
Multimodal Machine Learning Algorithm for
Enhanced Signal Modulation Recognition in

Wireless Communication Systems
Bojun Zhang

School of Intelligence and Computing, Tianjin University
Tianjin, China

1020244023@tju.edu.cn

Abstract—Automatic modulation identification plays an impor-
tant role in wireless communication systems. With the develop-
ment of deep learning technology, more and more researches
have begun to adopt deep learning methods for modulation
identification. However, traditional deep learning methods face
interference from nonlinearity, noise, and time-varying nature of
the signal when processing the signal, resulting in degradation of
classification performance. Meanwhile, single modal features are
difficult to fully capture the time and spatial domain information
of the signal, which is important for accurately identifying the
signal modulation type. To overcome these limitations, this study
proposes a multi-modal deep learning based signal modulation
recognition scheme. The scheme improves the modulation recog-
nition performance by fusing features from different modalities,
including time, frequency and spatial domain features. Experi-
mental results show that the proposed method achieves significant
performance improvement in the signal modulation recognition
task. This provides a more robust and accurate modulation
identification capability for wireless communication systems.

Index Terms—modulation recognition, multimodal, deep learn-
ing

I. INTRODUCTION

With the rapid development and wide application of wire-
less communications, automatic modulation identification has
become an important task. As shown in Figure 1,automatic
modulation identification is the process of determining the
type of modulation it employs based on the received signal.
Automatic modulation identification has a wide range of
applications in wireless communication systems. First, accu-
rate modulation identification can help the receiving end to
correctly demodulate the signal, thus realizing high-quality
data transmission. Second, modulation recognition can be used
in radio spectrum monitoring and management to help monitor
the type and distribution of radio signals to optimize the
use of spectrum resources. In addition, in the field of radio
communication security, modulation identification can be used
to detect and identify potentially interfering signals and illegal
signals. Conventional signal modulation recognition methods
usually use manually designed features and classifiers based
[1]–[3], but these methods have some challenges when dealing
with complex wireless signals.

In recent years, deep learning has made significant progress
in various fields, including computer vision and natural lan-
guage processing. However, in the field of signal modulation
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recognition, traditional deep learning methods face some prob-
lems in processing signals. The method [4] of directly feeding
the signal into the neural network for classification may be
disturbed by the nonlinearity, noise, and time-varying nature
of the signal, which leads to a degradation of the classification
performance. In addition, there are some limitations in con-
verting signals into spectrograms [5] and using convolutional
neural networks for classification because spectrograms do not
fully capture the time and spatial domain information of the
signal, which is important for accurately identifying the type
of signal modulation.

In order to overcome the limitations of traditional deep
learning methods and to improve the performance of signal
modulation recognition, the introduction of multimodal deep
learning becomes an effective approach. Multimodal deep
learning utilizes the features of multiple data modalities (e.g.,
time, frequency, and spatial domains, etc.) for signal modu-
lation recognition, thus capturing the spatio-temporal features
of signals more comprehensively and improving recognition
accuracy.

In this study, we propose a signal modulation recognition
scheme based on multimodal deep learning, aiming to address
the limitations of traditional deep learning methods in signal
modulation recognition. We obtain more comprehensive signal
information by employing features from multiple data modal-
ities, such as Gramian Angular Field (GAF) [6] and Gramian
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Angular Difference Field (GADF) [6], Markov Transition
Field (MTF) [7], Recursive Plot (RP) [8], Motif Difference
Field (MDF) [9], Relative Position Matrix (RPM) [10], and
Short-Time Fourier Transform (STFT) [5]. By combining
these features of different modes, we are able to capture the
time, frequency, and spatial domain features of the signal
more accurately, thus improving the performance of signal
modulation identification.

Next, we feed the extracted multimodal features into a well-
designed deep learning model for signal modulation recog-
nition. We employ residual networks and LSTM structures
to efficiently learn the abstract representations and temporal
features of the signals. The main contributions of this study
include:

1) A multi-modal deep learning based signal modulation
recognition scheme is proposed, which can fully utilize
the feature information of different modes.

2) Novel feature extraction methods and deep learning
model structures are introduced to improve the accuracy
and robustness of signal modulation recognition.

3) The effectiveness of the proposed scheme is verified
through large-scale experiments and compared and ana-
lyzed with traditional methods.

By combining multimodal features and deep learning models,
we aim to achieve highly accurate and efficient signal modula-
tion identification, providing more reliable and efficient mod-
ulation identification capabilities for wireless communication
systems.

II. RELATED WORK
A. deep Learning model for Modulation Recognition

Lee et al [11]. construct a four-layer fully connected net-
work to perform signal modulation recognition. liu et al [12].
used CNN to extract signal features. Zhang et al [13]. use the
DenseNet structure and use residual connections to construct
a deep neural network for signal modulation recognition. Liu
et al [14]. use CNN networks to extract the features of the
signals, followed by similarity to construct the adjacency
matrix between the signal samples and use graph convolution
for signal modulation recognition. SSRCNN [15]: propose a
semi-supervised learning (SSL) framework that can efficiently
extract knowledge from unlabeled data by designing loss
functions and neural network structures. SQRNN [16]: propose
an automatic constraint classifier architecture that exploits
the low time slot feature of the transformation threshold to
enhance the learning capability of the model. However, none
of the above algorithms take into account the existence of low
signal-to-noise ratio situations and the inconsistency between
the distribution of test and training data. As a result, some
key information is lost and a full representation of the target
problem is not possible.

B. Multimodal features of time series

Recurrence Plot (RP) [8] is a method for converting a time
series into a two-dimensional image. It constructs a binary
matrix by comparing the similarities between sample points

in a time series. In a recurrence plot, the rows and columns
of the matrix correspond to the sample points in the time
series, and the elements of the matrix indicate the similarity
between the corresponding sample points. Recurrence plots
can capture repeating patterns and periodicity in a time series.
Gramian Angular Summation/Difference Field (GASF/GADF)
[6] is a method for converting a time series into a two-
dimensional image. They obtain a two-dimensional image by
converting the time series to polar coordinate representation
and then computing it using sine and cosine functions.GASF
and GADF capture the periodicity and trend of the time series,
respectively. Markov Transition Field (MTF) [7] is a method
for converting a time series into a two-dimensional image.
It constructs a two-dimensional matrix by analyzing the state
transfer relationships in a time series, where the elements of
the matrix represent the transfer probabilities from one state to
another. The Markov transfer field captures the state transfer
patterns and sequence properties in the time series. Motif
Difference Field (MDF) [9] extracts features by calculating
the difference between signal samples. This method highlights
the variation and trend information in the signal and helps to
capture the dynamic features of the modulated signal. Relative
Position Matrix (RPM) [10] extracts features by analyzing the
relative order and relationship between signal samples. This
method captures the sequential orderliness and correlation in
the signal and helps to differentiate between different mod-
ulation classes. The Short-Time Fourier Transform (STFT)
[5] provides spectral information. Phase Space Reconstruction
(PSR) [17] is a method for converting a time series into a point
cloud representation in phase space. It uses delayed embedding
techniques in the time series to convert a univariate time series
into a set of points in a multidimensional phase space. The
dynamic characteristics and structure of the time series can
then be analyzed by visualizing the set of points in phase
space, e.g., by plotting a scatterplot of the phase space or
generating an image representation of the phase space.

III. FRAMEWORK OVERVIEW

This section aims to provide a detailed description of the
multimodal feature extraction component and model archi-
tecture in our system. The primary objective is to transform
the signal modulation recognition problem into a classification
task. To achieve this, we have constructed a multimodal feature
extractor designed to capture diverse aspects of the signal’s
characteristics. Subsequently, these features are fed into a deep
learning model for the ultimate classification prediction. This
section will delve into the construction process of the model
and the design principles behind each component.

A. Multimodal Feature Extractor

As shown in Figure 2, No longer limited to signal process-
ing, we draw on a variety of advanced time series feature
extraction techniques [18], including Gramian Angular Field
(GAF) [6] and Gramian Angular Difference Field (GADF) [6],
Markov Transition Field (MTF) [7], Recursive Plot (RP) [8],
Motif Difference Field (MDF) [9], Relative Position Matrix
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(RPM) [10], and Short-Time Fourier Transform (STFT) [5].
to construct the multimodal features of the original signal.

Compared to the traditional approach of representing the
original signal as a spectrogram using Short-Time Fourier
Transform (STFT) [5], our chosen algorithms offer several
advantages.

Firstly, Gramian Angular Field (GAF) [6] and Gramian
Angular Difference Field (GADF) [6] excel in capturing the
temporal dependencies and non-linearity in signal evolution,
providing a more comprehensive feature representation, in-
cluding spectral information, periodicity, phase relationships,
and trends. This multidimensional feature representation better
captures the modulation patterns and dynamic characteristics
of signals, supporting a more comprehensive understanding of
modulation modes.

Meanwhile, Markov Transition Field (MTF) [7] extracts
features by analyzing the state transition relationships between
signal samples. This method captures state transition patterns
during signal modulation, aiding in the identification of dif-
ferences between various modulation categories.

Additionally, Recursive Plot (RP) [8] technique utilizes
higher-order statistical information by modeling recursive rela-
tionships between signal samples to extract features. This ap-
proach captures recursive structures and dependencies within
the signal, revealing inherent patterns that conventional meth-
ods might overlook, enabling the model to recognize complex
features that could be neglected by traditional approaches.

The Motif Difference Field (MDF) [9] extracts features

by computing the differences between signal samples. This
method emphasizes changes and trends in the signal, aiding
in capturing the dynamic characteristics of modulated signals.

The Relative Position Matrix (RPM) [10] extracts features
by analyzing the relative order and relationships between
signal samples. By incorporating spatial relations and struc-
tural information into the feature set, it can capture the
sequential order and correlation within the signal, facilitating
the differentiation between different modulation classes. This
enables the model to capture spatial dependencies within
the signal, particularly beneficial when dealing with complex
spatial arrangements in signal modulation patterns.

It can be seen that the multimodal features we constructed
have significant advantages over traditional algorithms, and are
able to capture the multidimensional features such as temporal
evolution, nonlinear properties, spectral information, periodic-
ity, phase relationship, and change trend of the signal in a
more comprehensive and integrated way. This comprehensive
feature representation makes our model perform better in the
comprehensive understanding of different modulation modes
and provides strong support for the performance improvement
of the signal modulation identification task.

B. Network Architecture

As the primary objective of this paper is to validate the
effectiveness of the proposed multimodal feature extraction,
we used a widely used neural network architecture to construct
the model. Multi-modal features previously extracted for the



real and imaginary parts of the original signal, respectively,
were uniformly resized to a size of 128× 128. Subsequently,
these features are concatenated into a 3D vector of dimensions
14× 128× 128. Following this, standard normalization is ap-
plied along each channel of the vector. Finally, the normalized
features are fed into the ResNet50 [19] backbone network for
feature learning.

We understand that the time series of the original signal
contains rich temporal features. Therefore, our multimodal
features not only encompass those constructed through two-
dimensional images but also include the temporal characteris-
tics of the original signal [20]. To comprehensively utilize this
information, As shown in Figure 2, we designed a multi-input
deep learning model. In this model, we feed the constructed
multimodal image features into the ResNet50 [19] backbone
for feature learning [21]. Simultaneously, we input the real and
imaginary parts of the original signal into two separate LSTM
[22] layers (with no shared parameters) forming the backbone
network, extracting temporal features of the signal’s real and
imaginary components, respectively.

After extracting high-dimensional features from the two
backbone networks, we concatenate the features from both
channels. These concatenated features are then fed into two
fully connected layers. In the first fully connected layer, we
apply leakyrelu and BN operations to create a non-linear
mapping for the network layer. For the second fully connected
layer, we directly apply softmax for the final prediction of the
signal modulation category.

IV. IMPLEMENTATION AND EVALUATION

This section will cover the experimental part of our study.
We will begin by introducing our experimental setup, followed
by comparative experiments and ablation experiments to val-
idate the effectiveness of the proposed algorithm.

A. Experimental Setup

We employed GNU-radio and Python tools for signal
simulation and dataset construction. The dataset comprises
11 modulation signals, including 8 digital modulation types
(8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM, 64QAM,
QPSK) and 3 analog modulation types (AM-DSB, AM-SSB,
WBFM). Each modulation type covers 20 Signal-to-Noise
Ratio (SNR) levels, totaling 220,000 samples. In contrast
to traditional signal simulations using random sequences as
data sources, we utilized Shakespeare’s Gutenberg works as
the baseband signal for digital modulation and the series
”Serial Episode” for analog modulation. In terms of noise
environments, Additive White Gaussian Noise (AWGN) was
introduced, considering diverse channel scenarios, including
AWGN, selective fading (Rician + Rayleigh), Center Fre-
quency Offset (CFO), and Sample Rate Offset (SRO). The
sampling rate was set to 200 kHz, with delays ranging from
[0.0, 0.9, 1.7]. The SNR ranges from -20dB to 20dB, with
2dB intervals, yielding 1,000 samples for each SNR. Each
sample includes In-phase (I) and Quadrature-phase (Q) signals,
with each signal comprising 128 points. Consequently, the

dataset’s overall size is 220, 000 × 2 × 128. Also to verify
the generalizability and robustness of our model for unseen
data, we use two public datasets RML2018.01a [20] and
HisarMod2019.1 [23] for testing.

Our hardware components include a laptop and a high-
performance server, Powerleader PR2730G, equipped with
Nvidia Tesla P100 GPU. For programming, we use Python,
PyTs [24] library for multimodal feature extraction, and Py-
Torch library for model construction. The dataset is divided
into a training set, consisting of approximately 176,000 sam-
ples, and a test set with 44,000 samples, both in npy format.
The categorical cross-entropy was set as the loss function
and Adam’s algorithm was used as the optimizer with a
cosine annealing learning rate optimization algorithm. In all
experiments, the initial learning rate starts at 0.001 and the
batch size is set to 400. if the validation loss does not decrease
within 5 periods, the learning rate is halved. If the validation
loss remains stable for 50 periods, the training process stops.
And ten-fold cross-validation is used to avoid the randomness
of the parameters. We evaluate the model using the modulation
type recognition accuracy (Accuracy) metric.

We use comparative experiments and ablation experiments
to verify the effectiveness of the algorithm proposed in this
paper. We have selected several classical algorithms as the
baseline of this paper, the following is the baseline of this
paper:

1) LSTM [4]: used the LSTM algorithm to extract time-
domain features of the signal for modulation identifica-
tion.

2) DAE [25]: employed a self-encoder network to compress
the noise of the original signal thereby increasing the
modulation recognition robustness.

3) CLDNN [26]: use Inception structure and LSTM to
improve learning synchronization and equalization.

4) CGDNet [27]: improved LSTM to GRU based on
CLDNN [26] and added Gaussian discard to ensure the
modulation recognition rate on the basis of reducing the
complexity of the algorithm to some extent.

The effectiveness of this paper’s algorithm is verified by
comparing it with the above baseline algorithm.

B. Comparative Experiments

As shown in Figure 3, We conducted a comprehensive
validation experiment to thoroughly compare the accuracy of
signal modulation. The experiment covered a wide range from
-20SNR to 20SNR, aiming to simulate signal modulation sce-
narios in different signal-to-noise ratio (SNR) environments.
The results indicate that our model outperforms other baseline
algorithms significantly at various SNR levels. Particularly
noteworthy is the fact that, under low SNR conditions, while
other algorithms experience a substantial decrease in accuracy,
our algorithm, although affected to some extent, maintains a
relatively stable performance. This suggests that our approach
demonstrates promising performance across different noise
environments, especially in challenging low SNR conditions.
The experimental findings clearly highlight the significant
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Fig. 3. Recognition Accuracy at Different SNR on Three Datasets

advantages of our adopted multi-modal feature construction
method and deep learning model in the task of signal modula-
tion recognition. Compared to other baseline algorithms, our
system exhibits greater robustness across various SNR levels,
particularly in low SNR conditions. This strongly indicates
that our approach can effectively capture signal modulation
patterns in complex noise environments, thereby enhancing
the overall system performance.

To validate the model’s generalization and robustness on un-
seen data, we applied the pre-trained model to two additional
publicly available datasets, distinct from our training data and
without transfer learning. We compared the performance of
various algorithms by directly testing the model. While the
accuracy of other algorithms might significantly decline on
these datasets due to different data distributions, our algorithm
maintains high accuracy, surpassing other baseline algorithms.
Observing that other algorithms experience noticeable ac-
curacy drops on unknown data, likely due to their weak
adaptability to different data distributions during training, our
model, in contrast, performs remarkably well on unseen data.
This superior performance may be attributed to our model’s
comprehensive consideration of the complexity and diversity
of signal modulation tasks during training. The introduction
of multimodal features enhances the model’s adaptability to
different datasets.

Compared to traditional algorithms, our multimodal features
are more flexible and diverse, providing a more comprehen-
sive expression of the multidimensional properties of signals.
Traditional methods might be limited to spectral informa-
tion, unable to capture deeper and multimodal features of
signals. Thus, by introducing these diversified feature ex-
traction methods, our model can more comprehensively and
accurately represent signal characteristics, yielding significant
performance advantages in various data distributions and noise
environments. The integrated utilization of these multimodal
features enhances the model’s adaptability, thereby improving
its generalization and robustness in practical applications.

C. Ablation Experiments

As shown in Table I, In order to validate the effectiveness
of our algorithm, we conducted ablation experiments, sys-

tematically replacing the algorithm’s backbone network and
gradually removing components of the multimodal features
to understand their impact on model performance. Specif-
ically, we attempted to substitute the backbone network
with ResNet32 and ResNet18, and replaced the temporal
feature extraction backbone network with TCN [28] and
GRU [29]. Simultaneously, we excluded various combinations
of multimodal features, including Gramian Angular Field
(GAF), Gramian Angular Difference Field (GADF), Markov
Transition Field(MTF), Recursive Plot(RP), Motif Difference
Field(MDF), Relative Position Matrix(RPM), and Short-Time
Fourier Transform (STFT). The experimental results indicate
that changing the backbone network has a relatively minor
impact on the model’s performance, with a limited decrease
in accuracy. However, removing any part of the multimodal
features significantly reduces the model’s accuracy.

This experimental phenomenon underscores the crucial role
of multimodal features in the model’s performance. Further
analysis reveals that each multimodal feature collaborates
synergistically, complementing each other in extracting signal
features. This synergy enables the model to more compre-
hensively and accurately capture different signal modulation
patterns. The experiment confirms the importance of multi-
modal features, providing not only additional dimensions of
information but also relationships between these dimensions
that contribute to capturing the complex characteristics of
signals. Therefore, the experimental results emphasize the
critical role of multimodal features in our algorithm, signifying
their essential significance in enhancing model performance
and adaptability to diverse data distributions.

V. CONCLUSION
In this paper, we propose a new algorithm for signal mod-

ulation recognition in wireless communication systems. We
adopt a multimodal deep learning algorithm to fuse features
from different modalities in the time, frequency, and spatial
domains to improve the performance of modulation identifi-
cation. Compared with traditional algorithms, our algorithm
achieves higher accuracy and reliability in signal modulation
recognition. By taking full advantage of the different modal
features, our model is able to better capture the information of



TABLE I
ACCURACY OF ABLATION EXPERIMENTS ON THREE DATASETS

Dataset Our Dataset RML2018.01a HisarMod2019.1

w/o GAF 0.91 0.78 0.73
w/o GADF 0.92 0.77 0.74
w/o MTF 0.88 0.62 0.54
w/o RP 0.83 0.52 0.64

w/o MDF 0.84 0.75 0.56
w/o RPM 0.79 0.58 0.51
w/o STFT 0.89 0.65 0.71

Original AlgorithmResNet32 0.93 0.78 0.74
Original AlgorithmResNet18 0.91 0.61 0.72
Original AlgorithmTCN 0.92 0.80 0.85
Original AlgorithmGRU 0.94 0.79 0.83

Original Algorithm 0.93 0.81 0.84

the signal in both the time and spatial domains, thus improv-
ing the accuracy of modulation identification. Experimental
results show that our proposed algorithm achieves significant
performance improvement in signal modulation identification
tasks.
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