenated
model, than when using T1w alone, except for the case of
combining T1w and DWI-FA. Model performance also
improves in most cases when the harmonized NIMHANS
data is used, especially for ADNI. This performance is
comparable to that of DWIs used alone as input for the
models. These results may further improve as larger and
more diverse datasets are used for training.

In the fifth experiment, we trained the model on a
combination of ADNI and NIMHANS subjects to classify
unseen individuals as having CN vs Alzheimer’s disease.
We used the balanced accuracy and F1 score metrics to
compare the performance for the different input data types
(Table V). Experiments were repeated for the ADNI and
harmonized NIMHANS dataset (Table V).

TABLE V. Results of CN/AD classification for a 3D CNN
model trained on combined cohort data

T1 DWI-
FA

DWI-
MD

DWI-
RD

DWI-
AxD

Trained on ADNI and NIMHANS

ADNI

Balanced
Accuracy

0.62 0.83 0.87 0.86 0.87

F1 Score 0.64 0.80 0.84 0.83 0.84

NIMHANS

Balanced 0.63 0.90 0.84 0.87 0.80

Accuracy

F1 Score 0.59 0.87 0.78 0.82 0.74

Trained on ADNI and harmonized NIMHANS

ADNI

Balanced
Accuracy

0.49 0.75 0.74 0.74 0.72

F1 Score 0.89 0.68 0.68 0.71 0.64

Harmonized
NIMHANS

Balanced
Accuracy

0.76 0.91 0.75 0.93 0.91

F1 Score 0.95 0.94 0.98 0.93 0.90

For non-harmonized NIMHANS and ADNI, the
performance is better for the DWI-derived maps used as
inputs, as compared to the T1w images. The best Balanced
Accuracy and F1 Score is for DWI-MD for ADNI and
DWI-FA for NIMHANS respectively. Harmonizing the
NIMHANS dataset increases the balanced accuracy for most
types of input data in the AD classification task. The
performance was also slightly better for the trained model
on the holdout NIMHANS dataset, compared to the ADNI
holdout test dataset. The results for DWI maps are
comparable to those obtained from T1w using larger sample
sizes from ADNI, as reported in [27]. The model
performance for T1w inputs might improve with more
training datasets, but the results suggest that a smaller
dataset of DWI modalities is a better substitute for the AD
classification task.

In the sixth experiment, we used the concatenated model
(Fig. 4) to classify people with AD versus CN. We trained
the model separately for combinations of T1 and
DWI-derived maps as inputs, for both harmonized and non
harmonized NIMHANS, along with ADNI separately. The
results of the experiment are shown in Table VI.

TABLE VI. Results of CN/AD classification for the concatenated
CNN model.

T1 +
DWI-FA

T1 +
DWI-MD

T1 +
DWI-RD

T1 +
DWI-AxD

Trained on ADNI and NIMHANS

ADNI

Balanced
Accuracy

0.65 0.82 0.79 0.82

F1 Score 0.56 0.78 0.75 0.79

NIMHANS



Balanced
Accuracy

0.78 0.80 0.90 0.83

F1 Score 0.71 0.73 0.84 0.76

Trained on ADNI and harmonized NIMHANS

ADNI

Balanced
Accuracy

0.65 0.64 0.88 0.69

F1 Score 0.54 0.57 0.85 0.64

Harmonized
NIMHANS

Balanced
Accuracy

0.72 0.96 0.93 0.87

F1 Score 0.61 0.94 0.88 0.86

Task performance was better for the concatenated model,
than when using T1w input data alone. Model performance
also improves in most cases when the NIMHANS data is
harmonized. In most cases, the performance is comparable
to that of DWIs used alone as input for the models. Larger
or more diverse training data may further improve model
performance. The best performance was observed when
T1w and DWI-AxD maps were combined. The worst
performance was in the case of T1w and DWI-FA images
concatenated as inputs. The performance was also slightly
better for the trained model on the holdout NIMHANS
dataset, as compared to the ADNI holdout test dataset.
Again, these results are comparable to those obtained when
training on larger samples of the ADNI dataset [27].

We also visualized saliency maps using Grad-CAM [28] for
the best performing model in both experiments for Brain
Age prediction and CN vs Alzheimer’s Disease
Classification. In Fig. 6, the first column shows the input
image, the second column shows the regions contributing to
model performance and the last column shows these two
images superimposed. We show saliency maps for the best
performing modality from the two experimental setups.

Fig. 6. Saliency maps for both tasks for the best performing input types.

V. CONCLUSION AND FUTURE WORK

Using diverse datasets, we benchmarked CNN models for
two common tasks in dementia research - brain age
prediction and AD classification. We examined how well a
model trained on an open dataset generalized to a cohort of
different ancestry that was not seen during training; we also
assessed performance improvements when the cohorts are
mixed to create the training datasets. In general,
performance improved after harmonizing the datasets using
a deep learning model based on unsupervised 3D
CycleGAN. Training the models on a combined dataset
featuring diverse cohorts also improved performance on
these tasks. When smaller datasets are available for training,
AD classification was more accurate when based on
DWI-derived maps, compared to T1w images. DWI image
modalities may complement T1w images for other
prediction tasks [28,29]. A concatenated model with
multiple image modality inputs also outperformed a model
using only T1w MRIs.

In future, we plan to include matched T1w and
DWI data, from larger, more diverse datasets, scanned with
additional protocols, to comprehensively evaluate model
performance. Performance may improve with more
advanced diffusion MRI metrics, such as TDF-FA (which
computes a tensor distribution function from single-shell
diffusion MRI, and weights the FA appropriate when
multiple crossing fibers are detected within a voxel). We
will also evaluate other image harmonization techniques
including StyleGANs [9], VAE-GANs [30], or CALAMITI
[31], to improve out-of-domain generalizability. These
approaches can make data from diverse scanners and
protocols more comparable, mitigating domain shift.
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