
Forte: Hybrid Traffic-Aware Scheduling for Mobile
TSCH Nodes

Iliar Rabet∗‡, Hossein Fotouhi∗, Mário Alves †, Maryam Vahabi∗, and Mats Björkman∗
∗ Mälardalen University, Västerås, Sweden † Politécnico do Porto (ISEP), Portugal ‡ Afry, Västerås, Sweden

Email: ∗ {iliar.rabet, hossein.fotouhi, maryam.vahabi, mats.bjorkman}@mdu.se, † mjf@isep.ipp.pt

Abstract—Applications of the Internet of Things (IoT), partic-
ularly within Industrial IoT, impose stricter reliability and effi-
ciency requirements on low-power wireless technologies. This has
driven the creation of new medium access protocols, such as Time
Slotted Channel Hopping (TSCH). Recently, autonomous sched-
ulers, which manage wireless links without node negotiation, are
gaining popularity due to their lightweight and reliable operation.
However, challenges arise with node mobility and dynamic traffic,
as current schedulers use a static allocation method. To overcome
this gap, we propose Forte, a hybrid scheduler that combines
autonomous scheduling for basic connectivity with a centralized
on-demand scheduler that allocates extra timeslots and frequency
channels so that nodes adapt to the dynamic requirements.
The centralized module formulates a Lyapunov optimization to
guarantee queue stability while minimizing negotiation overhead
and nodes’ duty-cycles. Forte outperforms the state-of-the-art by
reducing packet end-to-end delay and increasing packet delivery
ratio, all with minimal duty-cycle increase.

Index Terms—6loWPAN, RPL, Time Slotted Channel Hop-
ping (SCH), Mobility, Internet of Things (IoT), IEEE 802.15.4,
Orchestra, Contiki, COOJA

I. INTRODUCTION

Some Internet of Things (IoT) applications such as in the
context of Industrial IoT may impose more stringent reliability,
timing and scalability requirements while communicating over
Low-power Lossy Networks (LLN)s. In this context, IEEE
802.15.4-2015 standardized the Time-Slotted Channel Hop-
ping (TSCH) protocol, which enables nodes to avoid inter-
ference and collisions by leveraging time synchronization and
channel hopping, based on an agreed-upon schedule between
participating nodes [1]. This schedule significantly impacts the
behavior of the network and the energy consumption of the
nodes.

The TSCH standard does impose any specific scheduling
mechanism, leaving this open to optimize based on the re-
quirements. Therefore, nodes can negotiate in a distributed or
centralized manner. Another interesting class of schedulers is
the one of autonomous schedulers, such the one we consider
as our benchmark - Orchestra [2]. In Orchestra, nodes use

The work in this paper has been supported by THCS European project
via RENEW project, and the Swedish Governmental Agency for Innovation
Systems (VINNOVA) through GREENER and PROVIDENT projects, and by
the Excellence in Production Research (XPRES) Framework. The computa-
tions was enabled by the Berzelius resource provided by the Knut and Alice
Wallenberg Foundation at the National Supercomputer Centre.

locally available information to agree on the schedule, thus
avoiding negotiations with their neighbors. This was a relevant
improvement against previous approaches, since autonomous
scheduling reduces overhead of extra packets used for network
management.

One major problem with autonomous schedulers is the
lack of flexibility due to their static allocation of resources.
IoT networks should be able to adapt to the changes in the
environment that can be caused by mobility or evolving traffic
demand. Mobility-aware TSCH schedulers have been studied
in the literature mostly under centralized schemes. These
schedulers allow good flexibility that comes at the price of
extra negotiation between the nodes and controller [3].

We believe that a hybrid scheduling (centralized + au-
tonomous) scheme can be the best approach to support traffic-
aware scheduling. In such a setting, the autonomous scheduler
provides basic connectivity while significantly reducing the
overhead of bringing up the network. On the other hand, a
centralized scheduler can be used to ensure traffic awareness in
the sense that nodes monitor their queue backlogs and request
a centralized controller for more resources once their queues
seem to be congested. The fact that our proposed hybrid
scheduler builds on an autonomous scheduler introduces a new
constraint for the scheduling problem that renders the existing
works [4] on link scheduling irrelevant.

In this paper, we present the Forte1 framework. Forte is
a hybrid TSCH scheduler that aims at bringing the best of
autonomous and centralized scheduling together. Forte extends
the state-of-the-art Orchestra scheduler by integrating a cen-
tralized scheduler.

One major challenge in the design of Forte is optimizing the
trade-off between queue stability and the cost of negotiations
between nodes and the central controller. The cost of negotia-
tion depends on the nodes’ link quality and their hop distance
to the controller. Forte resorts to Lyapunov optimization as it
offers a mathematical framework that can be used to formulate
queue stability in parallel with other costs.

In summary, the work reflected in this paper embeds the
following contributions:

• We propose Forte, a hybrid TSCH scheduler that takes
advantage of the lightweight operation of autonomous
schedulers and the flexibility of centralized schedulers

1The term Forte in orchestral music refers to a piece of a symphony that
is intended to be played louder.979-8-3503-8800-8/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 4
9t

h
C

on
fe

re
nc

e
on

 L
oc

al
 C

om
pu

te
r N

et
w

or
ks

 (L
C

N
) |

 9
79

-8
-3

50
3-

88
00

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
LC

N
60

38
5.

20
24

.1
06

39
73

4

• We model the problem as a Lyapunov optimization prob-
lem to achieve a trade-off between the cost of negotiation
and queue stability

• We implement Forte using Contiki-NG and make it
available as open-source2.

• We evaluate the performance of Forte against the se-
lected benchmark scheduler - Orchestra - using our
implementation using the COOJA simulator, for several
representative scenarios/setting, showing its advantages
under mobility and dynamic traffic arrival.

The rest of the paper is organized as follows: Section 2
reviews some background regarding the 6TiSCH architecture
and the underlying protocols. Section 3 addresses the previous
works in the literature including TSCH schedulers that support
mobile nodes. In Section 4, we provide the details of the
proposed Forte framework, which is then evaluated in Section
5. Finally, Section 6 concludes the paper.

II. BACKGROUND

IEEE 802.15.4e [1] introduced three modes of MAC opera-
tion: (i) Time-Slotted Channel Hopping (TSCH), (ii) Low La-
tency Deterministic Network (LLDN), and (iii) Deterministic
Synchronous Multichannel Extension (DSME). TSCH utilizes
time synchronization and frequency hopping to provide a
deterministic MAC layer in which nodes communicate on a
pre-scheduled timeslot and channel.

A. 6TiSCH protocol stack
Additionally, in 2021, the Internet Engineering Task Force

(IETF) finalized the standardization of the 6TiSCH frame-
work [5], a full IoT protocol stack that integrates IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN) and
the Routing Protocol for Low-Power and Lossy Networks
(RPL) on top of Time-Slotted Channel Hopping (TSCH). This
framework has played a significant role in fostering a more
deterministic behavior in Industrial IoT networks.

RPL is the de facto routing protocol for low-power networks
and provides scalability to support hundreds of nodes with
constrained devices. Nodes build a distributed data structure
by tracking only their parents, forming a Destination Oriented
Directed Acyclic Graph (DODAG).

RPL operates in two modes:
• Storing mode: requires every node to keep downward

routes (children) in a table, resulting in a larger memory
footprint.

• Non-storing mode: downward routing information is
maintained by the root node only; downward packets use
source-routing.

The root node initiates the routing protocol by broadcasting
a DODAG Information Object (DIO), which is subsequently
relayed to the farther nodes by receiving nodes. Each RPL
node chooses its parent based on the parent’s rank (a numeric
representation of node’s position concerning the root node) as
defined by the DIO and the node’s link quality, assessed using
the Expected Transmission Count (ETX) metric.

2https://github.com/iliar-rabet/TSCH-mobility

C

A

D

B

A -> C

A -> D B->D

C->A

D->B B->A

Ch
an

ne
l o

ffs
et

Time offset
1 2 3 4 5 8 96 7

2

1

0

4

5

Fig. 1. An example network is illustrated running based on the RPL DODAG
and corresponding TSCH schedule. The schedule shows that different pairs of
nodes can utilize the same time offset on different channels for communication
(visible on time offset 1). The guaranteed schedule avoids collisions thus
providing a deterministic and flexible medium access.

B. TSCH schedule

The slotframe, a two-dimensional table based on which
TSCH transmissions are scheduled, serves as a blueprint for
wireless communication. Each pair of nodes is assigned a cell
in the slotframe (with a time offset and channel offset) for
transmitting the data/control packets. Figure 1 demonstrates
an example network and its schedule. Each node can be pro-
grammed to switch its radio into transmission mode, receiver
mode, or idle/sleep. Cells can also be scheduled for unicast or
broadcast packets.

For a successful transmission, the receiver must be listening
on the same channel at the right time. Acknowledgements
are also transmitted during the same timeslot, while packet
retransmissions have to wait for the next allocated cell.

Joining a TSCH network relies on receiving Enhanced
Beacons (EB) for synchronisation and obtaining the necessary
information, such as the Frequency Hopping Sequence (FHS),
Absolute Slot Number (ASN), and slotframe length. ASN is
a global counter that determines the current timeslot. The co-
ordinator and the recently joined nodes advertise the network
periodically by broadcasting EBs.

The nodes repeat the schedule over time and the channel
hopping mechanism translates the channel on the schedule to
the physical channel using Equation 1.

frequency = FHS[(channel +ASN) mod |FHS|] (1)

Existing TSCH schedulers are generally classified as (i)
centralized, (ii) distributed and (iii) autonomous. Centralized
and distributed schedulers, use a protocol called (6TiSCH)
Operation Sublayer (6top) Protocol (6P) for negotiating over
TSCH. Autonomous schedulers avoid these negotiations and
decide on the cells based on the information obtained solely
from the EB and RPL packets.

C. TSCH autonomous schedulers - the Orchestra benchmark

Recently, autonomous schedulers such as Orchestra [2]
gained a lot of attention from the academic community for
their low overhead and reliable operation. The idea behind
autonomous schedulers is that no negotiation is performed,
neither in a distributed nor in a centralized manner. Nodes use
the locally existing information and a hash function to decide
on the schedule and minimize collisions. Orchestra achieves

Application

Broadcast + RPL

EB

Orchestra

Fig. 2. An Example of Orchestra scheduling 3 repeating slotframes, with
EB having the highest priority followed by broadcast (RPL) and unicast
(application) cells.

this by utilizing the routing information for scheduling times-
lots. Different variants of Orchestra have been introduced in
recent years as surveyed by Elsts et. al. [6].

Orchestra defines two types of operation modes: receiver-
based, and sender-based. In receiver-based Orchestra, time slot
is determined based on the hash of the receiver’s MAC address.
These slots are more efficient in terms of energy consumption
but transmitters compete for the time slot. In the sender-
based mode, all the receivers switch to receiver mode at the
time indicated by the sender’s address incurring extra energy
consumption.

By default, each node in the network is assigned three
slotframes, in a predetermined order of priority:

• For sending EB from each node to its children, each
node is assigned one slot in a slotframe with an arbitrary
length.

• For broadcast packets (usually used for RPL’s operation),
each node is assigned one slot in a slotframe with an
arbitrary length.

• For the application data both toward the node’s parent
and children, multiple dedicated slots are assigned.

To handle the overlaps, the length of these 3 slotframes is
selected to be mutually prime. The length of the slotframes de-
termines the traffic capacity, latency, and energy consumption
of the nodes as shorter slotframes have their slots repeat more
often. Figure 2 demonstrates an example Orchestra schedule
and its default slotframes.

III. RELATED WORK

The adoption of TSCH has spurred a variety of research
projects and extensions to support better connectivity for mo-
bile nodes. This section provides an overview of the challenges
and state-of-the-art in supporting mobility and hybrid schedul-
ing in a TSCH network. First, we review the studies that
analyzed the impact of mobility on the performance of TSCH
networks. Next, we discuss the existing TSCH schedulers that
accommodate mobility, which include centralized, distributed,
and autonomous schedulers. Finally, we explore the appli-
cation of hybrid schedulers in adapting TSCH networks to
dynamic environments.

A. Impact of Mobility on TSCH Networks

The impact of mobility on TSCH networks has been studied
using simulations and analytical modeling. Nidawi et. al. [7]

compared TSCH to LLDN under interference and mobility
of the nodes using simulations and showed that TSCH can
prolong joining of nodes to the network due to limited time
allocated for sending EBs and RPL broadcast packets. A major
theme in the literature is focusing on faster joining time for
the mobile nodes. Another important aspect is the fluctuations
in the data traffic pattern after the joining the network. Both of
these challenges should be primarily handled by the scheduler.

Even without mobile nodes, bootstrapping a network run-
ning RPL and TSCH can be immensely long [8]. RPL’s DIO
packets are scheduled by the trickle algorithm, which adapts
the rate of sending DIO packets to the dynamics of the radio
environment. This also means that the control traffic will
be considerably large when bootstrapping the network and
then scale down to a few packets per hour, at run-time. In
autonomous schedulers, the collisions between control traffic
and data packets is limited and can be modeled [9] but these
collisions can impact the joining time of the mobile nodes.
Hence, different schedulers perform differently under presence
of mobile nodes [10]. Comparing 3 well-known TSCH sched-
ulers namely Minimal Scheduling Function (MSF), Orchestra
and Alice showed that at least 20% of the packets are dropped
for all of the nodes.

B. TSCH schedulers with mobility support

Hermeto et al.’s survey [11] classifies schedulers with mo-
bility support into two categories. The first category applies
to networks where a group of static nodes serves as the
infrastructure, and only leaf nodes can be mobile. The second
category allows all nodes to be mobile, but few studies have
been conducted in this category due to the challenges it
poses [12].

Many mobility solutions assume a static infrastructure to
support wearable nodes. INSTANT [13] is one such approach,
implementing a reliable anycast mechanism that distributes
acknowledgments over time to avoid collisions. The authors
demonstrate that three acknowledgments can be sent within a
standard 10 ms TSCH timeslot. However, neighbor discovery
in INSTANT requires periodic beacon transmission, which
significantly increases the number of transmitted control pack-
ets. Despite this, INSTANT outperforms Orchestra in terms of
delay, fairness, and energy consumption.

Tavallaie et. al. [14] proposed the Distributed Traffic-aware
Scheduling Function (DT-SF), which integrates mobility and
queue backlog into slot scheduling to address traffic imbalance
in wireless networks. They model the problem as a Mixed-
Integer Convex Programming (MICP) problem and minimize
a defined utility function. The relaxed version of the problem
can be solved by using the method of Lagrange multipliers,
and the Branch-and-Bound algorithm can be used to generalize
the solution for the version with integrality constraints.

FTS-SDN [3], MMF-SDN [15], and SDMob [16] are based
on a Software Defined Network (SDN) controller which is
integrated with the low-power network. FTS-SDN reserves one
cell from each mobile node to each static node, clustering
nodes to reduce excessive reservations. MMF-SDN reduces

reservations by scheduling mobile nodes as multicast traffic
sources, merging cells with the same traffic source to shorten
the slotframe. SDMob uses the centralized controller to track
the mobile nodes in real-time and pro-actively fix the routing
links.

Haxhibeqiri et. al [17] propose allowing mobile nodes to
roam between infrastructure nodes with low-rate upstream
traffic, agreeing upon a dedicated cell with one of the gate-
ways, and having all other nodes reserve the same cell for the
mobile node. Pettorali et. al. [18] propose a scheduling func-
tion, Shared Downlink-Dedicated Uplink (SD-DU), assigning
shared cells for downlink data transmission and dedicated cells
for upward links. The scheduling function considers a tunable
parameter to determine how many mobile nodes share a cell
for upward communication, with the worst-case scenario being
all mobile nodes in range of the same border router.

C. Adaptive hybrid scheduling

As mentioned by recent surveys [19], adaptive TSCH
schedulers are gaining more attention and hybrid schedulers
are one of the best options to improve the performance of
autonomous schedulers. Following this trend, On-Demand
TSCH (OST) scheduler [20] introduced a hybrid mechanism
that autonomous cells are helped by occasional distributed
negotiations. OST uses two modes of provisioning, namely: (i)
periodic provisioning and (ii) on-demand provisioning where
additional slots are allocated to support traffic bursts.

Another hybrid scheduler [21] that integrates a centralized
controller that is based on CoAP. HPS [22] and A3 [23] are
recent works that integrate autonomous scheduling with a dis-
tributed negotiation. The design choice to merge autonomous
schedulers with distributed negotiation requires the in-network
nodes to maintain a high level of information regarding the
condition of the network.

Despite the recent developments, hybrid schedulers have not
been studied in the context of mobility and most of the existing
mobility solutions rely on centralized TSCH schedulers. In our
view hybrid mobility support can be very beneficial to keep
the queue stability with minimum negotiation overhead and
duty-cycle increase under a dynamic traffic pattern. In this
paper we aim at filling this gap by designing a queue-aware
hybrid TSCH scheduler.

IV. METHOD

This section addresses the design of Forte and its compo-
nents. First, we present the details of the interactions between
the centralized controller and the autonomous operation of the
network. Next, the queue model and the Lyapunov optimiza-
tion are presented. We extend Contiki-NG’s implementation
of TSCH [24] with Forte.

A. Hybrid operation

The design of Forte aims at achieving flexible scheduling
while minimizing negotiation costs and optimizing duty-cycle.
The hybrid approach meets these design goals because nego-
tiations between in-network nodes and the controller utilize

the basic connectivity provided by Orchestra and non-storing
RPL. We chose non-storing mode of RPL and receiver-based
Orchestra as they offer the lowest level of overhead compared
to other alternatives (the storing mode RPL and sender-based
scheduling).

Figure 3 illustrates an example of a Forte cell being allo-
cated. All nodes maintain queues for transmission to each of
their neighbors. Forte nodes monitor these queues, and when
certain conditions (outlined in the queue model subsection)
are met, they request the controller to allocate or deallocate a
number of cells.

The controller is aware of the network’s real-time topology
through RPL’s DODAG and can determine the initial schedule
provided by Orchestra. The initial schedule provided by Or-
chestra (represented by orange cells in the figure) offers each
node one RX cell. Upon receiving a request for more cells,
the controller allocates a number of unused cell (represented
by green shading in the figure) that have not been allocated
to other nodes, either through Orchestra or by the controller.
The controller then notifies the requesting node and its parent
of its decision. Negotiation with the centralized controller is
based on CoAP confirmable messages to ensure successful cell
installation.

B. Queue model

Now we present how Forte nodes decide to request for
allocation or deallocation of cells. We study the system in
discrete time where each increment consists of one slotframe.
Denote f(x(t) ≤ 0 as the amount of data traffic successfully
transmitted towards a neighbor (x) during the slotframe t,
Qx(t) as the queue associated with outgoing packets towards
neighbor x, MaxQx the maximum queue size, Ax(t) as
arrivals including packets generated by the node itself or
packets to be relayed. The queue dynamics are defined as
follows:

0 ≤ Qx(t) ≤ MaxQx (2)

Qx(t+ 1) = |Qx(t)− fx(t)|+ +Ax(t) (3)

In the above equations the plus operator is defined as |x|+ =
max(0, x).

Forte nodes adapt the future capacity of the link by se-
lecting the action αx(t). For instance, nodes decide to ask
the centralised controller for one more (αx(t) = 1), or fewer
cells (αx(t) = −1). The other option is to maintain the same
schedule by not sending any request (αx(t) = 0).

fx(t) = fx(t− 1) + αx(t) (4)

Nodes will decide on a vector α(t) = (αx1, ...αxn) for all
the neighbors. For simplicity, we assume the time required for
negotiation with the server is negligible.

Next, we model the cost associated with the decision vector.
The cost of negotiation with the centralized controller depends
on the distance of the nodes and the quality of the links. For
nodes that are placed far from the root node or have unreliable
links, it is more costly to negotiate. We model this cost by
computing the Rank value of node x based on the rank of

B A

C

D

TX to A

TX to C

TX to D

C
on
tro
lle
r

Request more slots from B to A

R
x A

R
x C

R
x B

R
x D

B
 to A

C
ha

nn
el

 o
ffs

et

Time offset

Reserve a new timeslot from B to A

Fig. 3. An example of Forte’s operation: Node B detects that its transmission queue toward Node A is becoming congested and requests additional
communication resources from the centralized controller. The controller allocates a new cell that does not interfere with previously assigned cells, whether
allocated by Orchestra or through centralized control. In the example, cells assigned through autonomous operation are shaded in orange, while those assigned
by the centralized controller are shaded in green.

its neighbors (y ∈ Nx(t)) and the available information from
RPL.

Rankx(t) =

{
min

y∈Nx(t)
(px,y(t) +Ranky(t)) x /∈ R

RootRankx x ∈ R
,

(5)
We apply quadratic Lyapunov function to the queue back-

log, so that larger queue backlogs will have higher impact in
the decision.

L (Θ (t)) =
1

2

n∑
i=1

Q2
i (t) (6)

Next, we calculate the queue drift. Intuitively, by minimiz-
ing drift, our algorithm aims at keeping all the queue backlogs
small. For proof on how minimizing the Lyapunov drift results
in queue stability please refer to the literature [25].

∆(Θ(t))
△
= L (Θ (t+ 1))− L (Θ (t)) (7)

To achieve a trade-off between queue stability and the
negotiation overhead, we use the concept of drift-plus-penalty.
In other words, nodes try to minimize a weighted sum of the
Lyapunov drift and penalty. The penalty includes (i) a one time
negotiation cost which is associated with the rank of node and
(ii) the energy consumption associated with the decision (the
third term in the optimization below). We assign a different
weight (V1 and V2) for each of these costs that can be tuned
based on the requirements of the network. LUC represents the
length of unicast slotframe size.

min
α(t)

∆(Θ(t)) + V1 ·Rankx(t) + V2 · (DutyCycle+
α(t)

LUC
)

By optimizing the aforementioned objective function, we
keep the queues stable (reduce packet loss and improve delay)
while also reducing the overhead of negotiation and duty
cycle. The in-network nodes use a ’brute-force’ approach
to solve this optimization problem and find the best action
(α(t)) among all possible candidates, assuming the queues are
independent.

V. EVALUATION

In order to demonstrate the efficiency of Forte, we have
conducted simulations using Contiki-NG under different sce-
narios. We analyze Packet Delivery Ratio (PDR), average
delay of selected traffic, and radio duty-cycle of all nodes. We
compare Forte with receiver-based Orchestra under various
conditions, including varying traffic and node mobility. Both
Orchestra and Forte are configured with identical slotframe
sizes (17 for unicast, 31 for broadcast, and 397 for EB).
Further evaluations, such as scalability analysis, remain a
future work due to size constraints.

We organized the evaluation considering the following 4
scenarios:

• Scenario A: This scenario includes 8 stationary nodes
transmitting randomly at a rate of 30 pkt/min of upward
traffic. We set the rate to slightly surpass the rate of
packets that nodes that are closer to the root node. Thus
they need additional cells to aggregate the traffic from
other nodes.

• Scenario B: In this scenario, a set of 8 stationary nodes
transmit an increasing rate of traffic upward in the mesh.
The rate starts at 15 pkt/min and every 50 packets the
rate is doubled. This setting puts increasing pressure on
the nodes that are close to the root node. This scenario
is designed to assess how fast can the controller allocate
necessary timeslots.

• Scenario C: This scenario includes a single mobile node
that roams around while sending a traffic of 30 pkt/min.
8 stationary nodes send a lightweight traffic of 2 pkt/min.
In this setting, assigning enough cells to the high traffic
demands of the mobile node is crucial for the network to
function properly. When the mobile node moves from the
proximity of its parent and a parent switch happens, the
new parent needs more TX time slots to keep its queues
stable.

• Scenario D: For the last scenario, we increase the number
of mobile nodes (2 nodes, each sending traffic at 15
pkt/min) to analyze the impact of the mobile nodes on
each other. The traffic path that we are interested in is

(a) (b) (c)

Fig. 4. Forte outperforms Orchestra by demonstrating lower delay (a) and higher PDR (b) for a selected traffic flow. This is achieved by a rather small
increase in the average duty-cycle (c) of all the nodes.

from the mobile nodes to the root node. This experiment
focuses on the required communication resources for
properly sending the data packets. However, another
important aspect of mobility solutions is the handover
delay which depends on the communication resources
that are reserved for control packets (RPL and EB).
Handling the impact of handovers is out of scope of this
paper but presents an interesting future work.

We measured the Packet Delivery Ratio (PDR) and mean
end-to-end delay of the target traffic toward the root node and
the duty-cycle of the nodes over time. Figure 4 illustrates the
measurements from the simulations for the different scenarios.
In all scenarios Forte outperforms the benchmark in terms of
delay and PDR of the selected traffic. In scenarios that includes
mobility (C, and D), Forte’s advantages are more tangible in
terms of PDR while in scenario A and B the high load of
traffic that is incurred on the network causes delay rather than
packet loss and Forte is beneficial in reducing delays.

In scenario A, by only increasing the average duty-cycle
from 5.8% to 7.8%, Forte achieves a PDR of 100% and im-
proves average delay by 100 ms. The only way that Orchestra
could have achieved the same performance as Forte would be
by increasing the duty-cycle of all the nodes together at least
to 11.6% (double). In Scenario B, nodes increase their traffic
rate and at the final stage of the scenario the traffic is as high
as 8 nodes at the rate of 120 pkt/min. Forte allocates extra
cells only when needed which helps to reduce the average
duty-cycle.

Regarding the two mobile nodes (D), a key challenge for
receiver-based Orchestra is that transmitters share the same
cell for upward traffic. An alternative is switching to sender-
based mode that requires changing the RPL operation mode
to storing mode, which would introduce additional overhead.
Forte circumvents this by assigning dedicated cells for mo-
bile nodes’ traffic on demand. Forte achieves 100% packet
delivery with only a 1% increase in duty-cycle, indicating its
effectiveness in supporting multiple mobile nodes.

VI. CONCLUSION

Autonomous schedulers provide lightweight but reliable
operation for TSCH networks. To support modern applications
schedulers need to be able to adapt to the traffic demand.
This paper shows how an autonomous scheduling techniques
can be improved by integrating a centralized controller. The
motivation behind our scheduler, Forte, is to minimize the
overhead of centralized negotiation and at the same time
benefit from the flexibility that it brings. Our results show that
with a very low increase in duty-cycle of specific nodes, Forte
succeeds in improving delay and reliability of the network
under mobility and evolving traffic.

When supporting connectivity of mobile nodes, Forte pri-
oritizes adapting the schedule to maintain queue stability over
other aspects of mobility, such as handoff procedures. Forte
primarily adds unicast slots, possibly overlooking broadcast
packets that are typically used for routing and node joining.

For future work, we plan to leverage hybrid scheduler to
enhance handoff processes and optimize rate of control pack-
ets. Also, further evaluations such as scalability analysis, and
physical testbed remain a future work due to size constraints.

REFERENCES

[1] I. of Electrical and E. Engineers, “IEEE Standard for Local and
metropolitan area networks–Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs) Amendment 1: MAC sublayer,” IEEE Std
802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pp. 1–225,
2012.

[2] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in
Proceedings of the 13th ACM conference on embedded networked sensor
systems, 2015, pp. 337–350.

[3] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Ex-
perimental assessments and analysis of an sdn framework to integrate
mobility management in industrial wireless sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5586–5595,
2020.

[4] N. Papadis and L. Tassiulas, “Payment channel networks: Single-hop
scheduling for throughput maximization,” in IEEE INFOCOM 2022-
IEEE Conference on Computer Communications. IEEE, 2022, pp. 900–
909.

[5] P. Thubert, “An architecture for IPv6 over the time-slotted channel
hopping mode of IEEE 802.15. 4 (6TiSCH),” tech. rep., RFC 9030,
2021.

[6] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, “An empirical survey of
autonomous scheduling methods for TSCH,” IEEE Access, vol. 8, pp.
67 147–67 165, 2020.

[7] Y. Al-Nidawi, H. Yahya, and A. H. Kemp, “Impact of mobility on the
iot mac infrastructure: Ieee 802.15. 4e tsch and lldn platform,” in 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015,
pp. 478–483.

[8] C. Vallati, S. Brienza, G. Anastasi, and S. K. Das, “Improving network
formation in 6TiSCH networks,” IEEE Transactions on Mobile Comput-
ing, vol. 18, no. 1, pp. 98–110, 2018.

[9] I. Rabet, H. Fotouhi, M. Alves, J. P. Champati, J. Gross, M. Vahabi,
and M. Björkman, “A Stochastic Network Calculus Model for TSCH
Schedulers,” in IEEE Symposium on Computers and Communications
(ISCC), Paris, June 2024.

[10] C. Orfanidis, A. Elsts, P. Pop, and X. Fafoutis, “TSCH Evaluation under
Heterogeneous Mobile Scenarios,” IoT, vol. 2, no. 4, pp. 656–668, 2021.

[11] R. T. Hermeto, A. Gallais, and F. Theoleyre, “Scheduling for IEEE802.
15.4-TSCH and slow channel hopping MAC in low power industrial
wireless networks: A survey,” Computer Communications, vol. 114, pp.
84–105, 2017.

[12] P. Bellavista, G. Cardone, A. Corradi, and L. Foschini, “Convergence of
manet and wsn in iot urban scenarios,” IEEE Sensors Journal, vol. 13,
no. 10, pp. 3558–3567, 2013.

[13] A. Elsts, J. Pope, X. Fafoutis, R. J. Piechocki, and G. Oikonomou,
“Instant: A TSCH Schedule for Data Collection from Mobile Nodes.”
in EWSN, 2019, pp. 35–46.

[14] O. Tavallaie, J. Taheri, and A. Y. Zomaya, “Design and optimization of
traffic-aware TSCH scheduling for mobile 6TiSCH networks,” in Pro-
ceedings of the International Conference on Internet-of-Things Design
and Implementation, 2021, pp. 234–246.

[15] F. Orozco-Santos, V. Sempere-Payá, J. Silvestre-Blanes, and T. Albero-
Albero, “Multicast scheduling in SDN-wise to support mobile nodes in
industrial wireless sensor networks,” IEEE Access, vol. 9, pp. 141 651–
141 666, 2021.

[16] I. Rabet, S. P. Selvaraju, H. Fotouhi, M. Alves, M. Vahabi, A. Balador,
and M. Björkman, “SDMob: SDN-Based Mobility Management for IoT
Networks,” Journal of Sensor and Actuator Networks, vol. 11, no. 1,
p. 8, 2022.

[17] J. Haxhibeqiri, A. Karaağaç, I. Moerman, and J. Hoebeke, “Seamless
roaming and guaranteed communication using a synchronized single-hop
multi-gateway 802.15. 4e TSCH network,” Ad hoc networks, vol. 86, pp.
1–14, 2019.

[18] M. Pettorali, F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, “Mobility
Management in Industrial IoT Environments,” in 2022 IEEE 23rd
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2022, pp. 271–280.

[19] A. Tabouche, B. Djamaa, and M. R. Senouci, “Traffic-aware reliable
scheduling in TSCH networks for industry 4.0: A systematic mapping
review,” IEEE Communications Surveys & Tutorials, 2023.

[20] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-demand TSCH
scheduling with traffic-awareness,” in IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 2020, pp. 69–78.

[21] A. Karaagac, I. Moerman, and J. Hoebeke, “Hybrid schedule man-
agement in 6TiSCH networks: The coexistence of determinism and
flexibility,” IEEE Access, vol. 6, pp. 33 941–33 952, 2018.

[22] A. Tabouche, B. Djamaa, and M. R. Senouci, “Hps: A hybrid
proactive scheduler with adaptive channel selection for industrial 6tisch
networks,” Ad Hoc Networks, p. 103527, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870524001380

[23] S. Kim, H.-S. Kim, and C.-k. Kim, “A3: Adaptive autonomous allocation
of TSCH slots,” in Proceedings of the 20th International Conference on
Information Processing in Sensor Networks (co-located with CPS-IoT
Week 2021), 2021, pp. 299–314.

[24] S. Duquennoy, A. Elsts, B. Al Nahas, and G. Oikonomo, “TSCH and
6TiSCH for Contiki: Challenges, design and evaluation,” in 2017 13th
International Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, 2017, pp. 11–18.

[25] M. Neely, Stochastic network optimization with application to commu-
nication and queueing systems. Springer Nature, 2022.

