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Strategic Optimization for Worst-Case
Augmentation and Classification

Jen-Tzung Chien , Senior Member, IEEE, Mahdin Rohmatillah , and Chang-Ting Chu

Abstract—Adversarial data augmentation techniques have re-
cently demonstrated potential in enhancing the robustness of ma-
chine learning models by identifying potential worst-case data
augmentation. However, most of the existing methods implemented
a single augmentation strategy for different instances through a
process of greedy search, resulting in suboptimal quality of the
generated data. Furthermore, previous studies that incorporated
reinforcement learning (RL) to apply unique augmentation strate-
gies required high computational cost, as it necessitated a child
network to compute the reward during the optimization process.
Given these limitations, this study introduces a strategic adversarial
data augmentation approach that leverages RL to search for and
emulate the worst-case variations through a sequence of augmen-
tation actions. By defining a reward function with an information-
theoretic perspective along with the proper definition of state space,
a proficient strategy for stacking multiple augmentation strategies
can be carried out in an inexpensive way and can be smoothly inte-
grated into classifier training, thereby enhancing model robustness
against unseen noises. The proposed adversarial training method
was evaluated on ten different types of unseen human-readable
noises across six distinct text classification tasks. Experimental
results indicate that the proposed method significantly improves
model robustness in compensating for unseen noises.

Index Terms—Adversarial learning, model robustness, policy
optimization, text classification, worst-case augmentation.

I. INTRODUCTION

F INE-TUNING approach has been considered as one of the
most important techniques in deep learning areas. Most

of the state-of-the-art result (SOTA) results were achieved by
utilizing this method which is initiated by building a strong
model which has been trained from a very large dataset, then
the learned model is fine-tuned to any downstream task. In
the natural language processing (NLP) domain, the pre-trained
language models (PLMs) are mostly built by using transform-
ers [1], [2], [3], [4], trained with an abundance of corpus taken
from various datasets. However, the robustness of PLMs in
the NLP domain presents a significant challenge. Generating
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attacks for NLP models is relatively straightforward compared
to computer vision (CV) models, as minor modifications to the
original sentence, such as word elimination or changing singular
to plural words, can alter the classifier prediction. This issue is
further compounded by the assumption in traditional learning
procedures that training and test data distributions are identical.
In contrast, noisy input data from different distributions are
common in the model implementation. Several studies have
demonstrated that PLMs struggle to handle unintended noisy
inputs and specifically designed attacks based on certain aug-
mentation methods, such as synonym substitution [5], [6], or
character-level augmentation [7], [8], resulting in significant
degradation in model accuracy. Interestingly, humans can ac-
curately interpret the meanings of sentences even with the same
generated perturbations. This discrepancy reflects the need for
improving the robustness in PLMs, particularly in handling the
unseen noises and adversarial attacks [9].

To enhance the robustness of the model, it is crucial to
meticulously design adversarial training, which incorporates
both attack and defense strategies. This can be achieved through
the generation and utilization of augmented instances, where
exploration and exploitation are respectively considered. The
attack strategy through adversarial data augmentation (ADA)
have been proposed to bolster model robustness in the fields
such as machine translation [10] and text classification [6],
[7], [8], [11], [12], [13]. However, these methods employed a
greedy search and required heuristic rules during the search
process to generate adversarial instances, which could poten-
tially constrain the quality of using adversarial data for robust-
ness optimization. Furthermore, the implementation of greedy
search will limit the variation of adversarial instances generated
from an identical input sentence. Other works have proposed a
series of augmentation actions utilizing reinforcement learning
(RL) approaches [14], [15], inspired by the AutoAugment [16]
paradigm that adheres to the neural architecture search (NAS)
framework. However, the necessity for either a child network
to generate reward signals or external knowledge to define the
action space in an RL environment [17] could potentially cause
the computational issues and hinder the performance of the
augmentation policy. In an attempt to alleviate this complexity,
a fixed stack of augmentation actions has been proposed [18].
Despite demonstrating the promising performance, fixing the
strategies to the whole data could not really simulate the worst-
case data augmentation scenario.

This study aims to develop an efficient and effective learning
algorithm that enhances the model robustness. This algorithm
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involves the optimal search for distinctive stacking augmentation
strategies, referred to as the attack strategies, in individual
data points. These are paired with the corresponding defense
strategies [19] to optimally utilize the augmented data, thereby
improving model performance against unseen noises. In par-
ticular, a novel RL algorithm, based on REINFORCE [20], is
reformulated to address the exponential-growth search space
resulting from the distinctive augmentation strategies. Inspired
from an enhanced variant of ADA, which has demonstrated
success in the field of computer vision [21], this paper in-
troduces an information-theoretic reward setting derived from
information bottleneck (IB) principle for finding the optimal
attack strategies. The issue of generalization by compressing
the neural model [22] is addressed. Therefore, the adversarial
learning scenario incorporates not only the cross-entropy loss
for text classification but also the uncertainty modeling from IB
principle to address the generalization to unseen noises. For the
defense strategy, in addition to IB implementation, two regular-
ization objectives based on the Jensen-Shannon divergence and
the supervised contrastive loss are proposed to meet local and
global constraints, respectively. The efficacy of the proposed
method is demonstrated by evaluating different types of unseen
perturbations to test the robustness of target model in various
text classification tasks.

The contributions of this work can be summarized as fol-
lows: Firstly, a novel adversarial data augmentation is pro-
posed, which involves distinctive transformation strategies for
individual data, thereby enhancing the diversity of augmented
data. Secondly, a new strategic optimization is introduced to
address the exponential-growth search space resulting from the
potential for various transformations, while maintaining the
computational feasibility. Thirdly, a new information-theoretic
reward setting for the RL policy to find the best augmentation
strategies is derived, along with additional constraints to provide
meaningful feedback during the policy optimization. Lastly, a
range of evaluation sets involving different noises are examined
to demonstrate the robustness of the model which is achieved
through the strategic attack and defense.

The presentation of this work is organized as follows.
Section II addresses the fundamentals of worst-case generaliza-
tion. Section III surveys the solutions to strategic and adversarial
augmentation. Section IV details the worst-case augmentation
where the adversarial and informative attack and defense are
performed. Section V reports a series of experiments with the
elaborated robustness evaluation and behavior analysis. The
findings of this work are summarized in Section VI.

II. WORST-CASE GENERALIZATION

Fig. 1 illustrates the concept of worst-case generalization.
Given a set of clean training data from source distribution P0,
the goal is to generate the examples that tackle the worst-case
augmentation problem to expand the model coverage for pos-
sible unseen noisy inputs. For example, T1 might be composed
of spelling errors of some clean data distributed by P0, and T2

might be another kind of noisy input such as back-translation
error. In order to train a model in a single source domain P0

Fig. 1. Illustration for single domain generalization for unseen noisy inputs
following the worst-case augmentationP .P0 is the clean data distribution. Each
Ti is a different type of noisy input that happens in a target domain.Si represents
different unseen source data in a global domain.

[23] and extend it to an unseen noisy data domain P [24], this
study formulates the following worst-case problem in a form of
minimax optimization

minimize
θ∈Θ

{
sup
P
{E[L(X,Y ; θ)] s.t. Dθ (P0, P ) ≤ d}

}
(1)

where θ ∈ Θ is the parameter of a target classifier, X ∈ X and
Y ∈ Y are the data points and the corresponding labels of a
training set D = {X,Y }, respectively, L : (X ,Y)×Θ→ R is
the loss function for worst-case problem, and Dθ represents
the distance metric. The solution to this problem would like
to assure that the resulting model maintains its performance on
the original data distribution P0 when dealing with the noisy
data distribution P which is a neighbor away from P0 within
a distance bound d. The distance metric is defined in a latent
semantic space. Even though the text inputs are far away from
their original appearances, a model gained by the worst-case
data augmentation will be robust and representative.

In general, Wasserstein metric can be used as the distance
metric Dθ to measure the distance in latent semantic space Z
[25]. Using neural network as a target classifier, the parameters
θ = {θe, θc} consist of θe for encoding a raw text into an
embedding as well as θc for finding the outputs from classifi-
cation layer. Let cθ : Z × Z → R+ ∪ {∞} denote the positive
transportation cost for moving the mass from original data point
(x0,y0) to the augmented data point (x,y) which is measured
by their latent embeddings z0 = f(x0; θe) and z = f(x; θe).
This cost is infinite if the label y differs from its original label
y0, and is defined as

cθ((x0,y0), (x,y)) =
1

2
‖z0 − z‖22 +∞ · 1{y0 �= y} (2)

where 1{·} is an indicator. Considering the probability masses
P and P0 represented in semantic space Z , the distance metric
Dθ can be expressed as

Dθ(P0, P ) = inf
M∈M(P0,P )

EM [cθ((X0, Y0), (X,Y ))] (3)

where the expectation is operated over the greatest lower bound
of probability couplings M ∈M(P0, P ). Unfortunately, the
supremum over probability distributions in (1) is computation-
ally intractable. Then, the Lagrangian relaxation with a penalty
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parameter ρ is applied to rewrite it as

minimize
θ∈Θ

{
sup
P
{EP [L(X,Y ; θ)]− ρDθ(P0, P )}

}
. (4)

This paper presents a strategic optimization to build an aug-
mented target distribution P around P0 according to (4) by
searching for a series of augmentation strategies which is differ-
ent from the previous works [5], [6], [7], [8] where the greedy
method was used to identify a single augmentation strategy.

III. AUTO AUGMENTATION

This paper presents strategic and adversarial learning for data
augmentation which tackles the optimization problem for worst-
case generalization. Some related works are surveyed.

A. Strategic Augmentation

Designing a proper strategy for data augmentation in natural
language tasks has emerged as a compelling research area,
driven by the aspiration to replicate the success of strategic
augmentation demonstrated in computer vision (CV) tasks [16],
[26]. Over recent years, numerous studies have endeavored to
leverage established techniques in text augmentation, such as
back-translation [27], data noising [28], and easy data augmen-
tation (EDA) [29], as their primary augmentation strategies.
However, the findings, as evidenced in [30], have only shown
suboptimal performance due to the simplistic nature of their
learning processes. These studies predominantly employed the
self-supervised augmentation, utilizing either a distance met-
ric or a singular augmentation policy like back-translation. In
addition, the other research has proposed a series of augmen-
tation actions using reinforcement learning (RL) methods [14],
[15], drawing inspiration from the AutoAugment [16] paradigm,
which conforms to the neural architecture search (NAS) frame-
work. Nevertheless, the requirement for either a child network
to generate reward signals or an external knowledge to define
the action space in an RL environment could potentially re-
sult in computational challenges and limit the performance of
the augmentation policy. To mitigate the issue of computation
complexity, a fixed stack of augmentation actions has been
suggested [18]. Although this approach has shown promising
performance, applying the fixed strategies to the entire dataset
may not be effective in mimicking the worst-case data augmen-
tation scenario.

B. Adversarial Augmentation

Adversarial data augmentation (ADA) has been investigated
thoroughly in recent years as a means to improve model robust-
ness for specific adversarial attack. ADA aims to expand the
search space or coverage area by introducing additional mean-
ingful data during model training to overcome adversarial attack
that possibly occurs in real-world applications. Previously, most
studies have employed a greedy search scheme to identify the
adversarial data [6], [7], [8], [13], [31]. Although this scheme
can generate potential adversarial instances, the deployment
of the greedy search restricts the exploration for worst-case

data augmentation. This is due to the deterministic nature of
the greedy method, which invariably produces identical out-
puts given identical inputs. However, in a worst-case scenario,
multiple adversarial examples may originate from the same
input. Several previous greedy-based methods also necessitated
the pre-defined heuristic and linguistic rules [11], [12], poten-
tially escalating the time complexity of these greedy methods.
Alternative strategies have utilized the adversarial training to
develop a rewriter model [32], designed to manipulate inputs to
facilitate accurate classification by the classifier. Regrettably, the
incorporation of an additional text rewriter model can increase
inference time, particularly when the text rewriter model is
constructed with large language models (LLMs) such as T5 [33].
Additionally, some of the previous works have also attempted
to enhance model robustness through representational augmen-
tation by giving perturbation in the embedding level [34], [35].
Unfortunately, it may lose the original semantic interpretability.
A further limitation of previous studies is that the majority of
works were evaluated by using the same attack procedure that
was introduced during adversarial training [35]. In contrast,
in practical applications, a variety of noise types may attack
the model, suggesting that model evaluations should consider
a range of unseen noises. In contrast to these conventional ap-
proaches, this study proposes a novel method that contemplates a
unique sequence of augmentation strategies for each data point,
thereby enhancing the quality and diversity of the generated
adversarial data. To decrease computational complexity while
enlarging the search space of potential adversarial augmentation
strategies for each instance, a learning algorithm predicated on
RL is introduced. By defining a reward function in accordance
with the IB principle, the worst-case augmentation is imple-
mented without requiring any child network. Furthermore, it is
crucial to examine an algorithm capable of not only addressing
specific attacks but also enhancing the robustness of a model
against unseen noises. Therefore, a variety of diverse evalua-
tions considering different kinds of unseen readable noises are
proposed to emulate real-world scenarios.

IV. WORST-CASE AUGMENTATION

This study presents an implementation of a worst-case aug-
mentation strategy through a systematic exploration of vari-
ous augmentation strategies. The proposed augmenter, which
employs the REINFORCE algorithm [20], is depicted at the
top of Fig. 2. The policy or the REINFORCE augmenter with
parameter θa arranges a series of augmentation operations to
generate the worst-case examples. The quality of the generated
adversarial data is optimized by maximizing the cumulative
reward based on the IB principle. Following the completion
of the REINFORCE augmenter training, as illustrated at the
bottom of Fig. 2, the generated data are employed to enrich the
generalization and robustness of the target classifier by mini-
mizing the cross entropy (CE) loss LCE. The overall structure
emulates a standard generative adversarial network (GAN) [36]
with the REINFORCE augmenter functioning as the generator
and the target classifier acting as the discriminator. IB loss [21]
and several regularization losses, including consistency loss [37]



114 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 33, 2025

Fig. 2. Adversarial training for generator (attack) and discriminator (defense).
Training of REINFORCE augmenter for finding the worst-case augmentation
strategy is illustrated at the top. The procedure for training the target classifier
with the worst-case augmented data is shown at the bottom. τi is the final
augmented data of the ith data in mini-batch. G and L denote the average return
and loss of a mini-batch, respectively.

and supervised contrastive loss [38] are introduced to maximize
the adversarial data utilization.

A. Strategy Search for Worst-Case Augmentation

This subsection explains the proposed attack strategy to en-
able distinctive augmentation strategies for each data point,
which cannot be achieved by applying greedy search.

1) Strategic Optimizer for Worst-Case Augmentation: To
cope with the worst-case generalization in (4), it is essential to
arrange dual representation and derive an effective reward setting
that can meet the goal of fulfilling worst-case augmentation. For
any distribution P0 and any ρ ≥ 0, solving (4) based on a loss
function L : (X ,Y)×Θ→ R [39] is now handled by

sup
P
{EP [L(X,Y ; θ)]− ρDθ(P0, P )} = Ex0∼P0

[�ρ(x0,y0; θ)]

(5)
where �ρ(x0,y0; θ) is seen as the robust surrogate loss [40]

�ρ(x0,y0; θ) � sup
x∈X
{L(x,y0; θ)− ρcθ((x0,y0), (x,y0))}.

(6)
We can satisfy∇θ�ρ(x0,y0; θ) = ∇θL(x�

ρ,y0; θ) by using the
worst-case sample x�

ρ estimated by [41]

x�
ρ = argmax

x∈X
{L(x,y0; θ)− ρcθ((x0,y0), (x,y0))}. (7)

In (6) and (7), the condition of label change yo �= y after
augmentation is not allowed due to the infinite cost in (2). In
general, solving the penalty problem in (4) is equivalent to min-
imizing the robust surrogate loss �ρ defined in (6). Under suitable

condition, the minimization of �ρ is identical to minimize the
given loss L for the worst-case perturbed data x�

ρ of x0 using
the current model parameter θ. In contrast to the prior works that
searched the worst-case examples according to the maximization
problem as shown by (7), this paper develops a novel solution
that alternatively treats the worst-case data augmentation as a
reward maximization problem by leveraging the benefits from
reinforcement learning (RL).

The way to define the state representation is a crucial factor
in enabling RL to feasibly search for an optimal augmentation
strategy for each data point. In previous studies that utilized RL
to identify optimal augmentation strategies in CV domain [16],
[26], the states were defined based on the augmentation method
applied to the entire dataset, such as the augmentation of images
by a rotation of 15 degrees. As a consequence, the reward signal
for RL was obtained in an expensive way, which was taken
from the validation accuracy of a child model once the whole
dataset was traversed by the selected augmentation action. In
contrast, the current study defines the state as the embedding of
each individual input sentence. Consequently, the reward signal
can be obtained immediately after generating an augmented
data. The initial state s0 for ith original sentence xi

0 can be
obtained from s0 = f(xi

0; θe), and st = f(xi
t; θe) indicates the

state of xi
t where ith sentence has been transformed by REIN-

FORCE augmenter for t times. REINFORCE [20] is a standard
policy gradient method that maximizes the cumulative reward
or return over a trajectory of length T . Return is defined as
Gt =

∑T−1
t′=0 γ

t′rt+t′+1. γ is a decay factor and rt is the reward.
REINFORCE algorithm is performed by updating the augmenter
parameter θa via the following gradient ascent

θa ← θa+ηa∇θa log πθa(at|st)Gt (8)

where ηa is a learning rate and πθa(at|st) is the policy proba-
bility of an action at. The same embedding parameter θe is used
at each time step. By assigning individual action in each step, a
series of stacked augmentations are performed to generate the
worst-case adversarial examples which will be used to enhance
the model robustness.

2) Reward for Worst-Case Reinforcement Learning: This
study accomplishes the task of addressing the worst-case gen-
eralization by resolving (4), or equivalently by minimizing (6).
This process is utilized to identify the optimal augmentation
strategy to produce the worst-case sample x�

ρ. This is done by
following the objective of maximizing the subsequent reward

rt = L(xt,y0; θ)− ρcθ((x0,y0), (xt,y0)). (9)

xt is the augmented form of original sample x0 after transfor-
mation for t times. Since the RL agent is trained to maximize
the reward, in every episode the agent learns how to arrange a
sequence of actions to produce the augmented sample xt that
gradually gets close to the worst-case sample x�

ρ in (7).
However, it is necessary to refine the reward as defined in

(9) to mitigate the influence of previously executed actions,
thereby reflecting the true impact of action at. To cope with this
issue, this study employs the reward function to capture the goal
reaching the problem [42], which is characterized as the distance
between the current state position and the goal position. In this
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Fig. 3. Illustration of a failure that may occur if (9) is adopted as the reward
function for RL. The obtained reward r2 once a2 was conducted cannot reflect
the real impact of a2 towards reaching the worst-case augmentation goal,
because the influence of previous action a1 is still considered. This failure can
be avoided by using a new reward function defined in (10).

investigation, the worst-case augmentation datax�
ρ is considered

as the goal. Consequently, the reward can be represented as the
distance between the current observation and the goal obser-
vation, expressed as r(st, gt, at, st+1) = −‖st + gt − st+1‖2,
where gt is the ultimate goal the agent aspires to attain, and st is
the current observation. By implementing this reward function,
the efficacy of at can be evaluated from how much the distance is
shortened to reach the final goal gt from the previous observation
st−1 due to conducting an action at. By integrating this reward
scenario into (9), a new reward function that takes into account
the influence from the previous actions can be defined as

rt = L(xt,y0; θ)− ρcθ((x0,y0), (xt,y0))

− L(xt−1,y0; θ) + ρcθ((x0,y0), (xt−1,y0)). (10)

The subtraction with the previously obtained reward by the agent
is intended to reveal the pure reward that the agent achieves after
conducting the latest action at. Considering the sequence of text
augmentations illustrated in Fig. 3, if we define reward as (9),
we will obtain r2 = 30 which does not represent the true reward
after conducting a2. This is because (9) directly compares x2

(which contains the impact of a1) with x0. Based on the new
reward in (10), the true reward which is 20 can be obtained.

Importantly, the preservation of label y0 is required to avoid
infinite loss in (2). Practically, the randomness of behavior policy
can be suppressed by only considering the distance penalty but
without taking the term∞ · 1{y0 �= y} into account. However,
this reward definition is still insufficient to prevent the extreme
case of augmentation such as deleting all tokens of a sentence
until leaving only one comma when the original sentence is very
short. Therefore, this work adopts a cosine similarity constraint
to ensure the property of label-preserving during augmentation
procedure

r�t =

{
0, if cos(s0, st) < α

rt, else.
(11)

where r�t is the final reward after considering the constraint
over the states or semantic embeddings. If the cosine similarity
between the embeddings of the original sentence s0 and the
augmented sentence st falls below a predefined thresholdα, this

scenario is considered as a label-altering augmentation, thereby
nullifying the reward. Consequently, the augmentation episode
for the sentence is terminated. This setting encourages the policy
to maximize the reward by seeking the most challenging aug-
mentation strategy within a suitable similarity threshold. Due to
the implementation of the constraint in (11), this work eliminates
the need for evaluators to assess the validity of the augmented
data generated by the model.

3) Information Bottleneck Reward Maximization: The target
lossL is maximized for exploration in worst-case augmentation
where the cross entropy loss LCE is a common loss function
for classification task. However, a meaningful loss defined
in L : (X ,Y)×Θ→ R can be consolidated to improve the
worst-case generalization. This paper presents an informative
and strategic augmentation where a new loss function is formed
and optimized through the IB reward. Accordingly, the reward
rt in (10) is refined to maximize the loss in (6) for worst-
case generalization in accordance with IB loss LIB(X,Y ; θ) =
I(X;Z)− I(Y ;Z) where Z is the compressed embeddings
from inputs X = {xi}Ni=1, and this Z is used for prediction of
targetsY = {yi}Ni=1. An adversarial augmentation is performed
by maximizing LIB during attack stage to find the worst-case
augmentation strategy and minimizingLIB to estimate the target
classifier with the compressed latent space Z in the subsequent
defense stage. Typically, a target model with the compressed Z
is hard to generalize for out-of-domain data due to the com-
pression loss. In order to overcome this issue, we train a policy
augmenter by leveraging the reformulated IB loss where each of
mutual information (MI) components, I(Y ;Z) and I(X;Z), is
individually estimated [43]. First, MI between target label and
latent compression I(Y ;Z) can be revealed for prediction risk
where the cross entropy (CE) loss

LCE(X,Y ; θ) = −
N∑
i=1

C∑
c=1

yic log pθ(y
i
c|xi) (12)

is adopted to reflect −I(Y ;Z). Here, yi = {yic} is a one-hot
output vector with C classes. Meanwhile, MI between input
data and compressed embedding I(X;Z) can be approximated
by a simple entropy based on the data processing inequality
I(X;Z)≥I(X; Ŷ ) [21], [44] where Ŷ is the predicted label.
Furthermore, because of the property of label preserving in
worst-case augmentation, the predicted label Ŷ from an input
X is fixed which results in conditional entropy H(Ŷ |X) = 0.
The inequality is used to find lower bound of I(X;Z) as

I(X;Z) ≥ I(X; Ŷ ) = H(Ŷ )−H(Ŷ |X) = H(Ŷ ) (13)

where H(Ŷ ) can be directly calculated from the prediction of
model. Alternatively, the lower bound of IB loss

L̃IB(X,Y ; θ) = LCE(X,Y ; θ) + βH(Ŷ ) (14)

is maximized to find the worst-case augmentation with a hyper-
parameter β. Redefining rt in (10) by replacingL(xt,y0; θ) and
L(xt−1,y0; θ) with the corresponding IB losses L̃IB(xt,y0; θ)

and L̃IB(xt−1,y0; θ) in (14) is similar to encourage more
stochastic action due to the entropy maximization, which pro-
motes more policy exploration for finding as many as possible
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worst-case augmentation scenarios. Therefore, considering (10)
and (11), the novelty of this work is to introduce the reward
function derived from the information bottleneck (IB) theory.
The generalization and robustness are improved via uncertainty
modeling [45] in IB while the transportation cost cθ is minimized
to constrain the distance to original data.

B. Adversarial Augmentation and Classification

This study works on an adaptive and adversarial data aug-
mentation where a policy augmenter is jointly trained with a
target classifier according to an informative and regularized
objective via reinforcement learning. Adversarial attack and
defense are tightly coupled and collaboratively performed [46].
Consistency learning and contrastive learning are implemented
for regularization in defense stage.

1) Adversarial Learning for Attack and Defense: Impor-
tantly, the target classifier and the policy augmenter are jointly
trained to improve the generalization of a model and assure the
robustness to unseen noisy inputs. A kind of adversarial learn-
ing [47] is performed to minimize the upper bound of IB loss L̃IB

for text classifier (defense) and simultaneously maximize L̃IB for
policy augmenter (attack). Policy augmenter and text classifier
are associated with the generator and the discriminator in adver-
sarial learning based on GAN [36], [48], [49], respectively. The
augmentation strategy is designed to explore the search space in
a way of finding the most diverse augmentation with the least
classification inconsistency between augmented and original
sentences. Conceptually, such an adversarial learning for aug-
mentation and classification is viewed as finding the worst-case
augmenter to attack for unknown data regions and at the same
time estimating the best classifier to defend for the most consis-
tent performance. Following the perspectives of exploration and
exploitation in RL, this study builds a robust learning machine
where the augmenter explores as much as possible the unknown
states in data space and the classifier exploits its best capability
by utilizing the integrated dataset. In order to exploit the benefit
of those generated data, additional model regularization can
be introduced to improve the performance of target classifier.
Regularization is imposed to further enhance the robustness of a
target model. In general, there are two types of regularization for
data exploitation. The first one is the local regularization that is
implemented by considering the relation between individual data
points with the corresponding augmentation. The second one is
the global regularization which is performed by considering the
relation among individual data points in a mini-batch. Following
this direction, this study presents two regularization terms to
carry out a new target classifier along with the IB objective L̃IB

which is maximized for text augmenter and minimized for target
classifier.

2) Regularization for Defense and Implementation: For fur-
ther exploiting the benefit of the augmented data, this paper in-
troduces additional regularization for classifier by encouraging
the consistency between original and augmented data as well as
leveraging the contrastive information among different classes.
The consistency and constrastive objectives are related to the
local and global regularization, respectively. Consistency loss

is designed to exploit the augmented data by strengthening the
target model to aware for a condition that each data point and
its worst-case augmentation have close semantic meaning. The
prediction yi of the ith data point xi is forced to be consistent
with the corresponding augmented data (xi)�. The consistency
(CT) loss is therefore defined as

LCT =

N∑
i=1

JS(pθ(y
i|xi), pθ(y

i|(xi)�) (15)

where the Jensen-Shannon (JS) divergence is measured by using
the conditional likelihood for classification pθ(yi|xi). We use JS
divergence because it is bounded and more stable in comparison
with Kullback-Leibler (KL) divergence [18], [50]. On the other
hand, a supervised contrastive (SC) loss [38] is leveraged to im-
pose the global regularization where the generation of worst-case
augmented data is built upon the awareness of class information.
Contrastive learning is fulfilled by leveraging the class infor-
mation which regularizes the model to learn among different
classes. Accordingly, SC loss is introduced and calculated by

LSC = −
N∑
i=1

1

Nyi − 1

N∑
j=1

1i�=j1yi=yj

× log
exp((f(xi; θe))

�f(xj ; θe)/ε)∑N
k=1 1i�=k exp((f(xi; θe))�f(xk; θe)/ε)

(16)

where Nyi denotes the total number of examples in a mini-batch
that have the same label yi, and ε is a temperature parameter
that controls the separation of classes. This contrastive loss is
measured via the contrastive information using different sam-
ples xj and xk in numerator and denominator, respectively, by
considering the labels yi and yj of different samples xi and xj .
The regularized loss L̃ for adversarial augmenter and classifier
is constructed by

L̃((X,X�), Y ; θ) = L̃IB + λr1LCT + λr2LSC (17)

where X� = {(xi)�}Ni=1 and λr1 and λr2 denote the regulariza-
tion parameters for adjusting the importance of local and global
regularization, respectively.

The whole algorithm of the proposed worst-case augmenter
and classifier (WAC) is implemented by Algorithm 1 where n,
Nc, andT , denote the numbers of performing attack and defense,
training steps for classifier, and augmenting steps for each data
point, respectively. There are three phases for training the target
classifier and policy augmenter based on worst-case augmenta-
tion. The first phase is to train the target model by only utilizing
the set of clean data. After obtaining the well-trained target
model, the policy augmenter is trained in the second phase to deal
with the weakness of target classifier by augmenting adversarial
examples. Lastly, in order to improve the model robustness
and tackle the generalization to unseen noisy inputs, the target
model is optimized by using the worst-case examples which are
synthesized by policy augmenter from the second phase. Since
the proposed method follows the adversarial learning procedure,
the model can be further improved by applying attack in the
second phase and defense in the third phase for several times.
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Algorithm 1: Training for the Worst-Case Augmenter and
Classifier (WAC).

Adam [51] and AdamW [52] are used as the optimizers to train
policy augmenter and target classifier, respectively.

V. EXPERIMENTS

A series of experiments were conducted to analyze the prop-
erties of the proposed method through evaluation of different
tasks for text classification.

A. Experimental Settings

In this study, text augmentation was performed under
five discrete actions in the action set given as A = {at} =
{RD,RS,SR,SI,STOP} which included random deletion, ran-
dom swap, synonym replacement, synonym insertion and stop
augmentation with the examples shown in Table I. Stop action
means that agent decides to stop augmenting the sentence. A
number of datasets were adopted in the evaluation and detailed
in what follows.

TABLE I
EXAMPLES OF AUGMENTED AND ORIGINAL SENTENCES VIA FIVE DIFFERENT

AUGMENTATION ACTIONS

TABLE II
SUMMARY OF NUMBER OF CLASSES (CLASS), AVERAGE LENGTH OF

SENTENCES (LEN), VOCABULARY (VOC) SIZE AND OTHERS IN DATASETS

1) Experimental Datasets: There were six tasks which were
collected to investigate different methods for text classification.
Summary of different statistics in individual datasets are pro-
vided in Table II.

1) Stanford Sentiment Treebank (SST) [53] is a sentiment
classification dataset. Most of sentiment contents were
collected from the movie reviews in Rotten Tomatoes. This
work adopted both the binary classification in SST-2 and
the fine-grained classification in SST-5.

2) Customer Review (CR) dataset [54] contains customer
reviews of five different electronics products. In the eval-
uation, only the text features were leveraged to predict the
sentiment.

3) Multi-Perspective Question Answering (MPQA) [55] is an
opinion corpus which contains news articles from a wide
variety of news sources manually annotated by opinions
and other private states. In the evaluation, MPQA version
1.0 was used to do polarity classification.

4) SUBJ dataset is comprised of movie-review documents,
which are categorized based on their overall sentiment
polarity and subjectivity status.

5) TREC-6 [56] is a dataset consisting of open-domain
and fact-based questions divided into six broad semantic
categories.

2) Comparison From Different Perspectives: In contrast to
previous studies that evaluated their methods on less advanced
models such as LSTM [57] and BERT [58], this paper demon-
strates the efficacy of the proposed strategic and adversar-
ial training on the robust and high-performance RoBERTa
model [59]. This approach provided the compelling evidence.
If the proposed adversarial training yields performance nearly
identical to the original RoBERTa, it would imply that the pro-
posed method does not offer significant benefit. Three contextual
ADA methods including DeepWordBug (DWB) [8], PWWS [6]
and TextBugger [7] were selected as the baselines as all of them
show competitive performances. As the proposed worst-case
augmenter and classifier (WAC) also conducts the contextual
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TABLE III
COMPARISON OVER DIFFERENT CONTEXTUAL ADVERSARIAL DATA AUGMENTATION METHODS FROM DIFFERENT PERSPECTIVES

TABLE IV
HYPERPARAMETER SETTINGS FOR CLASSIFIER TRAINING IN SIX

CLASSIFICATION TASKS

augmentation, Table III shows the differences between WAC and
the contextual ADA baselines in terms of goal, constraint, trans-
formation, and search. Firstly, the goal of all methods is basically
untarget as the attacker tries to perturb the original classification
output without targeting a specific class. However, the proposed
WAC is optimized based on the information bottleneck objective
which can model the uncertainty, as shown in (14). Secondly,
the constraint pertains to the rules for valid transformation.
While TextBugger uses an overlap constraint to determine the
validity of a perturbation based on character-level analysis, WAC
maintains the semantic closeness in data augmentation through
word-level analysis. It does not necessitate the constraints of
applying the USE embedding [60] or a predetermined Lev-
enshtein distance to assess the generated examples. Instead,
the validity of augmented data is ascertained via the obtained
reward. Thirdly, the transformation is the action to transform
the data. Different from the other methods, the transformation
in WAC is flexible and adaptive as it is designed by stacking
the actions. Lastly, the search is a method to explore the space
of potential transformation. WAC utilizes RL to reduce the
computation cost without the heavy overhead like in the greedy
search with word importance ranking (WIR). In addition to
the contextual augmentation methods, a strong representational
augmentation, called the adversarial word dilution (AWD) [34],
is also employed as a baseline method. AWD augments the
textual data by diluting the embedding of highly positive words
with the unknown-word embedding.

3) Hyperparameter Settings: Since PWWS [6], DWB [8],
and TextBugger [7] were not originally applied to RoBERTa,
their hyperparameter settings were set by referring to [61] and
original RoBERTa [59]. In order to make a fair comparison
among adversarial methods, the total number of attacks and
defenses were set identically, and the proposed method only
traversed the whole dataset once. Table IV shows the hyper-
parameters for individual datasets in the experiments which

TABLE V
AN ORIGINAL SENTENCE AND ITS NOISY SENTENCES GENERATED BY USING

10 DIFFERENT NOISES

were empirically selected according to the validation accuracy
obtained in each setting. The other hyperparameters such as
temperature ε, decay factor γ and relaxation penalty ρwere fixed
as 0.07, 0.99 and 1, respectively.

4) Construction of Noisy Test Set: The system robustness
was evaluated on various unseen noisy data. The unseen noisy
datasets were constructed to simulate the potential disturbances
that could arise in real-world applications. These disturbances
encompassed the character, word, and sentence-level noises. A
total of ten augmentation methods were utilized in the con-
struction of the noisy test set. These methods were SEDA,
EDA [29], Embed, Clare [62], Checklist [63], Charswap, and
Back-translation [27] from three languages, namely German
(De), Russian (Ru), and Chinese (Zh), and Spell. In further
details, EDA incorporates four distinct augmentation operations:
delete, swap, replace, and insert. SEDA is viewed as an advanced
iteration of EDA. It stacks several augmentation operations
provided in EDA. Embed, on the other hand, augments an input
by substituting its words with synonyms in the word embedding
space, leveraging Glove embedding. Clare, constructed on a
pre-trained masked language model, modifies the inputs con-
textually. It includes three contextualized perturbations: replace,
insert, and merge, which allow for the generation of outputs with
varied lengths. Checklist perturbs the words using transforma-
tion methods provided by CheckList INV testing [63], enabling
a combination of several features such as name replacement, lo-
cation replacement, and number alteration. Charswap augments
the words by swapping characters with the other characters.
Lastly, Spell modifies words based on a spelling mistake dic-
tionary. Table V shows the examples of the noisy sentences
generated by various augmentation methods. Although these
methods are popularly used, the augmented sentences are hard
to understand.
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Fig. 4. Average return obtained by augmenter model after every mini-batch
training on five different seeds in six different datasets.

TABLE VI
AVERAGE ACCURACIES (%) OVER CLEAN AND TEN NOISY TEST SETS

B. Results on Robustness Evaluation

Before evaluating model robustness on the noisy test set,
Fig. 4 depicts the learning curve of the augmenter training
in each dataset which shows that the augmenter model suc-
cessfully learned appropriate policy at the end of the training
step, indicated by high average return, G. The policy augmenter
received the largest average return in the SST-5 dataset as it is
the hardest task considering 5 class labels and long sentences
with large vocabulary size. As a consequence, the classifier
could be easily fooled by the augmenter which resulted in high
L̃IB while still maintaining reasonable cosine similarity. Next,
Table VI presents a comparative analysis of text classification
accuracies, averaged over clean and ten constructed noisy test
set. The findings from six tasks, namely SST-2, SST-5, CR,
MPQA, SUBJ, and TREC-6, are reported. RoBERTa, listed at
the top of the table, was trained without the use of adversarial
training. The highest accuracy in each task is denoted in bold.

Several findings can be drawn from Table VI. Primarily,
in comparison to the baselines, only the proposed WAC con-
sistently outperformed RoBERTa across the six tasks. Upon
averaging the results from the six distinct classification tasks,
it was found that all of the baseline methods performed nearly
equivalently to the standard RoBERTa training. Meanwhile,
WAC was able to enhance the accuracy by over 1.5%, high-
lighting the advantages of employing WAC. In more details,
for the most challenging task, sentiment classification in SST-5
dataset, the other contextual adversarial augmentation using
DWB, PWWS and TextBugger exhibited inferior performance
compared to RoBERTa, trained by only using the clean dataset.
Meanwhile, AWD which applied the representational augmen-
tation by perturbing the embedding space only demonstrated

very small improvement. Next, in the TREC-6 dataset, all meth-
ods showed remarkable performance. This is likely because
the true semantic meaning in the question classification task
can be easily captured even when the sentences are perturbed.
In the SUBJ classification task, the room of improvement is
relatively limited due to the fact that RoBERTa has already
shown a convincing performance. Additionally, SUBJ dataset
has relatively large vocabulary size compared to the other dataset
which makes the generation of adversarial data become very
challenging.

Table VII presents the average accuracies of individual models
under various types of perturbations, with the results averaged
across six datasets. The proposed WAC model exhibited con-
sistent improvement over all baseline models in clean and ten
different noisy conditions. Meanwhile, the other adversarial
methods such as DWB, PWWS, TextBugger, and AWD reported
the accuracies that are comparable to the standard RoBERTa.
In an extreme scenario where RoBERTa exhibited bad perfor-
mance, for instance in the noisy test sets constructed by SEDA,
EDA, Spell and back-translation from Chinese, the benefit of
using WAC became more evident. Notably, WAC maintained
the original performance on the clean dataset, a performance
that the other adversarial models were unable to accomplish.
As the noise level in the perturbations increased, the benefits of
WAC became more significant.

C. Results on Behavior Analysis

To analyze the behavior of the policy augmenter in WAC,
some augmented samples from SST-5 and TREC-6 tasks were
utilized as the examples, as illustrated in Table VIII. It was
observed from these randomly selected examples that the learned
policy tends to function more effectively in longer sentences
compared to shorter ones, as indicated by the cumulative ob-
tained reward. This means that the policy can easily fool the
target model when given by long sentences. The generated
examples typically provide the target classifier with the ability
to manage the perturbations in text classification task. However,
for the shorter sentences, the policy behavior for introducing
perturbations become limited, resulting in the minimal actions.
This leads to the augmented data being easily distinguished by
the target classifier.

Further analysis regarding the policy behavior is provided by
Table IX, which shows the action distribution of the policy in
terms of occupation probability across different attack-defense
rounds in SST-5 and TREC-6. Intuitively, once the target model
learns to defend against the worst-case samples generated by
the policy in the defense round, the policy should adopt different
augmentation strategies to deceive the target model in the subse-
quent attack round. Consequently, the occupation probabilities
of the actions during different attack rounds in training vary.
For instance, in SST-5, it is evident that the policy altered its
strategy in rounds 1, 4, and 5. In contrast, for TREC-6, the
policy exhibited distinct behavior in individual rounds. This
observation demonstrates that the proposed method has the
capability to adaptively find an appropriate strategy to improve
the target model by deceiving it during training.
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TABLE VII
AVERAGE ACCURACIES (%) OVER SIX DATASETS

TABLE VIII
ILLUSTRATION FOR THE STACKED DATA AUGMENTATION IN WAC WITH FIVE ACTIONS (0: RANDOM DELETE, 1: RANDOM SWAP, 2: SYNONYM REPLACE, 3:

SYNONYM INSERT, 4: STOP)

TABLE IX
ILLUSTRATION OF OCCUPATION PROBABILITIES (%) OF DIFFERENT ACTIONS

FOR THE AGENT

Lastly, an analysis of target model was conducted, predicated
on the initial assumption that, given a perfect target model
encoder and perfect label-preserving transformation, the cosine
similarity between the embedding of the original sentence and
that of the augmented sentence should be 1, regardless of the
number of transformations performed by the label-preserving
augmentation operations. Table X shows a phenomenon existed
in the target classifier given by adversarial data and original data
in different attack-defense rounds in which the cosine similarity
between augmented and original data is getting closer to 1 as
the attack-defense round increases. This evidence demonstrates
that the encoder in target classifier treated the embedding of
the augmented sentences identically to the original sentences as
both of target classifier encoder and policy augmenter getting

TABLE X
THE COSINE SIMILARITY BETWEEN ORIGINAL AND AUGMENTED DATA IN

DIFFERENT ATTACK-DEFENSE ROUNDS

closer to the optimum property which follows the predefined
assumption.

D. Human Evaluation on Augmented Data

The evaluation was extended to include a human assessment
for the quality of the generated sentences by various data aug-
mentation methods. This evaluation process involved randomly
sampling 100 instances from the training set. The quality of the
augmented data was measured in terms of fluency and semantic
similarity, focusing on assessing the readability and whether
the augmented data preserved essential information from the
original sentences. Four annotators provided the scores ranging
from 0 to 5. The averaged scores are reported in Table XII. The
generated sentences by using the proposed WAC consisting of a
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TABLE XI
AVERAGE ACCURACIES (%) OVER TEN NOISE PERTURBATIONS FROM WAC WITH DIFFERENT REWARD FUNCTIONS (TOP) AND DIFFERENT DEFENSE STRATEGIES

(BOTTOM)

TABLE XII
HUMAN EVALUATION ON THE AUGMENTED SENTENCES

series of word-based augmentation schemes become challeng-
ing for readers to understand.

Even though the semantic similarity in a subjective eval-
uation is low, the main idea of the proposed WAC focuses
on the semantic similarity in latent space as shown by (11).
The generated sentences have been demonstrated to enhance
the capacity of the trained classifier to handle unseen noisy
sentences, as evidenced by the results in Tables VI and VII.
Such a phenomenon potentially aligns with the worst-case data
augmentation scenario. High fluency or semantic similarity of
the augmented data does not necessarily guarantee improvement
in the model robustness against unseen noises.

E. Computational Complexity Evaluation

The computational complexity was evaluated by comparing
different works with focus only on contextual augmentation
methods for fair comparison. Firstly, compared to the previous
works applying the NAS method [14], WAC has much lower
computational cost. This can be attributed to the WAC setting,
which enables the agent to receive the reward immediately after
the action is executed. Consequently, unlike the NAS learning
setting, there is no necessity for WAC to await the convergence of
the child network to obtain the reward. Next, WAC is compared
with the greedy methods in word-level augmentation [6], [11],
[13]. Let’s define x� as the optimum perturbed sentence. To
obtain x�, the greedy search method should find a word in
vocabulary set V with size |V| that can optimally perturb the
target model. This implies that the greedy method must execute
at most O(|V|) queries in each step. Assume that there are
Nw words in an input sentence and L steps are required to
get x�. The computational complexity considering L steps be-
comesO((|V| ·Nw)

L). Then, it is evident that the computational
complexity of the greedy solution grows exponentially with
the number of steps L. Furthermore, it is important to note
that the aforementioned computational complexity is grounded
only on a single augmentation strategy, specifically the word
substitution. The actual complexity would be higher when the

greedy method selects different augmentation strategies at each
step and applies them to the target word. This substantial com-
putational demand is also reflected in the previous research
employing the greedy search for character-level augmentation
[7], [8].

On the other hand, the complexity of the WAC is substan-
tially reduced because WAC does not need to try all of the
possible scenarios, like greedy search, to produce the worst-case
augmentation. Instead, data augmentation is directly generated
by the model after learning from the reward received to get
the best strategy for data generation. In the evaluation, WAC
demonstrated a reduced computation time in practical imple-
mentation. For instance, in the SST-2 dataset, WAC required
only 234 minutes to generate distinctive adversarial data with
multiple transformation strategies. In comparison, methods like
DWB [8], PWWS [6], and TextBugger [7], all of which imple-
mented a single transformation strategy via greedy search, re-
quired 257 minutes, 625 minutes, and 283 minutes, respectively.
These computation were measured by using a personal computer
equipped with a NVIDIA RTX 2080TI GPU, a 19-10900 K CPU,
and 128 GB Memory.

F. Ablation Study

To evaluate the importance of individual objectives in the pro-
posed WAC, the ablation study was conducted by individually
evaluating each objective in the strategy search for worst-case
augmentation. We set the reward setting by using standard cross-
entropy instead of information bottleneck approach. The results
are shown by Table XI (top), where the performance degradation
is consistently observed in all test sets. This indicates that the IB
based reward was helpful for generating the label preserving data
in worst-case augmentation. Simultaneously, an ablation study
concerning the defense strategy is depicted in Table XI (bottom).
The results show that CT notably contributed to the robustness
of the model indicated by significant performance drop if CT
loss is taken out from the optimization. Meanwhile, SC loss
just gave slight improvement in model robustness. However,
the combination of CT and SC losses considerably enhances
the model robustness, especially in the SST-5, CR and TREC-6
datasets. The source codes corresponding to this study can be
accessed via https://github.com/NYCU-MLLab/.

VI. CONCLUSION

This paper has presented a new adversarial worst-case aug-
mentation to improve the robustness of model classification in

https://github.com/NYCU-MLLab/
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presence of various noises. Different from the previous adver-
sarial data augmentation, both attack and defense strategies were
designed carefully in order to achieve not only the meaningful
data augmentation but also the robust classification by utilizing
the augmented data properly. The worst-case augmenter and
classifier were jointly trained to fulfill attack and defense with the
perspectives of exploration and exploitation from reinforcement
learning, respectively. The attack method was built based on
a reinforcement learning algorithm to enable both distinctive
augmentation strategies and low computation training cost. For
the defense strategy, instead of using the generated examples
only as the additional training dataset and doing a standard
classification learning, a new approach based on information
bottleneck objective with additional local and global regulariza-
tion were implemented for uncertainty modeling. An adversarial
and informative RL solution to efficient augmentation and robust
classification was constructed. From a series of experimental
results, the proposed worst-case augmentation and classifica-
tion showed better robustness in six different text classification
tasks over ten different perturbations compared to the strong
adversarial baseline methods.
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