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Abstract—Abstractive multi-document summarization aims to
generate a comprehensive summary that encapsulates crucial
content derived from multiple input documents. Despite the
proficiency exhibited by language models in text summariza-
tion, challenges persist in capturing and aggregating salient
information dispersed across a cluster of lengthy sources. To
accommodate more input, existing solutions prioritize sparse
attention mechanisms, relying on sequence truncation without
incorporating graph-based modeling of multiple semantic units
to locate essential facets. Furthermore, the limited availability
of training examples adversely impacts performance, thereby
compromising summarization quality in real-world few-shot
scenarios. In this paper, we present G-SEEK-2, a graph-enhanced
approach designed to distill multiple topic-related documents
by pinpointing and processing solely the pertinent information.
We use a heterogeneous graph to model the input cluster,
interconnecting various encoded entities via informative semantic
edges. Then, a graph neural network locates the most salient
sentences that are provided to a language model to generate
the summary. We extensively evaluate G-SEEK-2 across seven
datasets spanning various domains—including news articles,
lawsuits, government reports, and scientific texts—under few-shot
settings with a limited training sample size of only 100 examples.
The experimental findings demonstrate that our model consis-
tently outperforms advanced summarization baselines, achieving
improvements as measured by syntactic and semantic metrics.

Index Terms—Multi-Document Summarization, Graph-
Enhanced Transformer, Few-Shot Learning

I. INTRODUCTION

With a constant influx of new digital information, we
are witnessing an exponential proliferation of textual data.
Documentation plays a crucial role in grasping useful in-
sights in various domains, including healthcare, law, and
science journalism. In fact, workers invest considerable time in
summarizing multiple topic-related documents into a unified
text, whether it involves compiling outcomes from various
lawsuits [1] or detecting key events from collections of news
articles [2]. As a consequence, the proliferation of unstruc-
tured information has expanded the documentation workload,
directly contributing to increased stress and burnout [3]. Even
for attorneys with a high level of expertise, this intricate
task naturally demands hours to accomplish, posing challenges
for timely production [1]. Hence, there is a need to develop
automated tools to accelerate human productivity.

In light of recent advances in natural language processing
(NLP), there has been a surge in interest in abstractive sum-
marization, which surpasses traditional extractive methods by
adeptly paraphrasing the most significant details of documents.

The authors contributed equally to this work.

Automatic text summarization tools play a vital role in help-
ing people access the information they need, including lay
summarization to increase readability and comprehension for
non-experts [4]. In this context, a particularly challenging and
practical task is the processing, identification, and synthesis of
key information from a multitude of related sources, known
as multi-document summarization (MDS) [5]. These assistive
tools have received widespread attention across needs, ranging
from query-focused summarization [6] to opinion summariza-
tion [7]. However, the complexities arising from the large
volume of information and the inherent nature of documents—
which often complement, overlap, or even contradict each
other [8], [9]—contribute to the strong attention that the
research community devotes to the advancement of MDS.

State-of-the-art MDS solutions are predominantly based on
transformers [10], characterized by a structural constraint that
links memory usage directly with input size, making them
excessively resource-intensive when processing long texts.
This limitation restricts the models to read only a fixed
number of tokens,1 introducing complications in MDS as it
results in the truncation of any surplus information. In fact,
unlike single document summarization, MDS methods must
handle multiple texts, whose concatenation can form extremely
lengthy inputs (e.g., 119,072.6 average words in MULTI-
LEXSUM [1]). Therefore, standard sequence-to-sequence mod-
els, such as BART [12], are inadequate for MDS as they
inevitably truncate long inputs, causing information loss and
model degradation [13].2 These problems are further exacer-
bated in real-world low-resource scenarios [15] characterized
by a shortage of labeled instances available for model training
supervision [16]. First, within small and medium organiza-
tions, creating gold-standard summaries from multiple lengthy
documents can be costly, time-consuming, and may necessitate
the expertise of domain specialists. Second, poorly correlated
input–output training pairs3 can hinder effective learning [17].
Therefore, few-shot MDS emerges as a significant research
area that deserves more attention from the NLP commu-
nity [18]. Addressing these limitations presents an opportunity
to accelerate real-world processes, thus also alleviating the
burden associated with documentation.

In this work, we draw inspiration from the conventional
approach humans adopt when engaging in text summarization

1Tokens are subwords yielded by a subword tokenizer [11].
2Following [14], the input is the concatenation of documents in the cluster,

each truncated according to the input length limit divided by the total number
of sources, ensuring that each one is represented in the input (see Figure 1).

3Training examples composed of <truncated_document,
summary> may inevitably lack syntactic and semantic correlation.

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2024.3490375

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-3574-9962
https://orcid.org/0000-0002-3663-7877
https://orcid.org/0000-0003-0309-771X


2

Modeling &
Extraction

  

Concatenation
& Truncation

PLM

Read Truncate

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1

1

1

1

2

2

2

2

3

3 2
4
1
2
3

4
2
3
4
1

SEQUENCE-TO-SEQUENCE G-SEEK-2

  

  

Fig. 1: Overview of our approach (right). Unlike standard sequence-to-sequence solutions (left), we first convert the documents
into a heterogeneous graph: the pink diamonds represent the keyword nodes K, the violet circles denote the sentence nodes S
containing keywords, the green circles indicate the context of S, and the different segments between nodes symbolize edges.
The salient sentences are then extracted and given to a generative PLM to produce the summary.

tasks. Specifically, humans read documents and highlight
sentences that are deemed to be of greater importance. Sub-
sequently, they review the underscored text and generate a
summary based on it. This natural approach enables them to
successfully synthesize extensive articles. A promising strat-
egy to emulate this process involves using a two-stage pipeline
approach that first extracts salient snippets and then summa-
rizes them [19]. We face this task by using a semantic graph to
represent the documents. This approach intuitively aggregates
all source information, facilitating the identification and ex-
traction of summary-worthy sentences. Previous contributions
have used graph representations for text summarization [20].
Yet, they exhibit the following limitations: (i) they are mainly
proposed for extractive summarization [21], [22], [23]; (ii)
they are tailored for short texts [24], [25], which diverge highly
from MDS settings; (iii) they do not leverage state-of-the-art
generative pre-trained language models (PLMs) [26].

In light of this, we present G-SEEK-2 (Figure 1),4 a graph-
based summarization of extracted essential knowledge. Our
approach selects the most relevant sentences from a cluster
of related documents and feeds them to a PLM to generate
the summary. Technically, we model documents with a het-
erogeneous graph composed of multiple semantic edges and
nodes of different granularities (i.e., keywords and sentences).
Then, a graph neural network (GNN) is trained to select the
salient sentence nodes—soft labeled with a heuristic—which
are thereby provided to a PLM to produce the summary. This
approach bypasses the limitation of feeding models only until

4The code will be publicly released in case of acceptance.

their maximum input size, which otherwise prevents them
from fully processing the entire source, leading to performance
drop [27]. Furthermore, by modeling a heterogeneous graph,
we effectively capture cross-document relationships, a crucial
aspect in handling multiple inputs [7]. Experimentally, we
benchmark our solution in a realistic low-resource setting
where a limited number of labeled training instances are avail-
able. This scenario is motivated by two key factors: (i) PLMs
exhibit enhanced performance in generating summaries when
trained with highly correlated source–target samples [17]; (ii)
The limited number of trainable parameters of our learnable
module (4M) allows G-SEEK-2 to avoid overfitting with a
small number of examples. The experimental results yielded
by quantitative and qualitative analyses register improved per-
formance of summarization baselines equipped with G-SEEK-
2 across various established evaluation metrics and datasets.

A conference version of this paper was presented in the
Main Track of the 26th European Conference on Artificial
Intelligence (ECAI 2023) [28]. In this manuscript, we enhance
our work by refining model design, conducting additional in-
depth comparative experiments, and expanding applications.
The main differences are summarized as follows.

• To dissect the effectiveness of accurately capturing sen-
tence node saliency in the graph, we conduct experiments
with six different GNNs, such as Graph Convolutional
Networks (GCN) [29], GraphSAGE [30], Graph Atten-
tion Networks (GAT) [31], Graph Isomorphism Networks
(GIN) [32], Deep-GCN [33], and EdgeGCN [34].

• We evaluate our solution using three additional MDS
datasets: MULTI-NEWS [35], WCEP [2], and WIKICAT-
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SUM-ANIMAL [36], expanding our testbed to a total
of seven corpora from various domains—news arti-
cles, lawsuits, government reports, and scientific texts—
thoroughly exploring the generalizability of our approach.

The remainder of this paper is organized as follows. Sec-
tion II offers an overview of related work on MDS. We
present our method in Section IV and the experimental
setup in Section V. Our results are reported and discussed
in Section VI. Lastly, Section VII provides final remarks,
highlighting limitations and future directions.

II. RELATED WORK

In this section, we provide a brief overview of related work
on MDS, focusing on commonly used approaches and the
utilization of graphs to model cross-document relationships.

A. Sequence-to-Sequence Pre-trained Language Models

Generative PLMs have demonstrated robust performance
and adaptability to MDS [5], also when enhanced with
reinforcement learning [37], and long-input summarization
tasks in general. These sequence-to-sequence models are built
on the transformer encoder–decoder architecture, denoted by
stacks of self-attention layers. Vanilla transformers, such as
BART [12] and PEGASUS [38], are limited to process up to
1024 tokens due to their quadratic memory and time complex-
ity w.r.t. the input size. Consequently, they are not suitable
for long sequences—including MDS—made up of tens of
thousands of tokens. To address this obstacle, linear PLMs
such as LED [39] and PRIMERA [14] feature a sparse attention
mechanism that replaces the full quadratic self-attention by
allowing models to scale linearly w.r.t. the input length. As a
result, these models are capable of reading longer texts (e.g.,
up to 4096 tokens for PRIMERA), making them more suitable
for MDS tasks. Despite the advantage of linear transformers
in handling extensive information, they still rely on input
truncation, like their quadratic counterparts. This constraint
entails processing the source only up to the model’s maximum
input size (see Figure 1), thus overlooking potentially relevant
details that merit inclusion in the summary.

B. Approaches for Multi-Document Summarization

MDS methods that do not adhere to a standard transformer-
based sequence-to-sequence approach for handling multiple
documents fall primarily into three categories.

a) Two-Phase Solutions: These methods, often referred
to as “extract-then-abstract,” operate by selecting sentences
deemed suitable for summarization, which are subsequently
condensed by a PLM. Beyond unsupervised alternatives for
sentence extraction [19] and abstractive summarization from
clustered documents [40], most of the contributions embrace
supervised techniques. Previous strategies relying on TF-
IDF [41] have been replaced by ROUGE-based extractors,
which aim to label sentences as relevant by measuring their
similarity w.r.t. the summary [42]. This approach has also
been addressed by jointly training the extractor with the
summarization module [43]. In contrast to prior works, we

explore different metrics for sentence soft-labeling, covering
BLEU [44] and all ROUGE [45] variants, such as ROUGE-1,
ROUGE-2, and ROUGE-L, with precision and F1 assessments.

b) Aggregation-based Methods: These techniques in-
volve combining hidden-states to aggregate information
sourced from various snippets. Fusion-in-decoder [46] gener-
ates a unified hidden-state by concatenating multiple represen-
tations before decoding. On the other hand, marginalization-
based models employ logit likelihood summation during de-
coding across inputs to weigh the probability of the next
token [47], [48], [49]. Nevertheless, these solutions face diffi-
culties when dealing with a limited number of labeled samples,
primarily due to the initial cold-start phase required to train
the model to effectively exploit this aggregated representation.

c) Hierarchical Models: These solutions aim to capture
intricate interactions among documents to attain semantic-
rich representations. Efforts have focused on enhancing trans-
formers through graph-based techniques [50], [51], [52], [53],
multi-head grouping and inter-paragraph attention [54], [55],
maximal marginal relevance [35], and the inclusion of global
and local attention [56], [57], [58]. Although hierarchical solu-
tions have shown promising results, they struggle to effectively
accommodate and leverage state-of-the-art PLMs [14].

C. Graph-based Summarization

Graphs and GNNs have emerged as integral components in
MDS [20], offering enhanced scalability [59] and improved
domain modeling [60] to mitigate transformer flaws. Several
contributions leverage GNNs as standalone solutions [61],
where the summary is generated by composing sentences
extracted from input documents [62], [63]. Conversely, GNNs
can be embedded with abstractive summarization models to
improve performance [52]. Along this thread, BASS [26]
introduces a unified semantic graph to represent the collection
of texts and modifies the transformer architecture to interact
with the graph. SKGSUM [24] exploits nodes at various levels
to guide the summary generation process. To capture cross-
document relationships, many studies have sought to construct
different types of homogeneous graphs (e.g., topic graphs, dis-
course graphs) [64], [52], [65], [66]. Several studies have also
delved into the use of heterogeneous graphs [67], [68], [69],
[70]. However, these graphs accommodate only different types
of nodes (e.g., word and sentence nodes) without considering
diverse meaningful edges. On the other hand, HGSUM [71]
extends a linear transformer with a heterogeneous graph of
multiple semantic nodes and edges, but requires joint training
that comes with the drawback of a costly pipeline.

III. RESEARCH OBJECTIVE

The goal of this research is to develop an automatic MDS
approach that can address the following real-world challenges.

• Long-input processing: Design an extract-to-abstract
framework to adeptly manage large information prevalent
in MDS, bypassing input truncation drawbacks encoun-
tered in conventional sequence-to-sequence solutions.

• Few labeled examples: Integrate a powerful PLM to
work successfully under few-shot conditions.
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Algorithm 1 Sentence Soft-Labeling
Input:
X = {x1, . . . , xx} {Input sentences}
Y = {y1, . . . , yy} {Output sentences}
Parameters: M {Similarity metric}
Output: S {Set of scores}

0: S ← ∅
0: for xi ∈ X do
0: s← ∅
0: for yi ∈ Y do
0: s.append(M(xi, yi))
0: end for
0: S.append(max(s))
0: end for
0: return S =0

TABLE I: MDS results on MULTI-LEXSUM with PRIMERA
using various sentence soft-labeling methods as similarity
functions. Notably, ROUGE-2-F1 results the most effective
metric for the sentence labeling task.

Metric R-1f1 R-2f1 R-Lf1

BLEU 43.62 19.18 28.58
R1-F1 44.06 19.33 29.32
R1-P 40.97 16.96 26.51
R2-F1 45.29 20.20 30.19
R2-P 43.32 19.20 29.14
RL-F1 43.18 19.34 28.30
RL-P 43.90 19.14 29.15

• Cross-document relationships: Leverage a heteroge-
neous graph to accurately encode document interrelations,
and employ state-of-the-art GNNs to analyze their role in
discerning significant patterns.

• Generalizability: Analyze system effectiveness across a
set of multiple corpora from different domains through
both syntactic and semantic evaluation metrics.

IV. METHOD

We present G-SEEK-2, a graph-based summarization of
extracted essential knowledge (see Figure 1). Section IV-A
delineates the preliminary procedures integral to our method,
including the required sentence labeling and the compilation of
passages essential for graph construction from extended inputs,
using semantic and structural data. Section IV-B delves into
the array of GNNs used to discern the interrelations among
graph nodes, facilitating the identification of key sentences.
Finally, Section IV-C provides the summarization pipeline.

A. Preliminaries

1) Sentence Soft-Labeling: Two-stage approaches have un-
derscored the need to select suitable summary-worthy sen-
tences from the source documents [72], [43]. Conceptually,
each sentence can be categorized as relevant or irrelevant to
the intended summary, enabling the training of a model to
discern such noteworthy sentences. However, in the absence of
ground-truth relevance labels—which reflects a characteristic
of real datasets—we need to heuristically mark the salience of
the input sentences w.r.t. the gold summary, namely perform-
ing a soft-labeling strategy. Formally, let X = {x1, . . . , x|X |}

and Y = {y1, . . . , y|Y|} be the long input (i.e., the con-
catenated documents of the cluster) and the corresponding
summary, respectively, where each xi ∈ X and yi ∈ Y is a
sentence. We perform a greedy algorithm (Algorithm 1). Ini-
tially, for each instance xi, we yield a list of relevance scores
∈ [0, 1] through pairwise similarity computations among the
sentences in the corresponding instance yi. Subsequently, the
highest scoring value is selected and assigned to xi. For the as-
sessment of sentence similarity, we examine various evaluation
metrics, such as BLEU and ROUGE-{1,2,L}, considering both
precision and F1 scores. Evaluation is carried out using the
MULTI-LEXSUM-SHORT dataset [1] as testbed, using the first
100 samples from both training and validation sets. To appraise
the summarization quality, we employ PRIMERA [14] as the
backbone model, which is a transformer with linear complexity
in the input length pre-trained with an MDS-specific objective.
Practically, after assigning a summary-relevance score to each
xi ∈ X , PRIMERA is furnished only with sentences (sequenced
as per the source text) possessing the highest scores, up to
the model’s maximum input size, which is 4096 tokens. The
results, detailed in Table I, highlight ROUGE-2 F1 as the most
effective metric for soft labeling. Consequently, this metric
is adopted for the relevance labeling of sentences across all
experiments. It is pertinent to note that Table I encapsulates
the results derived from also extending soft labeling to the
validation set. Pointedly, during inference, an oracle simulation
is performed by accessing the ground-truth target summaries,
thus facilitating the examination of upper-bound performance.

2) Heterogeneous Graph: We delineate the construction
of our heterogeneous graph through the following steps, as
illustrated in Figure 2.

a) Keyword Extraction: First, we eliminate English stop-
words and general domain-specific terms appearing in more
than 40% of the cluster. Then, we employ KEYBERT [73],
[74] to identify the top-k keywords, which is a lightweight
method in contrast to more resource-intensive alternatives [75].
Operationally, we extract k keywords for each document in
the cluster and combine these keyword lists into a unique set,
removing any duplicates.

b) Sentence Filtering: We partition the documents into
sentences and select those containing at least one keyword.
Additionally, we capture the surrounding context by retrieving
the n sentences preceding and succeeding the selected one.
Formally, we define {[x1

1, . . . , x
1
|X 1|], . . . , [x

z
1, . . . , x

z
|Xz|]} as

the cluster of sources z. Let x1
b and x1

e be two sentences with
keywords. We then select [x1

b−n, . . . , x
1
b+n, x

1
e−n, . . . , x

1
e+n],

where < x1
b−n, . . . , x

1
b+n > −{xb} is the context of xb.

c) Sentence & Keyword Embedding: We use a frozen
pre-trained DISTILROBERTA model [76] to generate the
embeddings of three types of texts with different semantics:
(1) keywords, (2) sentences containing keywords, and (3)
neighboring sentences (i.e., the surrounding context) of the
latter. DISTILROBERTA is characterized by a relatively small
parameter count (82M), ensuring efficiency in terms of GPU
memory utilization and computation. Notably, the model is
already pre-trained to create sentence embeddings through a
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Fig. 2: The adopted pipeline for generating a semantic heterogeneous graph from multiple documents begins with providing the
textual information to KEYBERT, which generates a set of unique keywords. Subsequently, the pipeline proceeds as follows:
(i) sentences containing at least one keyword, (ii) their surrounding context (i.e., sentences immediately preceding or following),
and (iii) the identified keywords, are transformed into embeddings using DISTILROBERTA, serving as the new graph nodes
interconnected by various meaningful edges, i.e., positional, semantic, and keyword edge.

Feed-Forward

Feed-Forward

Reprojection Layer

GNN Layer Feed-Forward

Feed-Forward

Scoring Layer

Fig. 3: Overview of our learnable module to model cross-
document relationships over the heterogeneous graph. Notably,
“GNN Layer” is compatible with various GNN architectures,
ensuring our solution’s adaptability and flexibility.

self-supervised contrastive learning objective.5 About creating
sentence embeddings, the model produces a representation for
each token within a sentence. Then, following [77], we employ
mean pooling to aggregate token embeddings, yielding a final
single vector representation denoted as exi .

d) Graph Creation: All keyword and sentence embed-
dings, denoted as KE and SE, respectively, are represented
as nodes within our graph. Inspired by [26], we designate
KEs as supernodes, indicating that every sentence containing a
keyword establishes bidirectional Keyword Edges (cf. the blue
lines in Figure 2) with the corresponding keyword node, rather
than forming connections solely among themselves. Then, we
introduce bidirectional Positional Edges (cf. the red lines in
Figure 2) between two SEs if they appear consecutively in
the source text. Finally, in alignment with [52] and [23], we
incorporate Semantic Edges (cf. the green lines in Figure 2)
between ei and ej if their cosine similarity is greater than
a threshold t. The ultimate graph has as many nodes as the
combined number of sentences and keywords.

B. Cross-Document Modeling

To capture cross-document relationships, we employ a
learnable module featured by a GNN on our heterogeneous
graph, discerning the significance of sentences by assigning an

5https://huggingface.co/sentence-transformers/all-distilroberta-v1.

unbounded positive relevance score to each sentence node. We
harness both nodes (semantic information) and edges (struc-
tural information), essential for propagating information across
nodes. This enables the GNN to attain a deeper comprehension
of the context and meaning of each sentence. Our module
comprises the following layers (see Figure 3):

• Reprojection Layer comprises two linear feed-forward
layers (FFL) tasked with learning the transformation of
the node embeddings x within the vector space, resulting
in reprojected embeddings denoted as x′. Functionally,
it augments the dimension dx of the input embeddings n
(Rn×768) by a factor termed the Boom Factor (BF), draw-
ing inspiration from the transformer architecture [10].

x′ = FFLσ(FFLγ(x, dx · BF), dx) (1)

where σ and γ represent learnable parameters associated
with distinct linear layers.

• GNN Layer operates on graph-structured data by exploit-
ing structural information to improve the semantic rep-
resentation of nodes and capture relational dependencies
and patterns. We test multiple GNNs.6

– GCN (Graph Convolutional Network) [29] uses con-
volutional operations to propagate information between
nodes in the graph by leveraging a localized aggrega-
tion of neighboring node features.

– GRAPHSAGE [30] is an inductive algorithm that
learns a function to generate node embeddings by sam-
pling and aggregating features from the local neighbor-
hood of a target node.

– GAT (Graph Attention Network) [31] assigns attention
weights to each node, allowing the network to focus
on the most influential neighbors throughout the infor-
mation propagation process.

6We direct the reader to consult original papers for technical information.
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– GIN (Graph Isomorphism Network) [32] aims to gen-
eralize the Weisfeiler-Lehman graph isomorphism test
to achieve the maximum discriminative power.

– DEEP-GCN [33] leverages residual and dense connec-
tions and dilated convolutions into GCNs.

– EDGEGCN [34] uses multi-dimensional edge features
for explicit relationship modeling.

• Scoring Layer is composed of two linear layers aimed at
reducing the dimensionality of each node (x̂) to a singular
real number (s), serving as the relevance score for the
sentence linked to the node (Rn).

s = FFLβ(FFLθ(x̂, dx̂ · BF), 1) (2)

C. Summarization Pipeline

After converting the multi-document input into a graph and
determining the relevance scores for each sentence, we employ
a PLM to generate the output summary from the most pertinent
sentences. Technically, based on their relevance scores, we
select the most salient sentences and construct an input text
for the model with fewer tokens than its maximum input size
(i.e., without text overflow that would require truncation). Con-
sequently, the new input comprises only important sentences
arranged in the order of their occurrence in the original source.

We train the summarizer using the standard cross-entropy
loss, wherein the model is tasked with predicting the next
token wi of the target sequence Y given the input X and the
previous target tokens w1:i−1, formulated as follows:

Lce = −
|Y|∑
i=1

log pτ (wi|w1:i−1,X ) (3)

where τ denotes the model parameters and p represents
the predicted probability distribution over the vocabulary. To
create a more efficient training process, we do not jointly
train G-SEEK-2 with the summarization model. Accordingly,
our overall solution pipeline is specifically designed to work
effectively with a limited number of labeled examples.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental datasets, eval-
uation metrics, implementation details, and baselines used for
comparison. Our research focuses primarily on the task of few-
shot summarization, characterized by a real-world scenario
marked by limited data availability for model supervision,
mainly due to the high cost associated with annotation. In line
with prior studies [78], [17], we select the first 100/10/100
samples from the training, validation, and test sets of all
datasets without engaging in further data pre-processing.

A. Datasets

We perform experiments using multiple datasets from vari-
ous domains that are publicly available in HuggingFace, serv-
ing as widely recognized benchmarks for MDS tasks. MULTI-
LEXSUM7 [1] comprises real-world federal civil rights law-
suits accompanied by summaries authored by experts. The

7https://huggingface.co/datasets/allenai/multi lexsum

primary challenge encountered in MULTI-LEXSUM lies in
the extended length of the source documents and the varying
granularity of the summaries, including tiny, short, and long
versions (see Table II). Owing to this multifaceted nature,
we conduct experiments using three distinct dataset renditions
as testbed. MULTI-NEWS8 [35] is a large-scale dataset in
which each instance comprises multiple news articles gathered
from various sources, accompanied by a summary crafted
by professional editors. WCEP9 [2] is constructed based
on news events sourced from the Wikipedia Current Events
Portal. It comprises clusters of news events along with human-
authored summaries. We focus on the WCEP-10 dataset, which
features 10 related articles per instance. WIKICAT-SUM-
ANIMAL10 [36] is a collection of news articles related to
the domain of animals. Finally, GOVREPORT11 [80] consists
of lengthy reports from the US government. Although it is
used in long document summarization benchmarks, we regard
GOVREPORT as an intriguing testbed owing to its notably
large input size, similar to [71] with the ARXIV dataset.

The key statistics of the datasets are presented in Table II.
Specifically, we provide the number of samples in the corpus,
the average number of documents per cluster, and the average
number of words and sentences in both the source documents
and target summaries—computed using the NLTK library [81].
Additionally, we report the average coverage, density, and
compression ratio of extractive fragments, as defined by [79].
Technically, coverage is defined as the average fraction of
token spans that can be identified in both the source and
target. For instance, a coverage of 0.94 indicates that 94%
of the summary words appear in extractive source fragments.
Density, on the other hand, represents the average length of the
extractive fragments. Finally, the compression ratio quantifies
the extent to which a text is condensed to produce its summary.

Pointedly, our evaluation testbed encompasses several chal-
lenges: (i) processing very long legal reports (i.e., > 100K
words) with an extremely high compression ratio [1]; (ii)
generating extremely short summaries [2], [1]; (iii) handling
highly abstractive syntheses, where the targets contain few
source-related tokens, as indicated by the low coverage [36];
and (iv) managing highly dense summary phrases [35], [80].

B. Metrics

We use standard ROUGE-{1,2,L}12 F1 [45] and
BERTScore F1 (BS) [83] to quantify the syntactic and
semantic correspondence, respectively, between the generated
summaries and the ground-truth. Furthermore, we compute
R = avg(r1,r2,rL)/1+σ2

r [82] to aggregate the ROUGE
evaluation, where σ2

r represents the variance of the average
ROUGE scores, penalizing discrepancies in performance
across different dimensions. Note that all metrics lie
within the range [0, 1], with higher scores indicating better
performance. Table III reports additional details.

8https://huggingface.co/datasets/multi news
9https://huggingface.co/datasets/ccdv/WCEP-10
10https://huggingface.co/datasets/GEM/wiki cat sum
11https://huggingface.co/datasets/ccdv/govreport-summarization
12For ROUGE-L, we utilize summary-level computation where each sum-

mary is segmented into sentences.
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TABLE II: Statistics of the evaluation datasets including size, number of source documents per instance, number of total words
in source and target texts, and source–target coverage, density, and compression ratio of words [79]. Except for the number
of samples, all reported values are averaged across all instances. We observe a comprehensive range of input lengths, which
challenges our model and provides an in-depth evaluation benchmark.

Source Target Source → Target

Dataset Domain Samples Docs Words† Sents Words Sents Coverage Density Compress

MULTI-LEXSUM-TINY [1] Legal 1603 10.7 119072.6 5962.5 24.7 1.4 0.92 2.27 5449.6
MULTI-LEXSUM-SHORT [1] Legal 3138 10.3 99378.2 5017.0 130.2 5.1 0.96 3.33 840.7
MULTI-LEXSUM-LONG [1] Legal 4534 8.8 75543.2 3814.2 646.5 28.8 0.94 4.07 97.4
MULTI-NEWS [35] News 56,206 2.8 2092.1 80.9 257.9 10.0 0.82 5.47 8.1
WCEP [2] News 10200 10.0 4356.1 154.0 31.9 1.4 0.91 3.17 162.1
WIKICAT-SUM-ANIMAL [36] Scientific 53,638 131.0 5091.8 288.5 92.0 4.6 0.78 3.07 81.4
GOVREPORT [80] Legal 19,463 1.0 8765.0 298.7 556.3 18.1 0.94 9.08 17.9
† The total average number of words in the source cluster; we consider a single input by concatenating all the documents.

TABLE III: Hyperparameters initialization and description of the evaluation metrics used for the text summarization task.

Metric Description Bound* Hyperparameters

ROUGE [45]

Unigrams (R-1), bigrams (R-
2), and longest common sub-
sequence (R-L) lexical overlaps
(%).

[0, 1] ↑
rouge_types=["rouge1","rouge2","rougeL"],
use_aggregator=True,
use_stemmer=True,
metric_to_select="fmeasure"

R [82]
Aggregated ROUGE value pe-
nalizing results with discrepant
R-1, R-2, R-L.

[0, 1] ↑ /

BERTScore
[83]

n-gram hard-alignment
via contextualized BERT
embeddings.

[0, 1] ↑ model_type= "microsoft/deberta-xlarge-mnli",
batch_size=32

* ↑ = higher is better.

TABLE IV: The number of trainable parameters of generative
PLMs and their maximum input sequence length. G-SEEK-2
uses the max input size of the downstream model but provides
salient sentences instead of truncating the exceeding ones.

URL #Params Input

Models
BART https://huggingface.co/facebook/bart-large 400M 1024
PEGASUS https://huggingface.co/google/pegasus-large 568M 1024
LED https://huggingface.co/allenai/led-large-16384 459M 4096
PRIMERA https://huggingface.co/allenai/PRIMERA 447M 4096

G-SEEK-2 - +4M -

C. Baselines

While decoder-only architectures driven by large language
models (LLMs) have gained popularity for news summa-
rization [84], [85], their application in MDS remains un-
explored, and recent research demonstrates that encode–
decoder networks may still offer superior summarization
performance [86]. Therefore, to assess the efficacy of our
proposed method in filtering relevant information prior to
inputting it into generative models, we select several widely
recognized and leading MDS solutions notable for their dis-
tinct capabilities in handling various input sizes. We then
compare their performance when enhanced with G-SEEK-
2. BART [12] is a transformer-based model with quadratic
memory and time complexity concerning input length. PE-
GASUS [38] is a quadratic transformer pre-trained specifically

for summarization tasks, employing an objective to predict
gap sentences as pseudo summaries. LED [39] is a trans-
former model with linear memory complexity, attributed to
a sparse attention mechanism. PRIMERA [14] is a linear
transformer built upon the LED architecture but with a pre-
training objective specifically tailored for MDS, generating
pseudo summaries by automatically extracting text spans based
on entity salience. Technically, we adopt the conventional
approach of concatenating documents from the same cluster
to form a single long input. Following [14], we introduce a
special token <doc-sep> to separate individual documents.
We use the large checkpoints for all models. Table IV presents
the number of parameters and max input size of the models.13

D. Implementation Details

We fine-tune the models using the PyTorch [87] implemen-
tations provided by the HuggingFace library [88], ensuring
reproducibility by setting the seed to 42. All experiments
are conducted on an internal workstation equipped with a
Nvidia RTX 3090 GPU with 24 GB of memory, 64 GB of
RAM, and an Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz
processor. For the GNN module, training is carried out over
75 epochs with a learning rate of 5e−5, using AdamW as the
optimizer with β1 = 0.9 and β2 = 0.99. It should be noted
that we trained all GNNs once on MULTI-LEXSUM-SHORT

13The maximum input length is determined by the encoder architecture of
the models, while the output size varies depending on the dataset.
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TABLE V: Precision, recall, and f-measure results of different
graph settings on the eval set of MULTI-LEXSUM-SHORT.

# P R F1

Keywords
4 22.12 76.43 34.31
5 23.29 78.81 35.95
6 22.98 75.42 35.22
7 22.65 77.26 35.03
8 22.57 77.12 34.92

# P R F1

Consecutive Sentences
1 23.26 62.64 33.92
2 22.12 76.43 34.31
3 23.24 76.00 35.60
4 23.15 78.85 35.79
5 23.06 77.42 35.54

using soft labels as described in Section IV-A1. Regarding
the summarization task, all models are trained for 5 epochs
with a learning rate of 3e−5, using mixed precision and gra-
dient checkpointing techniques to conserve memory. During
decoding, we employ beam search with 5 beams and n-gram
repetition blocking for n > 5.

VI. RESULTS AND DISCUSSION

In this section, we present comprehensive experiments and
detailed analyses to demonstrate the advantages and effective-
ness of our proposed G-SEEK-2 module when integrated with
PLMs for MDS tasks.

A. Analysis of the Graph

We explore various configurations of graph settings, with
particular emphasis on the Sentence Filtering module (see
Section IV-A2), where we evaluate Precision and Recall of all
labeled sentences among the selected salient ones. The results
of these investigations are summarized in Table V, conducted
over the validation set of the MULTI-LEXSUM-SHORT dataset
and considering the following facets:

• Keywords. We analyze the maximum number of key-
words extracted by KEYBERT for each document in the
cluster. We observe that 5 keywords yields the most
favorable outcomes.

• Context. We investigate varying numbers of consecutive
neighboring sentences selected as the context of the
salient ones (i.e., those containing keywords). Results
suggest that 4 sequences result in improved performance.

In our hardware environment (see Section V-D), the average
time to create the graph for a single long input containing
approximately 100K words is ≈ 34 seconds. Regardless, it
is pertinent to note that the current implementation does not
incorporate any specific optimizations.

B. Analysis of the GNN-based Module

We investigate different settings of our learnable module
related to the inner architecture and the hyperparameters.

1) Architecture: Table VI reports the results obtained
through various GNN architectures. The performance of sen-
tence classification is assessed using two commonly employed
evaluation metrics, such as Precision and Recall. First, we used
only MULTI-LEXSUM-SHORT as our benchmark dataset. The
results reveal that DEEP-GCN outperforms other architectures,
demonstrating superior performance across all metrics. This

suggests its efficacy in accurately identifying relevant sen-
tences while minimizing false positives. Conversely, GCN and
GIN yield comparatively poorer results, indicating that these
architectures might not be well-suited for the dataset under
consideration. Consequently, we conduct this experiment on all
the evaluation datasets to further validate these observations,
as can be seen from Table VI. In fact, the results reveal
that no single GNN architecture outperforms the others in all
datasets. Nevertheless, it is evident that DEEP-GCN emerges
as the optimal selection for legal corpora, while GRAPHSAGE
is preferable for other types. These findings emphasize the
importance of choosing the appropriate model based on the
specific characteristics and requirements of the dataset. Upon
closer examination, certain datasets such as MULTI-NEWS,
WCEP, and WIKICAT-SUM-ANIMAL display identical values
for precision and recall. These datasets are characterized
by shorter average input lengths, as detailed in Table II.
Therefore, this feature may contribute to a more balanced task
environment for determining the relevance of sentences.

2) Ablation Studies: We conduct experiments with our
trainable module using the validation set of MULTI-LEXSUM-
SHORT to analyze the best setting for the Reprojection and
Scoring layers. Specifically, we employ GAT as our GNN
layer, performing 30 training epochs and assessing efficacy by
selecting the top 100 sentences based on their assigned scores.
Subsequently, we calculate precision, recall, and f-measure
metrics for these 100 sentences.

Table VII presents the results of our experiments, where we
evaluate the following items:

• Boom Factor: We examine the impact of the Boom
Factor in the Reprojection Layer. We found that a value
of 2 yields optimal performance.

• Layers: We test different numbers of layers and sur-
prisingly find that having only 1 layer achieves the
best results. This suggests that, due to the limited pool
of training examples, a lightweight solution with fewer
trainable parameters is preferable.

• Cosine Similarity: We analyze the threshold for creat-
ing Semantic Edges between nodes. We uncover that a
threshold of 0.86 produces the best outcomes.

Table VII additionally displays the results of the optimal
module configuration trained for 100 epochs. Subsequently,
we identify the most favorable model checkpoint, which
occurs after 75 epochs. The average duration for each epoch
is approximately 60 seconds. It should be noted that, after
extensive experimentation, we systematically varied each hy-
perparameter while maintaining the other two constants at their
respective optimal values (marked in bold in Table VII).

C. Summarization Results

We train and evaluate all models on the evaluation datasets
both with and without G-SEEK-2 to underscore our contribu-
tion. Additionally, we provide the results for G-SEEK, which
represents the initial version of our previous contribution [28].
Regarding the complexity analysis, models equipped with G-
SEEK-2 have the same memory growth w.r.t. the input size
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TABLE VI: Sentence classification results with different GNNs on each evaluated dataset equipped with soft labels. For each
corpus, the best results are bolded and the second-best results are underlined. Notably, DEEP-GCN consistently outperforms
other models in legal datasets, marking it as the most effective choice for these corpora. Conversely, GRAPHSAGE proves to
be the superior option for other types of datasets.

GAT GCN GIN DEEP-GCN EDGEGCN GRAPHSAGE

P R P R P R P R P R P R

MULTI-LEXSUM-TINY

35.2 48.0 30.1 43.5 28.7 42.0 37.8 52.4 36.9 51.5 34.4 48.9

MULTI-LEXSUM-SHORT

38.1 52.5 35.4 50.3 32.7 47.7 39.6 54.7 39.1 54.2 37.5 52.5

MULTI-LEXSUM-LONG

37.0 51.0 33.0 47.5 31.5 45.8 38.5 53.2 37.9 52.7 36.2 50.6

MULTI-NEWS

63.0 63.0 60.0 60.0 58.5 58.5 62.5 62.5 63.0 63.0 67.0 67.0

WCEP

78.3 78.3 75.0 75.0 74.0 74.0 75.1 75.1 74.8 74.8 80.5 80.5

WIKICAT-SUM-ANIMAL

62.8 62.8 60.5 60.5 59.0 59.0 60.2 60.2 61.2 61.2 63.4 63.4

GOVREPORT

38.0 50.0 35.2 47.8 32.5 45.6 39.0 52.0 38.5 51.5 37.0 50.0

TABLE VII: The results of the learnable module on the vali-
dation set of MULTI-LEXSUM-SHORT under different settings
with 30 training epochs. The “Final Module” is the best setting
and checkpoint after 75 epochs.

Value P R F1

Boom Factor
1 31.34 38.43 34.52
2 32.12 39.17 35.29
3 31.69 38.80 34.88
4 31.52 38.54 34.68

GAT Layers
1 35.38 42.31 38.54
2 32.13 39.18 35.31
3 28.34 35.13 31.37
4 29.45 36.37 32.55

Value P R F1

Cosine Similarity
0.80 32.02 39.01 35.17
0.82 32.10 39.18 35.28
0.84 32.10 39.17 35.28
0.86 32.49 39.55 35.67
0.88 31.96 39.01 35.13

Final Module
- 38.37 45.49 41.63

of vanilla counterparts. More precisely, the space complex-
ity to summarize the entire input document is O(L2) for
quadratic models (e.g., BART) and O(L) for linear ones (e.g.,
PRIMERA), where L is the minimum value between the source
length and the model’s maximum input size.

Table VIII presents the performance of the systems on the
datasets within the legal domain, while Table IX displays
the results on the newly introduced corpora. Remarkably, our
solution consistently enhances model performance across all
datasets and metrics, underscoring its beneficial impact, which
provides only salient information to generative PLMs. We
positively highlight that G-SEEK-2 consistently surpasses on
average our previous approach, underscoring the importance
of selecting the appropriate GNN based on the data at hand.

To assess the effectiveness of input compression achieved

Model Tokens BS Time (s)

BART 1024 76.59 8
w/ G-SEEK-2 1024 77.97 8

BART 512 75.33 6
w/ G-SEEK-2 512 77.87 6

BART 256 71.48 4
w/ G-SEEK-2 256 76.38 4

BART BART w/ G-SEEK-2

1024 512 256

72

74

76

78

# Input Tokens

B
S

Fig. 4: Comparison of summarization quality with BERTScore
(BS) by varying the number of input tokens on MULTI-
LEXSUM-TINY. We report the time in seconds to compute the
test set. On the right is furnished a graphical representation.

through graph-based processing, we conduct an experiment
where we vary the number of input tokens provided to the
generative PLM. Consequently, we choose different quantities
of pertinent sentences to retain from the multi-document
cluster. In Figure 4, we present the results based on semantic
evaluation using BERTScore, employing BART as the sum-
marizer and MULTI-LEXSUM-TINY as the dataset, and using
three decreasing input sizes. Remarkably, as the input size
decreases, the model equipped with G-SEEK-2 experience less
impact compared to vanilla solutions that rely on reading the
initial truncated tokens of the documents, which may include
information unrelated to the summary. The drop in BERTScore
as the number of input tokens decreases is due to important
input information being truncated, leading to less relevant
content in the summary and negatively impacting the score.
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TABLE VIII: Evaluation F1 scores on MULTI-LEXSUM-{TINY, SHORT, LONG} and GOVREPORT. The best intra-model score
is bolded. † means statistically significant results of G-SEEK-2 (p-value < 0.05 with student t-test). Remarkably, G-SEEK-2
demonstrates superior performance compared to both standard solutions and those enhanced by its predecessor.

MULTI-LEXSUM-TINY MULTI-LEXSUM-SHORT MULTI-LEXSUM-LONG GOVREPORT

Model R-1 R-2 R-L R BS R-1 R-2 R-L R BS R-1 R-2 R-L R BS R-1 R-2 R-L R BS

Quadratic
BART 22.37 7.91 19.74 16.61 76.17 41.45 18.74 35.81 31.70 79.89 41.41 16.47 38.98 31.88 79.13 48.46 14.03 44.83 34.94 80.82

w/ G-SEEK 24.46 7.70 20.34 17.41 77.07 41.57 16.72 35.78 31.01 79.97 43.92 17.43 41.08 33.67 80.19 51.46 17.12 48.05 37.97 81.78
w/ G-SEEK-2 27.72† 11.04† 22.64† 20.49† 79.58† 42.48† 15.98 37.57† 31.85 80.77† 48.08† 22.06† 45.57† 38.48† 82.15† 52.30† 17.39 48.65† 39.45† 81.77

PEGASUS 15.09 3.20 12.07 10.09 70.27 38.29 16.31 32.63 28.83 78.58 40.19 16.13 37.82 31.02 78.39 47.12 14.07 44.82 34.55 80.51
w/ G-SEEK 19.84 5.13 16.28 13.70 73.12 38.78 16.32 33.26 29.18 79.11 42.38 17.04 39.88 32.68 79.53 50.55 17.06 48.01 37.67 81.30
w/ G-SEEK-2 23.57† 8.85† 17.78† 16.23† 75.23† 42.46† 17.82† 37.77† 32.30† 80.59† 46.79† 21.94† 43.94† 37.56† 81.99† 50.76 16.93 48.12 38.58† 81.29

Linear
LED 22.86 7.98 18.86 16.50 76.20 40.09 17.50 35.15 30.63 79.51 45.26 20.01 42.66 35.52 81.31 53.86 19.53 49.28 39.96 82.65

w/ G-SEEK 24.39 7.96 20.55 17.55 77.19 40.95 16.28 35.31 30.51 80.56 45.42 18.87 42.93 35.23 81.03 55.63 21.08 50.67 41.49 82.77
w/ G-SEEK-2 27.74† 12.99† 22.38† 20.94† 78.43† 46.98† 21.08† 41.42† 36.49† 82.70† 50.94† 25.75† 47.58† 41.48† 83.34† 58.29† 22.37† 54.04† 44.87† 83.01

PRIMERA 25.37 8.13 20.84 18.02 76.45 40.20 14.88 34.88 29.63 80.31 45.31 21.06 42.44 35.85 81.34 54.20 19.37 50.20 40.28 79.75
w/ G-SEEK 25.76 7.59 21.36 18.13 77.26 43.99 18.67 37.55 33.02 81.32 45.92 19.61 42.59 35.55 81.36 57.13 21.20 53.64 42.87 80.37
w/ G-SEEK-2 27.53† 10.92† 22.52† 20.32† 78.01† 43.65 20.87† 38.09 34.54† 82.29† 49.51† 23.61† 46.24† 39.63† 82.59† 55.59 20.54 50.84 42.24 82.54†

TABLE IX: Evaluation F1 scores on the new added datasets, such as WIKICAT-SUM-ANIMAL, MULTI-NEWS, and WCEP.
The best intra-model score is bolded. † means statistically significant results of G-SEEK-2 (p-value < 0.05 with student t-test).
G-SEEK-2 demonstrates superior performance compared to standard solutions and those enhanced by its predecessor.

WIKICAT-SUM-ANIMAL MULTI-NEWS WCEP

Model R-1 R-2 R-L R BS R-1 R-2 R-L R BS R-1 R-2 R-L R BS

Quadratic
BART 37.04 17.76 27.24 30.10 78.00 43.94 13.42 20.08 32.34 79.10 41.33 24.89 33.72 33.87 83.00

w/ G-SEEK 45.86 14.49 24.04 27.62 78.29 38.25 10.54 18.83 29.20 78.36 36.51 15.79 26.49 26.93 80.56
w/ G-SEEK-2 39.64 14.28 25.38 29.74 79.20† 40.68 9.97 17.78 28.37 78.21 41.35 18.09 29.28 29.75 84.39†

PEGASUS 37.45 13.98 23.15 26.45 78.18 33.70 8.42 16.63 23.50 77.58 44.59 25.16 37.04 35.82 82.55
w/ G-SEEK 36.80 13.44 23.33 27.88 78.90 39.63 11.18 17.77 28.13 77.58 46.25 25.17 35.74 35.75 86.17
w/ G-SEEK-2 37.80 14.47† 24.48† 28.84† 79.10† 44.93† 13.43† 19.67† 32.44† 79.13† 48.97† 27.54† 41.65† 39.37† 85.58

Linear
LED 39.12 18.27 28.60 31.57 78.35 44.47 12.54 19.56 32.20 79.30 51.10 23.90 37.37 37.34 85.01

w/ G-SEEK 40.81 15.72 25.75 31.60 78.61 42.92 11.25 18.97 30.14 79.29 45.32 21.83 34.06 33.75 85.85
w/ G-SEEK-2 40.94 17.13 26.85 31.20 79.73† 44.68 13.94† 19.47 32.35 78.96 51.26 26.29† 41.22† 39.27† 87.28†

PRIMERA 44.18 19.49 28.83 33.16 80.00 39.90 9.79 18.67 28.88 78.30 46.24 26.33 38.07 37.15 84.49
w/ G-SEEK 40.71 16.69 27.58 31.92 79.66 42.49 10.34 18.00 29.38 78.41 43.71 25.82 35.33 35.45 84.63
w/ G-SEEK-2 44.32 21.06† 29.33 35.70† 80.71† 40.20 9.09 17.02 28.18 78.89 48.13† 25.42 38.11 36.91 86.06†

VII. CONCLUSION

This study delves into the intricate domain of multi-
document summarization, particularly simulating real-world
scenarios where data availability is limited. We introduce G-
SEEK-2, a graph-based method to distill essential insights
from vast textual data, empowering abstractive summarization
models to craft succinct and informative summaries. At the
core of our approach lies the construction of a heterogeneous
graph, representing a cluster of documents with various se-
mantic units. This graph comprises distinct types of nodes
and edges, meticulously designed to capture the nuanced
relationships within the textual corpus. Through a tailored
algorithm, we assign relevance scores to individual sentences,
allowing us to pinpoint the most salient ones for inclusion in
the summary. Experimental findings carried out in few-shot
learning across multiple publicly available datasets demon-
strate the remarkable performance enhancements achieved by
G-SEEK-2. In particular, our approach significantly elevates
both syntactic and semantic metrics reached by state-of-
the-art summarization systems. Moreover, by fostering more
coherent source–target pairs, we showcase how our solution
facilitates faster learning for generative PLMs with limited
labeled training instances. In future work, we will explore
the development of lightweight end-to-end pipelines to jointly
integrate our graph-based approach with generative PLMs to

enhance model interpretability [89]. Further, we aim to extend
our methodology to take advantage of recent LLMs.

BROADER IMPACT AND ETHICS STATEMENT

Our research introduces G-SEEK-2, a graph-based multi-
document summarization method designed to capture and
distill essential knowledge from multiple documents. The
implementation of G-SEEK-2 holds significant potential to
enhance the efficiency and accuracy of multi-document sum-
marization across various fields.

By generating concise and informative summaries from vast
amounts of information, our method can make knowledge
more accessible to a broader audience, including researchers,
professionals, and the general public. Automating the sum-
marization process can save substantial time and effort for
professionals who handle large volumes of text, such as legal
experts [90], [91], researchers, and content creators, increasing
productivity and focus on critical tasks. For example, in
educational settings, G-SEEK-2 can assist students and educa-
tors by providing succinct summaries of academic resources,
facilitating quicker understanding and knowledge acquisition.
Further, by delivering high-quality summaries, our solution
can help researchers stay updated on developments in their
fields, enabling them to review more literature in less time
and promoting faster advancements in research.
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However, it is crucial to be aware of potential negative im-
pacts. The development and deployment of G-SEEK-2 must be
conducted with careful consideration of ethical implications.
While our solution aims to enhance productivity, it is important
to ensure its responsible use. The tool should complement, not
replace, human expertise, especially in critical domains such as
healthcare, law, and journalism, where nuanced understanding
is essential. Additionally, the risk of disseminating biased or
inaccurate summaries could misinform users. Therefore, con-
tinuous evaluation, transparency, and ethical use are imperative
to maximize the benefits and minimize the drawbacks of G-
SEEK-2 and all generative models in our era.
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