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Abstract—Protocol reverse engineering can infer the specifi-
cation or behaviour of unknown network protocols, which is
essential in analyzing and evaluating network functionality and
performance. There are variable-length fields in many network
protocols, and the field boundaries significantly impact subse-
quent analysis as well as the inferred results. The existing works
focus on extracting protocol keyword fields without considering
whether the fields’ length is variable. In this paper, we propose
BERRY for extracting variable-length field of unknown binary
network protocols from static traces. At first, BERRY clusters
the same type of messages from the input trace and extracts
their headers with the help of the information entropy. Then, it
combines the feature of message length and location-aware asso-
ciation analysis with to locate candidate variable fields. Finally,
it infers the variable-length field by the sequence alignment. We
evaluate BERRY with BinaryInferno using six groups of real
network protocol traces. BERRY exhibits high accuracy and
reliability on the metrics of precision, recall, and F1-score while
extracting variable-length fields. It also performs similar results
to the Binaryinferno on extracting all the fields.

Index Terms—Protocol reverse engineering, Network field
extraction, Association analysis, Clustering.

I. INTRODUCTION

A network protocol defines the format and the order of
messages exchanged among communicating entities [1]. A
protocol specification guides the entities in understanding the
transmitted data as well-defined information. It is essential to
analyze the network’s functionality or detect the transmitted
traffic [2]. However, many network applications, especially
the malware, would not disclose their protocol specifications
to preserve privacy or carry out malicious attacks. To infer
the keyword fields of protocol specifications by observing
the network traces or analyzing the entity software, known
as protocol reverse engineering (PRE) [3], has become an
effective technique.

The PRE aims to acquire the details of the format, seman-
tics, and behaviour of unknown protocols. Format inference
is the foundation for the following semantic deduction and
behaviour reconstruction [4], [5], and most existing works
focus on inferring fixed-length fields [6]–[8]. Many binary
protocols usually use variable-length field to represent the
types of protocol header, the various lengths of header, pay-
load or entire message length. Identifying their location and
boundaries significantly impacts the subsequent analysis of
semantics and behaviour.

This work is partially supported by the National Natural Science Foundation
of China (62102001).

We observe a certain association between the variable-
length field and the header length or some other fields of this
protocol. For example, the Options in IPv4 is a variable-length
field, and the IHL is the length of the IP header [9]. Whether
the Options field exists would impact the value of IHL, i.e.
the header length of IPv4. However, the association of many
protocols are not always as obvious and simple as that of the
IPv4 when the length of their field is not fixed. We need deep
analysis to disclose it and can use the association to extract
the variable-length field.

In this paper, we propose a variaBle-length fiEld extRaction
method for unknown binaRY network protocols from static
traffic, named BERRY. It takes network traces of a specific
protocol as input and automatically outputs the protocol’s
variable-length field. At first, BERRY clusters message types
from the original network traces, classifies length features
in each cluster and removes the futile payload according to
the difference in information entropy between the message’s
header and payload. Then, it combines association analysis to
locate candidate fields. Finally, it infers variable-length field
through the sequence alignment algorithm.

To be specific, the contributions of this paper are:
(1) We propose BERRY, a general framework to extract the

variable-length field of the protocol. The modules of BERRY
are independent and can be replaced with similar functionality.

(2) BERRY uses k-means to cluster message types and
information entropy to divide the header and payload of a
message. Then, it uses location-aware association analysis to
locate candidate fields. Finally, it uses sequence alignment to
determine the inferred result.

(3) We evaluate BERRY with real-world datasets and com-
pare it with the start-of-the-art approach, demonstrating that
BERRY can deliver automatic, robust and high accuracy in
extracting variable-length field across diverse protocols.

II. RELATED WORK

Since we are going to extract the variable-length field from
the static traces, we briefly survey some typical methods of
inferring protocol format through these techniques.

A. Sequence-based Analysis

Sequence alignment compares byte values based on their
fixed position in a message. The position-based correlation of
bytes or n-grams reveals field boundaries by distinguishing
between static and variable values.
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Fig. 1. The framework of BERRY.

PreDecoder [10] infers protocol format by grouping and
clustering messages. Each message cluster uses the sequence
alignment module to find invariant fields between messages.
NETPLIER [7] uses multi-sequence alignment to align all
messages. It determines which (aligned) field is the keyword
by a probabilistic method and clusters them, restoring for-
matting directly. BinaryInferno(BI) [11] uses modular and
extensible targeted detectors to identify atomic data types, find
boundaries between adjacent fields using Shannon entropy, and
discover variable-length sequences by searching for common
serialization idioms. ROSE [12] use linear regression to extract
the length field, which is a specific semantic field rather than
all the fields extracted by the other methods.

B. Graph-based Analysis

Graph-based format reasoning methods include graph the-
ory and images. This method constructs a graph model to
observe the relationship between protocols and thus infer the
format of the protocols.

Biprominer [13] uses a special state machine called prefix
tree receptor, which can be used as a graph-based message
format inference without alignment. The paper [14] uses a
probabilistic graphical model to parse formats. It introduces
vote-mechanism into the Hidden Markov Model using a pro-
tocol state transfer relationship. ProGraph [15] constructs a
graphical model of the target protocol to describe the internal
dependencies of packets and then classifies the traffic using the
graphical model to deduce the protocol format. ProsegDL [8]
uses image semantic segmentation technology, superimposes
multiple binary messages with similar formats, takes the
generated protocol image matrix is used as input to identify
field boundaries.

C. Algebraic-based Analysis

In addition, the following algebraic format reasoning meth-
ods have also been proposed in the existing research. These
methods are characterized by calculating the similarity or
entropy of the protocol messages.

NEMETYL [6] uses three different segmentations [16] to
handle message segments and combines it with clustering al-
gorithms by calculating Canberra dissimilarity and Needleman
Wunsch algorithm. The subsequent work [17] uses princi-
ple component analysis to improve the protocol clustering
accuracy of NEMETYL. SPRA [18] delivers automatic and
robust syntax inference across diverse protocols by building
a parallel workflow to co-optimize both the generative model
for keyword extraction and building a probability-based model
for message clustering. FSIBP [19] designs multiple recurrent

neural networks to analyze the fields and their corresponding
contexts for field feature extraction.

The above methods provide sequence-based, graph-based,
and algebraic techniques for inferring protocol formats. They
extrapolate the protocol format from the perspective of fixed-
length fields, ignoring variable-length field. Next, we will show
how BERRY extracts variable-length field.

III. APPROACH

A. Framework

The network protocols are usually layered, which consists of
a header and payload. The meaningful fields of protocols are
located in the header and a pure, complete header is better for
inferring the fields from static traces. Removing the payload is
useful because the content of payloads is random and irregular
compared to that of headers.

As mentioned, there is a certain relationship between the
variable-length field and the header length or some other fields
of this protocol. We can leverage the association analysis to
disclose the relationship and use the sequence alignment to
identify the possible boundaries of the variable-length field.

Hence, we propose BERRY to extract the variable-length
field. It takes static network traces of a specific network proto-
col as input and outputs the boundaries of the inferred variable-
length field. BERRY consists of three modules: classification,
association analysis and integrating&alignment, which are
shown in Fig. 1. The brief introductions are as follows:

Classification: The various types of messages have distinct
structures and semantics, resulting in different correlations
between the internal fields of each message type. Message
clustering classifies different types of messages based on these
characteristics and then reclassifies them based on their length
feature. The key information of the protocol is usually in the
header, so dividing header is also a necessary mission. This
module outputs classification messages of different lengths
after dividing the payload.

Association Analysis: BERRY uses the association analysis
algorithm Apriori to find the association between fields in
messages of the same length in clustering. To improve the
accuracy of association analysis, it introduces positional at-
tention in Apriori to locate association fields. Then, BERRY
labels the possible fields based on the offset records of the
bytes in each message. Finally, it outputs the message headers
with associated field markers.

Integrating & Alignment: BERRY integrates labelled mes-
sages to reduce the computation in subsequent missions. Then,
it aligns these integrated sequences and marks the target field.
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Fig. 2. Rapid change of information entropy of header and payload can be
used to identify the boundaries of them.

Finally, it outputs the message header with variable-length
field boundaries.

B. Classification

A protocol can produce various messages, and a message
can be called an instance of the protocol. Each message can be
treated as the connection of successive fields, and each field
comprises a sequence of data segmented from the message.
The protocol, message, and field are the logical concepts and
they can be contained in the packets, namely the network
traffic which is also called static trace.

1) Message clustering: A protocol may contain plentiful
types of messages resulting in different structures and seman-
tics. So, clustering the messages by their characteristics or any
other similarities would simplify the subsequent processing
and improve the inferred performance. BERRY clusters the
messages of a specific protocol into optimal different message
types by the k-means algorithm with the Euclidean distance
of the messages. It iteratively chooses the optimal number
of clusters with the Silhouette Coefficient, an indicator that
measures the quality of clustering results, combining the
compactness of the sample within its cluster and the degree
of separation from other clusters. Then, BERRY classifies the
messages based on their length within the divided clusters at
the end of this step.

2) Dividing payload: The header provides key information
about a protocol specification, which is crucial for understand-
ing the communication details. Therefore, the PRE typically
only focuses on the header rather than the payload. BERRY
uses information entropy to find the segmentation point be-
tween them and then cuts off the payload. It calculates the
information entropy at each offset in the clustered messages
using Eq. (1):

H(Vk) = −
∑
v∈Vk

P (v) log2(P (v)) (1)

Vk is the bag formed by the kth byte of each clustered
message, and P (v) is the probability of the v value in Vk, cal-
culated as the number of times v appears in Vk divided by the
size of Vk. For example, the information entropy in the second
column of Fig. 3, H([0x81, 0x88, 0x81, 0x88, 0x82]) = 1.52.

There are significant differences in the information carried
by the header and payload. The information entropy tends
to stabilize after reaching a maximum point in the messages
without an explicit delimiter between the header and the pay-
load, as shown in Fig. 2(a) and Fig. 2(b). As to the messages

XX XX XX D- XX XX D- XX D-

04  81 7e 00 a2 
08  88 fe 00 9e 2b 15 c7 6a  
04  81 7e 00 a2 
08  88 fe 00 9e 01 76 41 20 
08  81 fe 00 9e 4b 77 08 62

element offset
06、02 0
8a、0e 2

06  82 8a 8e 06 b4 70
06  82 8a fc 0e 14 4b
02  81 0e
06  88 8a b4 43 ed 73
02  82 0e

XX D- XX D-
XX D- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX

XX D- -- -- XX D-
XX D- -- -- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX

XX D- XX D- XX D- XX XX D- XX D-

XX XX XX D- XX XX D- XX D-

XX D- XX D-
XX D- XX D- -- -- -- XX XX XX XX D-
XX D- -- XX XX XX D-
XX D- -- XX XX XX D- XX XX XX XX D-
XX D- XX D- XX XX D- XX XX XX XX D-

XX D- XX D-
XX D- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX
XX D- XX D- XX XX D- XX XX XX XX

04  81 7e 00 dc 
04  81 7e 00 dc  
04  81 fe 00 88 
04  88 fe 00 88 
04  81 7e 00 dc

element offset
06 0

04、80 2

06  81 04 32 e6 ac a1
06  88 80 06 0e 14 4b
06  81 04 36 37 36 37
06  88 80 36 75 75 ef
06  82 04 40 40 40 56

Fig. 3. Example of inferring WebSocket messages. The left part represents
five messages, the first column in shadow is the length of the message, and the
rest is the bytes of each message. The right represents the infferred association
rules.

with delimiters between them, the information entropy rapidly
increases after experiencing some fluctuations and reaching the
first minimum point, shown as the SNMP protocol in Fig. 2(c).

The information entropy of the payload may not always
be large, as the payload data may carry a part of redundant
information. Similarly, the information entropy in the message
header may not be minimal, as certain fields like message
ID and token may have approximately random values. This
implies that the information entropy decreases rapidly, as
illustrated in Fig. 2(b) and Fig. 2(c). The delimiter typically
appears between the header and the payload. Despite appearing
in the header, its value would be similar to others. Hence,
the information entropy in the message header would not
be extensive or fluctuate. Therefore, BERRY can divide the
header and payload by using the maximum or minimum point.

C. Association Analysis

We notice some connections between the variable-length
field and the length of the message header or other fields.
BERRY can utilize association analysis with the length feature
to uncover the relationship.

1) Apriori: The association analysis can be used to discover
meaningful connections hidden in the messages. Frequent item
sets and association rules can represent the discovered con-
nections. The strength of association rules can be measured by
their support s and confidence c levels. The support determines
that a rule can be used for the frequency of a given dataset,
that is, to effectively discover association rules. Confidence
determines the frequency of Y in transactions containing X .
The forms of support s and confidence c measures are shown
in Eq. (2), where X and Y represent the candidate fields, i,
j = 0, 1, 2,...,Mk, the σ represents the support count, and Mk

represents the total number of messages in this set.

s(Xi → Yi) =
σ(Xi ∪ Yi)

Mk

c(Xi → Yi) =
σ(Xi ∪ Yi)

σ(Xj)

(2)

Discovering association rules involves identifying all rules
with support and confidence equal to or greater than the
specified thresholds, minsup and minconf, which selected in
BERRY is 0.5 and 1 for the following reasons:

minsup: As shown in Fig. 3, the goal is to obtain the offsets
of the frequent items that meet the conditions, namely the
offset 0 and 2 corresponding to rules 06 → 04 and 06 → 80,
with a confidence level of 1 and support levels of 0.6 and 0.4,
respectively. BERRY only need rule 06 → 04 as the offsets
obtained by the two rules are the same. The sum of support at



the same offset is 1, which verifies that our support threshold
minsup setting of 0.5 is reasonable.

minconf : Confidence c(X → Y ) represents the possibility
of Y appearing in works containing X . In other words, it
represents the degree of correlation between X and Y , with
1 indicating a certain correlation. Another explanation is that
if this rule’s improvement degree lift is greater than 1, it
indicates a convincing rule. The form of improvement degree
lift is shown in Eq. (3):

lift(Xi → Yi) =
c(Xi → Yi)

σ(Yj)
(3)

2) Locating associated fields: The classic association anal-
ysis only focuses on the relationship between the value of
elements but ignores their positions. For example, a shopping
transaction contains a unique identification and a correspond-
ing set of products. The traditional algorithm would find some
associations between the unordered products. However, the
fields of a network protocol are strictly ordered even some
fields are variable. As the example shown in Fig. 3, the bits
of the first byte represent some flags followed by a length field.
Even if the length field of the protocol is variable, the starting
offset of the field is the second byte and remains unchanged.
We introduce location-aware concept that keeps the fields’
positions during the association analysis.

BERRY firstly locates elements in previously found rules.
Then, it tracks and synchronizes the offsets of the association
rules while searching for them. We calculate the minsup
with the locational information. Without introducing it in
association analysis, the associated rules may include some
meaningless or incorrect rules. For example, there are two 06
and three 40 appearing in the second and fifth lines in Fig.
3, the classic association analysis may infer two independent
elements {06, 40} without any further information. The posi-
tion of the elements is missing, which would lead to incorrect
associated rules.

3) Labeling fields: BERRY records the number of occur-
rences and offset of elements in the rules derived from asso-
ciation analysis. In the example in Fig. 3, the relevant records
for elements in rule 06 → 04 are {06, 6, 0, 0, 3, 0, 0, 0} and
{04, 3, 2, 2, 2}. In these records, the first element represents the
target element, and the second is the number of occurrences,
followed by each offset where the element appears.

The bytes in a message may not always be different, as in
this rule, element 06 appears twice in the same message. How-
ever, based on association analysis and previous classification,
the number of target offset positions we need is definitely
greater than the others. So, BERRY only selects the offset with
the highest number of occurrences after the second element in
the record. Finally, BERRY uses‘D-’ to mark this offset, which
is regarded as a marker for the associated field. The labelled
results are used for subsequent alignment.

D. Integrating & Alignment

Berry integrates the labelled messages to avoid heavy com-
putation requirements. Then, it aligns the integrated sequences

XX XX XX D- XX XX D- XX D-

04  81 7e 00 a2 
08  88 fe 00 9e 2b 15 c7 6a  
04  81 7e 00 a2 
08  88 fe 00 9e 01 76 41 20 
08  81 fe 00 9e 4b 77 08 62

element offset
06、02 0
8a、0e 2

06  82 8a 8e 06 b4 70
06  82 8a fc 0e 14 4b
02  81 0e
06  88 8a b4 43 ed 73
02  82 0e

XX D- XX D-
XX D- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX

XX D- -- -- XX D-
XX D- -- -- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX

XX D- XX D- XX D- XX XX D- XX D-

XX XX XX D- XX XX D- XX D-

XX D- XX D-
XX D- XX D- -- -- -- XX XX XX XX D-
XX D- -- XX XX XX D-
XX D- -- XX XX XX D- XX XX XX XX D-
XX D- XX D- XX XX D- XX XX XX XX D-

XX D- XX D-
XX D- XX D- XX XX XX XX
XX D- XX XX XX D-
XX D- XX XX XX D- XX XX XX XX
XX D- XX D- XX XX D- XX XX XX XX

Fig. 4. Example of integrating & alignment. The left represents the integrated
headers and the right represents the padding aligned according to the delimiter.

to get the boundaries of the target variable-length field.
1) Integrating: BERRY integrates clusters of different mes-

sage types generated in the Classification module for sub-
sequent alignment. Then, it removes the feature of message
length and simplifies fields using ‘XX’ with consistent marker
offsets, length ranges, and message lengths, as shown in the
left of Fig. 4.

2) Alignment & mark: Padding fields with ‘- -’ to line them
up at delimiter offsets, BERRY aligns the ‘D-’ in the sequence
from the beginning towards the longest sequence. First, move
all ‘XX’ between the current and previous ‘D-’. If there is
no ‘D-’ before the current ‘D-’, move the current ‘D-’ as a
whole with its previous ‘XX’. Then, add ‘- -’ to the gap after
movement, as shown in the right of Fig. 4.

In sequences where a variable-length field is situated at the
beginning or end, the difference in the position of the first ‘D-’
close to each ‘- -’ is minimal (0-2). BERRY identifies these two
positions as the boundaries of the variable-length fields, with
the bytes in between constituting the variable-length fields
of the message. Otherwise, BERRY uses the position of the
gap character ‘- -’ to determine the boundaries. Each couple
of characters ‘- -’ appearing in the minimum and maximum
positions in the sequences represents the boundaries of the
variable-length field.

IV. EVALUATION

A. Datasets and Metrics

1) Datasets: To exhibit the reliability and robustness of
BERRY, we collect six application layer protocol traces to
evaluate it, including WebSocket(WS), MQTT, CoAP [20],
SNMP, STUN [21], and DNS. There are variable-length field
in four binary protocols of the traces, and the others (STUN &
DNS) do not exist. The number of messages of each protocol
is shown in the second column of Table I. We use each type
of message as the input and compare the results to the ground-
truth about the protocol specification. The traces, source code,
and brief instructions are released on Github .

2) Metrics: We evaluate the inferred field with the ground-
truth to consider the precision, recall, and F1-score, which
are classic metrics. What semantics they represent are a few
differences in the scenarios of extracting variable-length fields
or all fields. We will explain the details later. Given a message
trace of a specific protocol, we define the sets shown in
Fig. 5. Then, we can furthermore consider the definitions of
the evaluation metrics, which are described and calculated as
follows:

• Precision: The soundness of the inferences. It is calcu-
lated as the ratio of the number of matched boundaries
by the total boundaries predicted to be true.

https://github.com/xiuwencs/berry
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Fig. 5. Illustration of true positives (TP), false negatives (FN), and false
positives (FP) between inferred field boundaries and the ground-truth.

• Recall: The coverage of the inferences. It is calculated as
the ratio of the number of matched boundaries by the total
number of boundaries of the true field in ground-truth.

• F1-score: The accuracy of the boundaries of extracted
field by computing scores considering both the precision
and the recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
2× Precision×Recall

Precision+Recall

(4)

B. Results of Dividing Header from Payload

BERRY uses the information entropy to divide the header
from the payload in the classification module and uses the
divided headers to perform association analysis in the next
step. We evaluate it first by collecting the number of correct
or incorrect divided results and using Eq. (5) to calculate
the accuracy of dividing, namely the proportion of correctly
divided results, which are defined as:

• True: The inferred offset is equal to the ground-truth.
• False: The inferred offset is not equal to the ground-truth.
• Accuracy: The soundness of the inferred division offset

between the header and the payload.

Accuracy =
True

Ture+ False
(5)

The evaluation results are presented in Fig. 6. BERRY can
correctly divide the headers from most messages of CoAP
and SNMP protocols. Due to the randomness of the MASK
field at the end of the header in the WebSocket protocol,
there is no significant difference in its information entropy
between the header and payload, resulting in an accuracy of
only 61.9%. The MQTT protocol has diverse message types.
There are two types whose information entropy is 0 in the
evaluated dataset. It means that the header and payload of these
messages are identical. Hence, it is hard to divide the header
and payload of these messages. However, these divided results
slightly influence the subsequent extraction of the variable-
length field, as the divided headers only have two more bytes
of the number ‘0’ compared to the ground-truth.

C. Results of Extracting Fields and Comparision

1) Results of Extracting Variable-Length Field: The in-
ferred results and the ground-truth of variable-length fields in
the datasets are shown in Table I. GT represents the ground-
truth. The symbols - and / represent that there is no existence

Fig. 6. Results of payload division and variable-length field extraction.

of ground-truth and inference results, respectively. BERRY
correctly identifies the starting offsets of all the variable-length
fields in the experiments.

TABLE I
SPECIFICATION FOR VARIABLE-LENGTH FIELD IN EXISTING DATASETS

Protocol # Msgs.
Offset Range of Length

GT BERRY BI GT BERRY BI

WebSocket 11268 1 1 1 {1, 3} {1-3, 5-8} /

MQTT 4775 1 1 1 {1, 2} {1, 2} /

CoAP 3946 4 4 4 {1-8} {1-8} /

SNMP 4329 7 7 / {4-8} {4-7} /

DNS 2000 - / 12 - / /

STUN 2000 - / 11 - / /

We first define the TP, FN and FP in the scenario of ex-
tracting variable-length fields. Then, we calculate the metrics
according to Eq. (4). The definitions are as follows:

• TP(matched): The offset of an extracted variable-length
field matches the ground-truth.

• FN(missed): BERRY does not locate the offset of a
specific variable-length field.

• FP(unmatched): The offset of an extracted variable-
length field does not match the ground-truth.

The average precision, recall, and F1-score of inferring the
four protocols with variable-length field are 94.4%, 94.7%,
and 94.7%, respectively as shown in Table II and Fig. 6. The
STUN and DNS protocols do not exist any variable-length
fields. BERRY does not produce any insertable ‘- -’ separators
during integration & alignment. It means that the fields are
fixed-length, and BERRY is reliable in identifying variable-
length fields.

As mentioned above, BinaryInferno infers binary message
formats by atomic, field-boundary, and pattern-based detectors.
It uses a pattern-based detector to discover variable-length
sequences. However, it’s limited to the patterns described
in pre-defined grammar, which lacks generality in extracting
variable-length field. Therefore, we compare BERRY with BI
in extracting variable-length field and extracting all the fields.

2) Comparison of extracting variable-length field: Table II
and Fig. 7 show the precision, recall and F1-score of ex-
tracting variable-length fields for each protocol. Obviously,
BERRY is better than BI except for the result of WebSocket



TABLE II
COMPARISION WITH EXISTING APPROACH

Evaluation results of inferred variable-length field Evaluation results of inferred all fields

Protocol
BERRY BI BERRY BI

Prec. Rec. F1-score Prec. Rec. F1-score Prec. Rec. F1-score Prec. Rec. F1-score

WebSocket 0.971 0.927 0.945 1 0.5 0.667 0.971 0.92 0.945 1 0.437 0.609

MQTT 1 0.876 0.954 1 0.5 0.667 1 0.461 0.631 1 0.398 0.569

CoAP 0.905 0.985 0.944 0.5 0.5 0.5 0.952 0.993 0.972 1 0.57 0.726

SNMP 0.898 0.999 0.946 0.333 0.429 0.4 1 0.25 0.4 1 0.429 0.6

DNS - - - - - - 0.646 0.624 0.635 1 0.333 0.5

STUN - - - - - - 0.667 0.667 0.667 0.5 0.667 0.571

Average 0.944 0.947 0.947 0.708 0.482 0.559 0.873 0.652 0.708 0.917 0.472 0.596

WS  MQTT  CoAP  SNMP
0.0

0.2

0.4

0.6

0.8

1.0

Precision
WS  MQTT  CoAP  SNMP

Recall
WS  MQTT  CoAP  SNMP

F1-score

BERRY BI

Fig. 7. Comparison of results for variable-length field with BinaryInferno.

WS  MQTT  CoAP  SNMP DNS STUN
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Fig. 8. Comparision of results for all fields with BinaryInferno.

protocol. The average of metrics of BI is about 60%, while
that of BERRY is about 95%.

As shown in Table I and Table II, BI only correctly extracts
the starting offset of the field from WebSocket and MQTT
protocols. Since BI only extracts an offset in the experiments
of these two protocols, i.e. the correct starting offset of a
variable-length field, and it does not extract any other offsets,
FP is 0. Hence, its precision is TP/(TP+0)=1. BI performs
worse in the CoAP and SNMP protocols experiments. It only
correctly extracts the starting offset of CoAP but identifies
enormous incorrect ending offsets from both of them. As for
the results of DNS and STUN without variable-length field,
BI mistakenly believes that there are such fields. Moreover,
BERRY can identify the boundaries and the ranges of the
extracted variable-length fields. BI only infers the starting
offset of the variable-length fields, but it does not provide the
range of them.

From the analysis above, it can be found that BERRY not
only accurately extracts the starting offset of the field but also
shows high accuracy extraction results for the complete fields
and ranges. BI does not extract the boundaries of the variable-
length fields completely (both the starting and ending offsets)
and the range of the fields.

3) Comparison of extracting all the fields: Before evaluat-
ing the performance of BERRY on extracting all the fields, we
define the TP, FN, and FP in this scenario. Then, we calculate
the metrics according to Eq. (4). The definitions are as follows:

• TP: The offset of any extracted fields matches their
ground-truth.

• FN: BERRY does not locate the offset of specific fields.
• FP: The offset of the extracted fields does not match the

ground-truth.
As shown in Table II and Fig. 8, Although the variable-

length fields do not account for a large proportion of all the
fields in the entire messages, BERRY outperforms BI in the
metrics of recall and F1-score. It is not as good as BI on the
precision metric. BERRY is a method for extracting variable-
length fields; it is not good at extracting all the fields. As the
start-of-the-art approach, BI can precisely identify the protocol
fields. However, due to the influence of variable-length field,
BI fails to extract such that fields completely and precisely.
It also does not perform good results in the experiments of
DNS, SNMP and STUN protocols.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose BERRY, the method of extracting
variable-length field of binary network protocols from static
traces. BERRY divides the header from the payload of the
messages, analyzes the divided headers and locates the candi-
date fields by applying location-aware concept to the associa-
tion analysis. Finally, it identifies the location and boundaries
of the variable-length field using sequence alignment. The
experiments shows that the average precision, recall, and F1-
score can be 94.4%, 94.7% and 94.7%, respectively. BERRY
also performs well in protocols without variable-length field.
We also evaluate BERRY with the state-of-the-art approach
BinaryInferno, showing that BERRY outperforms BinaryIn-
ferno in extracting variable-length field.

BERRY can identify the variable-length field boundaries
well, it is little insufficient for extracting fixed-length fields
compared to the state-of-the-art approach. We are going to
explore a method of extracting fixed and variable fields of
binary network protocol together in the future.
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