
StarReact: Detecting Important Network Changes in
BFT Protocols with Star-Based Communication

Martin Nischwitz
Physikalisch-Technische Bundesanstalt

Berlin, Germany
martin.nischwitz@ptb.de

Marko Esche
Physikalisch-Technische Bundesanstalt

Berlin, Germany
marko.esche@ptb.de

Florian Tschorsch
Technische Universität Dresden

Dresden, Germany
florian.tschorsch@tu-dresden.de

Abstract—Threshold signatures have improved the scalability
of BFT protocols by replacing all-to-all broadcast with star-
based communication. On the flip side, this approach renders
network re-organization and performance optimization more
costly, because information can only be exchanged between the
leader and all other nodes.

We present StarReact, an extension for BFT protocols that
relies on star-based communication to collect and disseminate
quorum certificates. This extension allows all nodes of the system
to measure and evaluate the network state by monitoring the
messages disseminated by the leader. Each node decides inde-
pendently if performance degradation justifies a leader change.
By deploying a median filter, the measured commit latency of
the system is evaluated by each node to determine if a network
change has a lasting effect that warrants a change in leadership or
should be ignored. We showcase how StarReact is able to identify
important network changes for different deployment scenarios
and explain how view change executions should be adapted to
different environments to improve commit latency and potentially
throughput for such systems.

Index Terms—distributed systems, fault tolerance, latency

I. INTRODUCTION

The term Byzantine fault tolerant (BFT) describes the
ability of a distributed system to tolerate a certain number
of Byzantine faults, i.e., faults in which a process may
behave arbitrarily. The motivation for new implementations
of BFT protocols has been manifold, including applications in
permissioned blockchains, cryptocurrency, etc.

While recent research has mainly focused on increasing
the throughput and scalability of BFT algorithms, the system
response time, or in other words the commit latency, is
often of minor concern. In most evaluations, the network
characteristics, including the latencies, are assumed to be
static after some stabilisation time. While this may hold true
in some theoretical scenarios, the actual end-to-end latency
between nodes may change in practice due to, e.g., router
reconfigurations, congestion or packet losses.

An approach to optimise the performance regarding the
commit latency was presented with AWARE [12], which is
designed to measure network latencies during runtime and find
an optimal configuration. But since the latest generation of
BFT protocols (e.g., SBFT [9], HotStuff [10] or Kauri [11])
have reduced their communication complexity by utilising
threshold signatures, the measurement of all network latencies
would once again increase the communication complexity.

The challenge considered for this paper was to design a
virtually cost-free algorithm that is able to detect changes in
the network and is tailored for the latest generation of BFT
protocols. To this end, we present StarReact, an extension
for BFT protocols with a star-based communication pattern,
which is individually executed by each node, to detect dynamic
network changes in real time to optimise performance of the
executed BFT protocol regarding the overall latency of the
system. Based on a quorum-specific network abstraction, Star-
React measures and filters the commit latency of the system
during runtime and enables a suitable reaction. StarReact was
implemented and tested on top of HotStuff [10] and evaluated
and optimised within the emulation/simulation environment
Delphi-BFT [15].

In detail, our contributions are
• a quorum-specific network abstraction that simplifies the

calculation of the quorum latency,
• a novel approach, based on that network abstraction, how

to measure and assess the performance of the system and
detect important network changes,

• the design of a suitable filtering algorithm to balance the
detection of decreased quorum latencies while simultane-
ously not overreacting to short-term network anomalies
and

• the application of that filtering algorithm in the hy-
brid simulation/emulation environment Delphi-BFT to
showcase that network events that negatively affect the
performance are successfully detected and acted upon.

II. RELATED WORK

An approach for dynamic leader election based on perfor-
mance characteristics was presented by Eischer et al. [25].
They proposed a scheme in which the clients of the system
observe and evaluate the end-to-end latency of the system by
probing the system with special messages. The replicas then
reconfigure themselves to select the best suited leader.

Extensive research has been performed by Berger et al. to
optimise the latency of BFT algorithms using adaptive voting
weights to fasten the quorum aggregation process [12]. In
the same vein followed the development of AWARE [21],
a scheme to measure the global latencies of the system,
utilising the all-to-all broadcast of the classic BFT protocols.
An adaptation of AWARE was also published in [13], albeit

20
24

 IE
EE

 4
9t

h
C

on
fe

re
nc

e
on

 L
oc

al
 C

om
pu

te
r N

et
w

or
ks

 (L
C

N
) |

 9
79

-8
-3

50
3-

88
00

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
LC

N
60

38
5.

20
24

.1
06

39
76

7

still requiring the same communication complexity as the
default AWARE.

Another method to address dynamic changes is to switch
the consensus algorithm altogether during execution by cate-
gorising different protocols according to their strengths and
weaknesses [7] [23]. A similar study was undertaken that
evaluated how protocols can be adapted during execution [24].

In comparison, the main benefit of StarReact is the virtual
cost-free applicability to protocols with star-based communi-
cation.

III. BYZANTINE FAULT TOLERANCE

BFT protocols are often times designed to implement state
machine replication (SMR) given the possibility of byzantine
faults, i.e., a subset of replicas may be under control of a
malicious entity and may show arbitrary behaviour. PBFT
[1] was the first BFT protocol that was implemented with
the purpose to be practical and comprehensible. Subsequent
protocols improved upon properties like optimistic responses
(Zyzzyva [2]), increased robustness (Aardvark [3], RBFT [4]),
hardware-related trust systems (CheapBFT [5]), modularity
(BFT-SMaRt [6]), adaptive protocol switching (BFT selection
[7]) and wireless application (RATCHETA [8]). Although BFT
has been notoriously known for its limited scalability, recent
publications have successfully addressed this issue (SBFT [9],
HotStuff [10] and Kauri [11]) by reducing the communication
complexity.

Two important properties to describe a BFT protocol are
safety and liveness [1]. Safety states that the replicated system
behaves like a single machine, i.e., all correct nodes execute
their system state in the same order. Liveness guarantees that
the system will eventually make progress and advance its
system state. Both properties can only be ensured, if the system
consists of at least N = 3f +1 nodes for a maximum number
of f faulty nodes [16]. In order to uphold the safety property,
it follows that at least 2f + 1 nodes are in a consistent state.
This is often solved through the aggregation of quorums of
at least that size, which can be used as proof for the system
state. It is also possible to reduce the quorum size with, e.g.,
trusted hardware components (see CheapBFT), redistributing
the voting power of the nodes [12] or backtracking commits
with forensics [18] (see FlashConsensus [19]).

Another defining aspect that that has also evolved over time
is the communication pattern. PBFT was designed based on an
all-to-all broadcast, where two such phases constitute the main
consensus algorithm (in addition to an initial dissemination
phase). While effective in disseminating information, this
pattern scales (at least) quadratic with the number of nodes
[17] making it impractical for larger networks. To remedy
that, SBFT, and later HotStuff, utilised threshold signatures
to implement a star-based communication pattern and reduce
the communication complexity to O(n). While improving the
scalability, the star-based pattern also has some disadvantages.
Firstly, the overall latency increases, because aggregation
and dissemination is separated in two phases. Secondly, the
available information on the whole system in each node is

reduced because a node is no longer required to exchange
messages with every other node.

Regarding the performance, a lot of research has been
conducted on improving the throughput and scalability of BFT
protocols, while latency is only rarely of interest, which is
surprising considering the fact that latency and throughput
are probably of high interest in real-world SMR applications.
BFT protocols incorporate a quorum aggregation process, i.e.,
responses from all nodes are being gathered in order to ensure
safety. To reduce the latency of the overall algorithm, the
latency for aggregating these quorums should be kept to a
minimum.

IV. SYSTEM MODEL

A. Processes

We assume a set of n nodes that will receive requests from
an unspecified but limited number of clients. As usual for
BFT protocols, the number of faulty nodes f is limited to
f ≤

⌊
n−1
3

⌋
.

B. Network

In this paper, the network shall follow the partially syn-
chronous system model [20], i.e., messages will be delivered
within a fixed upper time bound after some unknown global
stabilisation time. Each process shall have a reliable and
authenticated peer-to-peer connection to all other processes.
Reliable means that even though network distortions such as,
e.g., packet loss, might occur, message retransmissions are
covered by a suitable transport layer implementation, e.g.,
Transmission Control Potrocol (TCP), and should be delivered
eventually. We consider the network properties to be dynamic
regarding the round-trip times (RTTs) of the connections.
While the connections might be stable for some time we are
interested in the impact of, e.g., changing RTTs or packet loss
bursts. This might also occur due to a changed network topol-
ogy or because of a re-routing of the network connections.
As such, we also consider highly dynamic networks as they
might be found in mobile networks [8].

V. AGGREGATING QUORUMS

An elementary part of most consensus protocols, is the
aggregation of quorums to validate the current system state.
In order to aggregate a quorum in BFT protocols, a node has
to wait for 2f + 1 votes from 3f + 1 other nodes. The time
needed to commit a state change in the protocol is therefore
dominated by this process.

In classic BFT protocols, which are based on all-to-all
broadcast messages, 2f +1 nodes need to aggregate quorums
and disseminate their results afterwards. With a star-based
communication pattern, only a single node (the so-called
leader) has to perform that task.

A. Most Significant Link

In order to reduce the commit latency, only nodes that
are able to quickly aggregate quorums should be tasked to
do so. For protocols with all-to-all broadcast communication,

na

n1

n2

n0

48 ms 96 ms 122 ms

Fig. 1: Visualisation for quorum aggregation latency in a
typical BFT system with n = 4, f = 1 nodes. Node na

will aggregate the quorum 96 ms after dissemination, with
reception of the second message from n1.

there is only limited room for optimisation because the system
has to wait for 2f + 1 nodes to aggregate their individual
quorums. AWARE [21] implemented a prediction scheme,
in combination with voting weight distribution, to select a
specific set of nodes that aggregate quorums and reduce the
commit latency. This prediction scheme utilises the all-to-
all broadcast scheme of BFT-SMaRt to measure the latencies
between all nodes and establish a latency matrix of the whole
system in each node. Based on this matrix, AWARE selects
the optimal protocol configuration.

The only knowledge required to predict the latency for
aggregating a quorum (from now on referred to as quorum
latency) are the connection latencies of each connected node.
Considering in a network of n = 3f + 1 nodes, a node na

needs to aggregate a quorum q = 2f +1 votes. If na has free
processing power, i.e., it can immediately process any received
message, the quorum latency is equal to the connection latency
between na and the node that sent out vote number 2f . The
process is visualised in Figure 1. From now on, we will refer
to this connection as the most significant link (MSL).

B. Observing Latency

Determining the MSL is simple if all latencies in the system
can be measured during execution. If, on the other hand, star-
based communication takes place, those measurements are no
longer possible because there is no regular message exchange
between all nodes. An alternative to direct measurements is
to observe the commit latency or quorum latency within the
system.

With star-based communication, each node will receive
messages from the leader exactly once between the collection
of quorums. Consequently, each node is able to timestamp the
received messages and create a time series ti with i denoting
the index of the quorum round. Based on those measurements,
the nodes can further create a differential time series

di = ti − ti−1, (1)

i.e., a series of values denoting the time between successive
quorum rounds. As long as the network is stable the quorum
time, and therefore di, will remain constant.

By calculating and monitoring di, each node is able to
make assumptions regarding its environment and can take
appropriate action. In order to give a better understanding how

TABLE I: Setup for showcasing the effect of different network
changes on the measured quorum time di.

Node n0 n1 n2 n3

RTT to n0 in ms - 23 109 297

the nodes can and should react to changes in the measured
quorum time, the following section will explain how different
cases of network scenarios will affect the quorum time and
with it di.

C. Differentiation of Observable Cases

In order to better visualise the observable changes to both
time series ti and di, we have simulated changes to the RTT of
selected links in a network consisting of four nodes deployed
in Delphi-BFT. A detailed overview of the setup is given in
Table I: node n0 is the designated leader for all experiments
and the connection between node n0 and node n2 is the MSL
in the starting configuration.

Each change of the RTT of a link was simulated by Delphi-
BFT and the measured values of ti and di were recorded
by each node. To keep a uniform description in all of the
following scenarios, the network change is always considered
to be effective starting with timestamp te (and accordingly
the derived timestamp de). A differentiation of the network
changes has been done, depending on which connection is
affected by the change. The first category encompasses all
instances of network changes that do not affect the MSL.
The second category covers changes that, whether directly or
indirectly, impact the MSL. Lastly, the third case is a special
subset of the second category and addresses the observations
made by the node that represents the MSL when the RTT of
that link is changing.

All plots referenced in the following scenarios will depict
two signals, the RTT of the link that is currently changing
is recorded on the left hand side while the differential time
series di, that is recorded by the node affected by the change,
is recorded on the right hand side.

1) Regular link: This category covers all network changes
of links between nodes that do not directly affect the MSL. A
change affecting the link between two non-leader nodes will
have no detectable impact on the system.. If, on the other hand,
the link between the leader and another node is affected, there
can be two further outcomes, depending on the nature of the
change.

The affected link might indirectly influence the MSL of the
current configuration. This can happen if the new RTT of the
changed link has turned it into the new MSL. In that case,
the previous MSL will be replaced and the quorum time of
the system will change accordingly. This category of network
changes is further described in the next section.

Otherwise, if the MSL is not affected, the quorum time
of the system will remain as is and only the two nodes
connected by this link will be able to detect any changes.
Before the network change, all timestamps ti with i < e

Fig. 2: Observed values of di by node n3 in case the RTT
between node n3 and n0 (leader) is increased (not the MSL).

Fig. 3: Observed values of di by node n2 in case the RTT
between node n2 and n0 (leader) is increased (MSL).

are received in constant intervals, determined by the current
quorum time of the system. Once the RTT between the leader
and a node has changed, effective with the reception of te, the
time between te−1 and te will be lower or higher depending
on whether the RTT has increased or decreased, respectively.
Following that event, all subsequent timestamps ti with i > e
will once again arrive with the same interval as before the
change. The quorum time remains unchanged and the leader
will disseminate messages with the same frequency as before.
Consequently, di is constant for i ̸= e and shows only a single
peak for de, indicating the increased or decreased value of the
RTT.

A network change of that nature was simulated for the
system described in Table I by decreasing and increasing the
RTT of the link between nodes n0 (the leader) and node n3.
Figure 2 depicts the RTT for the connection between both
those nodes and shows an increase from the starting 297 ms
to 400 ms. The previously described peak in the differential
time series can be seen the moment the delay changes (te). A
decrease in the delay will show a mirrored behaviour.

2) Most significant link: A shift of the RTT of the MSL can
be caused by multiple reasons but two basic differentiations
can be made: either a) the MSL itself changes its RTT but
the link remains the MSL or b) the network change causes a
reordering of at least two links, including the previous MSL.
In the latter case, the connection that was previously the MSL
will no longer be the MSL and another connection will take
over that role. As explained in Section V-A, the MSL is
directly related to the quorum time of the system and whenever
the RTT of the MSL changes, the quorum time will mirror that
change. All nodes will be able to register such an event since

Fig. 4: Observable effect for an increased RTT of the link
between node and leader which is simultaneously the MSL.

the differential time series di for i > e− 1 has now increased
or decreased according to the new value of the RTT of the
MSL of the system. Barring any further network changes, the
quorum time will remain constant for ti with i > e and so
will di.

To validate the described behaviour, a shift of the RTT was
simulated in the system from Table I for the link between
the leader n0 and node n2, i.e., the MSL of that system.
Figure 3 depicts the impact of increasing the RTT of that link
by 100 ms. The measured values for di follow the configured
RTT of the MSL perfectly, as expected. It should be noted
that the plotted values for di in both figures are measured
identically by all nodes of the system (as long as no other
network changes overlap with the MSL changes). The time
series di remains constant for i > e. As before, a decrease in
the delay will show a mirrored behaviour.

3) Observer of the most significant link: Finally, we con-
sider the merged case of the two previous scenarios. If the
MSL of the system switches to another connection, the node
that previously held the MSL with the leader will make a
special observation. We simulated this scenario in our system
by raising the RTT between node n0 and node n2 above
that between n0 and n3. Consequently, the MSL will shift
to n0 and n3. The process is visualised in Figure 4. The
RTT between node n0 and node n2 was increased by 400 ms,
setting the MSL to 297 ms, the RTT between node n0 and
node n3. To explain the recorded values of the time series
di of node n2, two effects have to be considered. Firstly, di
will show a singular increase that results from the delayed
message reception due to the increased RTT to the leader.
Since the RTT was increased by 400 ms, the first message at
de will arrive 200 ms later. Secondly, the MSL has changed
from 109 ms to 297 ms, an increase of 188 ms. This will lead
to a constant increase of di to 297 ms for i > e. In the
experiment the 200 ms spike (at quorum index 6) occurred
before the quorum time adapted to the new MSL (quorum
index 7). Depending on the timing, both effects might overlap
leading to even higher spikes.

VI. STARREACT

Given that each node records the differential time series di
as described in Section V-B, it is now possible to formulate
how di needs to be processed in order to obtain an indication

in case the network connections have changed. The analysis
in Section V-C has shown that two kinds of effects have an
impact on the value of di. While the quorum time of the system
will dominate the base value of di, the analysis in Section V-C
has shown that two kind of effects have a lasting impact on it.
In addition, di will be affected by noise caused by the network
or processing times as well as singular outliers (as shown in
Figure 2). The goal is to process di in a manner to detect
increased quorum times while ignoring the noise.

A. Removing the Noise

According to our network model, the latencies between
nodes are considered dynamic, i.e., while the delay has a ”base
value” there might be stochastic variations as they are common
for, e.g., a mobile setting. A simple filter to reduce noise and
remove outliers is the median filter.

The order of the median filter determines the overall size
of the sliding window that is used to determine the median.
A higher order filter will be more robust against noise and
outliers while at the same time requires more values to be
accumulated before a response is formulated. In order to
evaluate the value of di with a median filter of order m, at
least ⌊m/2⌋ values after di, i.e., up until di+⌊m/2⌋, need to be
available to apply the filter without any padding, assuming that
all past values of di, up to di−[m/2], are stored. In summary,
a higher order offers more stability but will also slow down
the response of the median filter.

B. Preventing frequent leader changes

The purpose of StarReact is to trigger if a degradation of
the MSL is detected. In order to control the trigger happi-
ness, a threshold parameter is added to limit the number of
reconfigurations in the system (a similar approach was also
implemented in [21] and [13]). In order to pick an appropriate
value for that threshold, the deployed system model needs to
be considered.

In wide-area networks in which the RTTs might vary
drastically depending on the distance, yet remain rather stable
over time, the filter order and the threshold value can both
have lower values. If, on the other hand, the network is more
similar to that of a mobile network with multiple connections
having similar RTTs that also vary over time, the filter order
and threshold value should be increased accordingly.

C. Implementation

StarReact implements a filtering function consisting of a
median filter and a threshold parameter to react to the observed
quorum time of the system. Given that each node measures
the differential time series di presented in Section V-B, the
decision on whether to initiate a view change in the system is
based on whether the following expression holds true:

f(di)− f(di−1) > Θ. (2)

with
f(d) = medianm(d). (3)

Fig. 5: StarReact response visualisation for noisy signals.

In which m denotes the order of the median filter and Θ
being the threshold value that determines by what margin the
measured median quorum time has to decrease in order for
the node to initiate a view change.

It should also be noted that the filter order will determine
at least how many values of di have to be below the chosen
threshold value. The median filter can only output a value that
is greater than f(di−1) + Θ if at least ⌊m/2⌋ of the values
within the sliding window around di have been greater than
f(di−1) + Θ.

In summary, the order m of the median filter describes
the resiliency against multiple outliers in close proximity and
predicts the actual quorum time of the system while the
threshold value Θ dictates by what margin the median quorum
time has to decrease before a view change is initiated.

VII. EVALUATION

In order to validate the observations and statements pre-
sented in this paper the hybrid simulation and emulation
tool Delphi-BFT [15] was deployed. Regarding the efficacy,
Berger et al. evaluated that the deviations of the measured
performance, namely throughput and latency, between Delphi-
BFT and their real-world experiments were below 3.5 % [15].
While this might pose a problem if accurate measurements for
the performance of implementations are required, it should
be acceptable for validating the functional behaviour of al-
gorithms, as is done in this paper. We also added noise and
dynamic latency changes to the network connections to better
evaluate the viability of StarReact.

The effectiveness of StarReact was evaluated for different
deployment scenarios in Delphi-BFT [15]. First, we simulated
a network with four nodes with heavy noise on the connec-
tions. For this scenario, we simulated multiple crucial RTT
changes and tested the robustness of StarReact regarding false
positives, i.e., unnecessary leader changes.

Second, to measure the performance of StarReact, we
simulated two networks consisting of four and ten nodes,
spread across the globe with the help of the built-in latency
configuration in Delphi-BFT according to Cloudping1. Each
simulation was conducted for an hour. In order to simulate

1See https://www.cloudping.co/

TABLE II: Impact of StarReact during simulation with global
node distribution. The two columns on the right list the number
of committed blocks during 60 minute trials.

nodes Continents blocks blocks
(HotStuff) (StarReact)

4 EU 57261 73262
4 US, EU, AP, AF 12855 13120
10 US, EU, AP, AF, SA, CA 10909 13279

dynamic network events, a Gilbert-Elliott (GE) based delay
model was implemented. Each connection was modelled with
a good and a bad state. In the bad state, the delay was
increased by 100 ms. The transition probability from good
to bad state was pg→b = 0.002 and from bad to good
state was pb→g = 0.004, respectively. The default HotStuff
configuration is oblivious to the delay changes and keeps a
fixed node as leader during each experiment. While this kind
of setup is more appropriate for wireless networks [22], the
model is fitting to showcase the viability of StarReact.

A. Noise robustness

For a better overview, the view change that would normally
be triggered by StarReact was deactivated for the validation
in this section. The latencies between nodes were overlapped
with a log-normal distribution fitting to the mean latency.
Figure 5 visualises the response of StarReact to noisy signals
when with crucial changes in the RTT. The variance in
Figure 5 was chosen rather low as it is more commonly found
in stable networks between servers. For those scenarios, the
filter and threshold can be configured low as well. A median
filter of the order m = 5 in combination with a threshold of
Θ = 15ms was sufficient to remove all outliers encountered
in multiple hours of experiments.

In order to challenge StarReact we also deployed heavy
noise on the connections within the same experiments as
before. In order to compensate for the increased noise, the
order of the filter had to be increased to m = 9 and the
threshold to Θ = 20ms which suppressed all outliers even for
very noisy latencies.

In summary, with appropriate configuration, StarReact can
be deployed even with highly dynamic network connections
featuring heavy noise on the signals.

B. Global Simulation

In order to compare the performance of StarReact to the
default implementation of HotStuff, multiple test runs were
conducted with nodes in different AWS regions, see also
Table II. An exemplary visualisation of the algorithm in action
is depicted in Figure 6.

As can be seen in Table II, the implementation of StarReact
was particularly beneficial if all nodes are in the same region
and for the larger network in multiple regions. If all nodes
are in the same region, i.e., a low latency network, the bad
states of the GE network model will significantly slow down
HotStuff and each reconfiguration of StarReact that prevents

Fig. 6: Rotation triggered by StarReact (filter order 5) due to
an increased commit latency for the leader node. At t = 12 s
the latency of incoming packages is increased and the received
votes are delayed. StarReact triggers at t = 13.2 s the rotation
to a new leader, which completes at t = 16.7 s.

a slow leader will keep the performance high. StarReact can
only improve the performance if the setup offers sufficient
room for alternative configurations. The scenario with four
nodes on different continents often has inherently high delays
and only little potential to find leaders with fast commit
latencies. The ten nodes spread on six regions, though, contain
redundant nodes that might have better connections compared
to temporarily slowed down nodes. Those nodes are eventually
elected by StarReact which increases the performance.

C. When to stop?

Although Table II depicts that StarReact already increases
the latency of HotStuff for the scenario of dynamic links, the
extension presented in this paper is not primarily focussed
on performance optimisation. The purpose of StarReact is to
detect when a leader rotation is warranted without increasing
the communication complexity. In order to optimise the perfor-
mance, the selection of the new leader needs to be considered.

It would be possible to use StarReact as a trigger for another
auxiliary system, e.g., AWARE, to initiate a search for a new
leader. Even though the execution of AWARE would increase
communication complexity, the number of executions would
be limited to network changes that trigger StarReact.

VIII. SUMMARY

StarReact is a lightweight extension that allows BFT pro-
tocols with star-based communication to react to network
changes that have a lasting impact on the quorum time. Using
a simplistic example, it was shown that StarReact is able
to isolate and identify when the quorum time of the system
changes due to worse network connections. The evaluation has
shown that the algorithm can be adapted to different scenarios
by changing the filter order or threshold value accordingly.

REFERENCES

[1] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 173–186.

[2] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine Fault Tolerance,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 45–58, Oct. 2007.

[3] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
Byzantine Fault Tolerant Systems Tolerate Byzantine Faults,” in Pro-
ceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 153–168.

[4] P. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant Byzan-
tine Fault Tolerance,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems, Jul. 2013, pp. 297–306.

[5] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient
Byzantine Fault Tolerance,” in Proceedings of the 7th ACM European
Conference on Computer Systems, ser. EuroSys ’12. New York, NY,
USA: ACM, 2012, pp. 295–308.

[6] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State Machine Replication
for the Masses with BFT-SMART,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, Jun.
2014, pp. 355–362.

[7] A. Shoker and J.-P. Bahsoun, “BFT Selection,” in Networked Systems,
V. Gramoli and R. Guerraoui, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 258–262.

[8] W. Xu and R. Kapitza, “RATCHETA: Memory-Bounded Hybrid Byzan-
tine Consensus for Cooperative Embedded Systems,” in 2018 IEEE 37th

Symposium on Reliable Distributed Systems (SRDS), Oct. 2018, pp. 103–
112.

[9] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: A scalable
and decentralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2019, pp. 568–580.

[10] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” 2018. [Online].
Available: https://arxiv.org/abs/1803.05069

[11] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft
consensus with pipelined tree-based dissemination and aggregation,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, ser. SOSP ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 35–48. [Online]. Available:
https://doi.org/10.1145/3477132.3483584

[12] C. Berger, H. P. Reiser, J. Sousa, and A. Bessani, “Resilient wide-area
byzantine consensus using adaptive weighted replication,” in 2019 38th
Symposium on Reliable Distributed Systems (SRDS), Oct 2019, pp. 183–
18 309.

[13] M. Nischwitz, M. Esche, and F. Tschorsch, “Raising the awareness of
bft protocols for soaring network delays,” in 2022 IEEE 47th Conference
on Local Computer Networks (LCN), 2022, pp. 387–390.

[14] O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman, “Cogsworth:
Byzantine View Synchronization,” Cryptoeconomic Systems, vol. 1,
no. 2, oct 22 2021, https://cryptoeconomicsystems.pubpub.org/pub/naor-
cogsworth-synchronization.

[15] C. Berger, S. B. Toumia, and H. P. Reiser, “Does my bft protocol
implementation scale?” in Proceedings of the 3rd International
Workshop on Distributed Infrastructure for the Common Good, ser.
DICG ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 19–24. [Online]. Available: https://doi.org/10.1145/
3565383.3566109

[16] G. Bracha and S. Toueg, “Asynchronous Consensus and Broadcast
Protocols,” J. ACM, vol. 32, no. 4, pp. 824–840, Oct. 1985.

[17] G. Zhang, F. Pan, Y. Mao, S. Tijanic, M. Dang’ana, S. Motepalli,
S. Zhang, and H.-A. Jacobsen, “Reaching consensus in the byzantine
empire: A comprehensive review of bft consensus algorithms,”
ACM Comput. Surv., vol. 56, no. 5, jan 2024. [Online]. Available:
https://doi.org/10.1145/3636553

[18] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath,
“Bft protocol forensics,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 1722–1743. [Online]. Available: https://doi.org/10.1145/3460120.
3484566

[19] C. Berger, L. Rodrigues, H. P. Reiser, V. Cogo, and A. Bessani, “Chasing
the speed of light: Low-latency planetary-scale adaptive byzantine
consensus,” 2023.

[20] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Presence
of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988.

[21] C. Berger, H. P. Reiser, J. Sousa, and A. Bessani, “Aware: Adaptive
wide-area replication for fast and resilient byzantine consensus,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 3, pp.
1605–1620, 2022.

[22] A. Bildea, O. Alphand, F. Rousseau, and A. Duda, “Link quality
estimation with the gilbert-elliot model for wireless sensor networks,” in
2015 IEEE 26th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC), 2015, pp. 2049–2054.

[23] J. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT Protocols
Really Adaptive,” in 2015 IEEE International Parallel and Distributed
Processing Symposium, May 2015, pp. 904–913.

[24] C. Carvalho, D. Porto, L. Rodrigues, M. Bravo, and A. Bessani, “Dy-
namic Adaptation of Byzantine Consensus Protocols,” in Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, ser. SAC
’18. New York, NY, USA: ACM, 2018, pp. 411–418.

[25] M. Eischer and T. Distler, “Latency-aware leader selection for geo-
replicated byzantine fault-tolerant systems,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W), 2018, pp. 140–145.

