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Abstract—The emergence of the L-band Digital Aeronau-
tical Communications System (LDACS) presents a significant
opportunity for enabling Air-to-Air (A2A) communication to
accommodate the growing number of aircraft. However, it
requires overcoming significant Medium Access Control (MAC)
delays and enhancing connectivity in sparse networks. Geo-
graphic greedy routing, commonly used in Aeronautical Ad-hoc
networks, utilizes position information to eliminate the need
for topology discovery. Yet, its efficacy declines as network
density decreases. With the gradual introduction of aircraft
equipped with LDACS, it becomes crucial to improve greedy
forwarding performance. This research investigates Greedy-k,
a greedy forwarding variant using k-hop neighborhood infor-
mation, to boost sparse network performance. We introduce
a method to minimize beacon size by transmitting a subset
of k-hop neighborhood data that fits within an LDACS time
slot. We derived the subset size analytically and evaluated
the performance through simulations benchmarked against the
conventional Greedy-1. Our results indicate that the proposed
approach achieves up to 13% higher Packet Delivery Ratio
(PDR) than Greedy-1, while capturing additionally 70.1% and
34.6% of 2nd and 3rd order neighbors, respectively.

Index Terms—geographic routing, greedy forwarding, A2A,
LDACS

I. INTRODUCTION

By the year 2050, the European Organisation for the
Safety of Air Navigation (EUROCONTROL) forecasts a
44% increase in flight numbers compared to 2019, necessi-
tating advanced communication technologies for safety, data
rate, and reliability [1]. The L-band Digital Aeronautical
Communications System (LDACS), currently under stan-
dardization, is proposed as a solution for Air-to-Ground
(A2G) communication within the Future Communications
Infrastructure (FCI), potentially enhancing data rates by up
to 200% [2]. It is also proposed to be extended for Air-to-Air
(A2A) communication [3].

Recently, the Multi-Channel Self-Organized Time-
Division Multiple Access (MCSOTDMA) protocol has
been proposed as a viable Medium Access Control (MAC)
layer for LDACS A2A communications [4]. This protocol
utilizes a Shared (SH) channel for broadcasting beacons and
multiple Point-to-Point (PP) channels for unicast packets,
ensuring deterministic delays. Geographic routing, the
state-of-the-art routing protocol for A2A communication
[5], uses beacons to transmit positional information and
routes packets greedily towards their destination. If a packet
reaches a dead-end, it is dropped or requires a backup

mechanism to continue. In deploying LDACS for A2A
communications, we identify two key challenges.

Challenge I: The practical implementation of LDACS
for A2A links is expected to be a long process, starting
by integrating the technology into newly built aircraft. The
airspace will include both legacy and LDACS-equipped
aircraft until full LDACS deployment is achieved. This
situation raises concerns about LDACS A2A performance in
sparse networks, particularly regarding the coexistence with
legacy aircraft over the coming decades.

Challenge II: In the SH channel, a Randomized Slotted
ALOHA (RS-ALOHA) is used [6]. This results in a MAC
delay that increases linearly with the number of neighboring
aircraft. Using a high communication range increases the
number of direct neighbors, resulting in significant MAC de-
lays affecting both SH and PP links. To accommodate future
growth in airspace, reducing the communication range while
ensuring high connectivity with ground stations can mitigate
these delays. However, this reduction requires improvements
in greedy routing to ensure routes are found when they exist
topologically.

This paper proposes a solution that can cope with both
difficulties. Greedy forwarding, a main component of geo-
graphic routing, while effective in dense airspace [7], strug-
gles with frequent dead-ends in sparse networks as shown
in Figure 5. Greedy-k, is proposed as an enhancement in
such environments by using extended k-hop neighborhood
information [8], [9]. However, this approach results in bea-
cons that exceed the capacity of an LDACS A2A slot in
the SH channel. Therefore, we introduce a method that
optimizes the beacon size by including only a subset of
the neighborhood, facilitating more efficient and scalable
Greedy-k implementation in sparse network scenarios.

Our main contributions are:
• We analytically derive an optimal fixed subset size to

improve Greedy-1 forwarding performance.
• We propose three subset selection methods (Random,

Farthest First (FF) traversal, and Extended Farthest
First (EFF) traversal) and introduce a geographic
greedy routing protocol that uses this information.

• We evaluate our proposed routing protocol and selec-
tion methods over the French airspace with varying
equipage fractions, reflecting initial and extended use
of LDACS-equipped aircraft in the future.
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The organization of the paper is as follows: The re-
quired subset size is discussed in Section II. The proposed
geographic routing protocol is introduced in Section III.
The simulation setup is outlined in Section IV. Our results
and discussions are detailed in Section V. Related work is
discussed in Section VI. The conclusion and further insights
on future directions are given in Section VII.

II. THE SUBSET SIZE OF THE K-HOP NEIGHBORHOOD

To optimize Greedy-2 routing performance, a node re-
quires a subset of its 1-hop neighborhood, denoted as S1

ai
,

from the full set N 1
ai

where N 1
ai

are 1st order neighbors
of ai in network A. The challenge lies in determining the
optimal subset size m = |S1

ai
| that maximizes coverage

while minimizing redundancy.
Coverage is modeled in Two-dimensional (2D) space

using a Unit Disc Graph (UDG). Although aircraft operate
in Three-dimensional (3D) space, the altitude variation is
minor compared to their communication range r. We con-
sider an infinite set N 1

ai
, uniformly distributed within the

communication range. To maximize diversity, we ensure that
m selected nodes are maximally distant from each other and
from node ai. We analyze various m values, assessing their
impact on coverage and overlap, where coverage is the area
beyond ai’s range relative to the 2nd order neighbor area
(3πr2), and overlap is the area shared between the nodes’
coverage. The case for m = 4, 6 is demonstrated in Figure 1,
where the Coverage is depicted by the grey hashed area
(75.72%, 88.41%) and Overlap by the dark grey hashed area
(5.41%, 33.28%) respectively.
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Fig. 1: Coverage and overlap for subset sizes m = 4 and m = 6,
where the node ai is depicted in red.

Furthermore, we analyzed various m values to assess
their effects on coverage, overlap, the rate of change of
coverage (∆Coverage) and the rate of change of overlap
(∆Overlap), as depicted in Figure 2. Here, increasing m
enhances coverage, yet ∆Coverage decreases after m = 3
as overlap among nodes starts. When m > 4, we see
that ∆Coverage < ∆Overlap, which means the redundancy
among selected nodes increases faster than the increase
in coverage. In this study, we establish m = |S1

ai
| = 4

to optimally distribute coverage around ai, maintaining
∆Coverage > ∆Overlap.
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Fig. 2: Illustration of coverage (Coverage) and overlap (Overlap)
areas, along with their rates of change (∆Coverage and ∆Overlap),
for different subset sizes m.

III. GEOGRAPHIC GREEDY ROUTING WITH A SUBSET OF
K-HOP NEIGHBORHOOD

A. System Model

Within the routing algorithm, ac denotes the current node.
Each node ac ∈ A receives beacons Bas from beacon
senders as ∈ N 1

ac
. Beacons include the sender’s address as,

position pas
, sequence number seqas

, and neighbor subset
information. For each neighbor ai in this subset, its address,
position pai , hop count hai , and sequence number seqai

are
in Bas . A beacon entry occupies 12B, 4B for the node
address (1B prefix plus 24 bit International Civil Aviation
Organization (ICAO) ID), 6B for the position in Compact
Position Reporting (CPR) format, 1B for hop count, and 1B
for the sequence number. Sequence numbers, incremented by
each node ac ∈ A upon N 1

ac
changes, track direct neighbor

additions or removals.
Nodes maintain a position table Tac

, contains all neighbors
Nac known through received beacons. Each entry ai ∈ Tac

includes ai’s address, position pai , hops to ai hai , sequence
number seqai

, via address viaai
(indicating the beacon’s

sender) and validity time tai
, calculated as:

tai = tBas
+ tvalidity, (1)

where tBas
is the beacon reception time and tvalidity is a

pre-defined beacon interval. An example of a node’s position
table is shown in Table I.

TABLE I: Position Table of ac (Tac )

ai pai hai seqai
viaai tai

a1 (x1, y1, z1) 2 22 a2 20.5 s
a2 (x2, y2, z2) 1 34 a2 24 s
· · · · · · · · · · · · · · · · · ·

B. Neighbor Selection Mechanism

In this section, we describe three methods for selecting
a subset Sk

ac
⊆ N k

ac
, where each neighbor is exactly k-hop

away from node ac. The first method, Random, randomly



selects neighbors to form a subset of size m. This serves as
a baseline strategy.

The second method, the FF algorithm, starts by randomly
picking an initial node and then iteratively adds the node far-
thest from those already selected, until m nodes are chosen
or all potential nodes are exhausted. This strategy optimizes
spatial diversity among the selected nodes and functions as
a standard farthest-first selection. The FF algorithm can also
incorporate a set of preselected elements Spre

ac , where it starts
from this set instead of from a random element. Then the
preselected nodes are removed in later steps. The notation
FF(N k

ac
,m,Spre

ac = ∅) represents the FF algorithm when
used without Spre

ac .
The EFF method, denoted by EFF(N k

ac
,m, dthr, dthr,c),

enhances the FF strategy by integrating a distance threshold,
dthr, and a distance to current node, dthr,c. The threshold
ensures that no two nodes within the subset are closer than
the specified distance, reducing redundancy. For a subset size
of m = 4, optimal for 1st order neighbors, dthr is set to 1√

2
·r.

This value ensures that nodes diagonally positioned within
a square remain outside each other’s communication range,
effectively minimizing overlap. Similarly, dthr,c is established
at 1

2 · r, corresponding to the radius of the circle in which
the square, centered at ac with its diagonal nodes at the edge
of each other’s communication range, is inscribed. Applying
the thresholds dthr and dthr,c might result in selecting fewer
than m nodes due to the spatial arrangement of neighbors.
This approach allows us to extend our selection to k + 1th

order neighbors N k+1
ac

, as will be discussed in Section III-C.

C. Beaconing Mechanism

The proposed routing protocol uses beacons to dissemi-
nate information about a subset of the local k-hop neighbor-
hood of a node, as detailed in Section III-B. Initially, each
beacon contains only the node’s information but gradually
accumulates and broadcasts additional neighborhood details
received from other beacons.

Each node broadcasts a new beacon at intervals defined
by the beacon interval parameter. The beacon includes the
sender’s address as, position pas

, and sequence number
seqas

. Each node knows its position, and the sequence
number helps mitigate routing loops when a node is removed
from the position table. When sending a beacon, as extracts
N 1

as
and N 2

as
. Using the Random or FF methods, a node

selects up to m neighbors from N 1
as

. With EFF, a subset
of N 1

as
is chosen using dthr. If fewer than m neighbors are

selected from N 1
as

, the remainder is selected from N 2
as

using
the FF method with S1

ac
as the preselected list Spre

ac . Each
selected neighbor’s sequence number and hop count from
Tas

are added to the beacon.
When a beacon Bas is received, the current node ac

updates its position table Tac
by removing entries added via

as that are no longer in Bas
or have expired. This ensures

Tac
is current, reflecting the latest network topology. The

validity interval, tvalidity, is set to twice the beacon interval,
allowing quick response to link loss. For each neighbor ai

in Bas , the algorithm checks if ai is already in Tac and
updates ai’s information if the beacon provides a more recent
sequence number or a shorter hop count with an equal or
fresher sequence. If ai is not found, it is added as a new
entry, with as set as the via address.

D. Forwarding Mechanism

Let ad denote the destination node. When a node ac
sends a packet to ad, it is assumed the position of ad
is known. For forwarding, ac selects the neighbor abest
from its position table Tac

that offers the best advancement
towards ad. The packet is directed to aj = viaabest , a 1st

order neighbor, ensuring maximal progress towards ad. This
process is illustrated in Figure 3. To mitigate issues from
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Fig. 3: The packet forwarding process, directing the packet towards
viaabest , the node through which abest is reachable.

delayed or lost beacons, a range reduction parameter ε is
introduced. This parameter restricts selection to 1st order
neighbors within a radius of r − ε to ensure reliability,
filtering usable neighbors as illustrated in dotted red in
Figure 3. The selection of ε considers nodes at the edge
of the communication range moving in opposite directions
as a worst-case, defined as:

ε = 2 · beacon interval · average speed. (2)

IV. SIMULATION SETUP

This study evaluates greedy routing using subsets of the
k-hop neighborhood with three selection methods: Greedy-
Random, Greedy-FF, and Greedy-EFF.

A. Mobility Model

The French airspace, spanning 1 000 000 km2, is modeled
as a 1250 km × 800 km rectangle (Figure 4). Aircraft can
be at altitudes from 0 km to 11 km, representing various
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Fig. 4: The French airspace where the red outline shows the
simulation boundary (generated using [10]).

flight phases. The simulation includes an average of 500
aircraft [11] and one ground station, depicted as a green
triangle in Figure 4. Each aircraft selects a random position
within the simulation area and moves in a straight line in
a random direction. The LDACS communication range of
370.4 km is applied for A2G communication. We use an
A2A communication range of 100 km, as evaluated in [11],
achieving an approximate ground station connectivity ratio
of 100%.

B. Network Model

1) Data Application: Aircraft employ Automatic De-
pendent Surveillance-Contract (ADS-C) technology to send
their Four-dimensional (4D) positions (latitude, longitude,
altitude, and time) every minute, with each packet being
34B. This capability is essential for the safety and efficient
management of future airspace [12]. The first packet of an
aircraft is randomly transmitted within [0 s, 60 s].

2) Data Link Layer: We implemented an abstract version
of the MCSOTDMA, the proposed LDACS MAC layer, as
specified in [4]. This implementation supports one LDACS
transmitter and two receivers per aircraft, using the SH
channel for beacon broadcasting and the PP channels for
unicast packet transmission. The number of available PP
channels adjusts dynamically based on the location, with
up to 50 usable channels in this simulation [13]. Our
model results in a linear increase in MAC delay on the
SH channel, proportional to the number of direct neighbors,
mirroring MCSOTDMA behavior [6]. As a simplification,
we assume an entity with global node knowledge for opti-
mal scheduling of transmissions. Considering MAC headers
as described in [4], each beacon can accommodate up to 6
neighbor entries, each of 12B. Hence, we evaluated subset
sizes m = 4 and m = 6 for the SH channel, identifying
m = 4 as optimal in Section II.

3) Physical Layer: Our simulation employs a UDG radio
model, assuming a uniform communication range across all

aircraft and no channel errors. Two nodes can communicate
successfully if within the defined range.

The simulation parameters are summarized in Table II.

TABLE II: Simulation Parameters

Simulation Time Limit (s) 1800
Number of Simulation Runs 50, with 95% CIs
A2G Communication Range (km) 370.4
A2A Communication Range (km) 100
Number of Aircraft 500
Aircraft Speed (km/h) 800

Simulation Area (km2) 1 000 000
Beacon Interval (s) 5
Slot Size (s) 0.024
Packet Size (B) 34
Application Sending Rate (pkts/node/min) 1

Aircraft Density (×10−4 nodes/km2) 2.5, 3, 3.5, 4, 4.5
and 5

LDACS Equipage Fraction ρ 0.5, 0.6, 0.7, 0.8,
0.9 and 1

Subset Size m 4 and 6

V. RESULTS AND DISCUSSION

In this experiment, we vary the equipage fraction, ρ, rep-
resenting the proportion of aircraft equipped with LDACS.
We evaluate Greedy-Random, Greedy-FF, and Greedy-EFF
algorithms at different equipage fractions, measuring their
performance in terms of average Packet Delivery Ratio
(PDR) and hop count. We compare their performance against
Greedy-1 and Greedy-2. Although Greedy-2 includes the full
neighborhood in the beacon, which exceeds the LDACS A2A
slot capacity, it serves as a benchmark. The Dijkstra’s algo-
rithm is also used to demonstrate the maximum achievable
PDR and minimum hop counts for each equipage fraction,
despite its infeasibility here. Simulations are conducted using
OMNeT++ with a communication range of 100 km and a
range reduction parameter of ε = 2.5 km.

Greedy-Random, Greedy-FF, and Greedy-EFF improve
the PDR by 1% compared to Greedy-1 at ρ = 1, when all
aircraft are LDACS equipped as in Figure 5. At ρ = 0.5,
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Fig. 5: Average PDR with varying equipage fraction.

these improvements increase to 11.5% for m = 4 and
13% for m = 6. Additionally, Greedy-EFF marginally



outperforms Greedy-FF on average in scenarios with lower
equipage fractions due to its access to 3-hop neighborhood
information. All methods with subset sizes m = 4 and
m = 6 achieve performance gains comparable to Greedy-2.
Despite achieving higher PDR over Greedy-1, a performance
gap of at least 10% compared to Dijkstra persists at ρ = 0.5
due to the lack of a fallback mechanism to navigate through
dead-ends, leading to packet drops.

The average hop count results over different equipage
fractions are shown in Figure 6. At ρ = 1, Greedy-EFF,
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Fig. 6: Average hop count with varying equipage fraction.

which employs a 3-hop neighborhood information, exhibits
slightly higher hop counts compared to its 2-hop counter-
parts. This increase is attributable to the broader search hori-
zon, which may not always optimize for the maximum ad-
vancement per hop, potentially leading to longer routes. As ρ
decreases, the difference in hop counts diminishes. Overall,
the hop counts for all methods, including Greedy-EFF, are
comparable to those of Greedy-2 and are on average up to
0.82 hops higher than those achieved by Dijkstra at ρ = 1.

Following the previous analysis, we now evaluate the
Random, FF, and EFF algorithms in terms of selecting kth

order neighbors. We define the Capture Ratio as the ratio
of unique kth order neighbors identified by each method
against the actual total, averaging this across all nodes. Our
simulations involve 50 random mobility snapshots conducted
in an area large enough to mitigate edge effects, reflecting the
density and equipage fractions from the previous scenario.
Using a subset size of m = 4 achieves a balance of coverage
gain over overlap, as shown in Figure 5. We present how
this subset size influences the average capture ratio of 2nd

and 3rd order neighbors. The results in Figure 7 indicate
that at a node density of 5 × 10−4 nodes/km2 and with
m = 4, the FF method achieves a capture ratio of 0.6
for 2nd order neighbors, compared to 0.52 by Random,
marking a 15.4% improvement. Random selection becomes
less effective at higher densities due to an enlarged selection
pool. At 2.5× 10−4 nodes/km2, the FF method achieves a
capture ratio of 0.7, compared to 0.64 by Random, reflecting
a 9.3% improvement. With an average of 7.6 first-order
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Fig. 7: Average kth order neighbors capture ratio for 100 km
communication range with subset size m = 4.

neighbors, selecting just four means Random’s performance
remains effective. Additionally, at this density, EFF achieves
the same performance as Random by strategically sacrificing
some 2nd order neighbors to capture 15% of 3rd order
neighbors, a capability not present in FF or Random. At
a higher density of 5 × 10−4 nodes/km2, despite selecting
fewer 1st order neighbors than Random, EFF achieves a 2nd

order neighbor capture ratio of 0.582, compared to 0.52 by
Random, marking a 12% improvement, and it also captures
5.1% of 3rd order neighbors. As density increases, EFF’s
performance is expected to align more closely with FF due
to the minimal effect of the distance threshold.

With m = 6, the average 2nd order neighbors capture
ratios for FF, EFF, and Random range between [0.84, 0.7],
[0.70, 0.61], and [0.83, 0.67] respectively (Figure 8). Ad-
ditionally, EFF captured 34.6% of 3rd order neighbors at
2.5× 10−4 nodes/km2 and 25.8% at 5× 10−4 nodes/km2.
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Fig. 8: Average kth order neighbors capture ratio for 100 km
communication range with subset size m = 6.



VI. RELATED WORK

Sparse networks exacerbate dead-end situations, leading to
the exploration of greedy forwarding strategies that include
2-hop or 3-hop neighborhood information [9], [14]. How-
ever, The performance gain from Greedy-2 is higher than
from Greedy-3 [14]. While this approach mitigates routing
inefficiencies, it significantly increases beacon size, an is-
sue not fully addressed in previous studies. The slot-based
MAC protocol in LDACS A2A communications complicates
beacon size management within strict slot durations. Studies
like [8], [15] show that including direct neighbors in the
beacon doubles the overhead ratio compared to Greedy-1,
without considering the necessary beacon size reduction for
slot duration compliance.

Addressing the beacon size challenge, existing literature
aimed to reduce message counts for capturing 2-hop neigh-
borhood information using O(n) messages of O(log n) bits
each, where n is the number of nodes in the network [16].
However, this approach focuses on message efficiency rather
than direct beacon size reduction. Further advancements
used probabilistic structures like Bloom filters to compress
the neighbor list [17]–[19]. These methods efficiently en-
capsulate all direct neighbors and can accommodate k-
hop neighborhoods, enhancing broadcasting protocols but
lacking the positional information required for geographic
Greedy-k routing.

Our investigation proposes a solution addressing both
the need for a fixed maximum beacon size including a
subset of direct neighbors with positional information and
the constraints of LDACS A2A MAC, which accommodates
approximately an additional 72B in the beacon after headers.
This constraint influences the feasible number of neighbors
in a beacon, based on entry size, e.g., 12B in our case
as specified in Section III-A. Our method aims to select
nodes within this subset to optimally enhance performance,
achieving Greedy-2 forwarding gains within LDACS A2A
communication slot durations. To the best of our knowledge,
our approach is the first to reduce beacon size by selecting
a subset of the neighborhood and including both MAC
addresses and positional information in the beacon, offering
a novel contribution to the field.

VII. CONCLUSION

We presented a novel approach to enhance greedy for-
warding in sparse networks by leveraging 3-hop neighbor-
hood information. We proposed three methods for selecting
subsets of kth order neighbors: Random, FF, and EFF,
and derived an optimal fixed subset size for performance
improvements with Greedy-2 forwarding. We found that a
subset size of 4 is optimal, balancing coverage and overlap.

Our simulation study evaluated the proposed routing pro-
tocol and selection methods over the French airspace with
varying equipage fractions. We assessed average PDR, hop
count, and capture ratio of kth order neighbors. Our methods
outperform Greedy-1, especially in improving PDR in sparse
scenarios prone to dead-ends. All proposed methods enhance

PDR by up to 13% relative to Greedy-1, achieving Greedy-
2 performance gain. Additionally, Greedy-FF captures more
2nd order neighbors on average than Greedy-Random and
Greedy-EFF, while Greedy-EFF can capture up to 34.6%
of 3rd order neighbors. All models were implemented using
OMNeT++ and Python, with details available as open-source
for the research community in [20].

This approach offers potential benefits for geographical
routing beyond aeronautical communication, especially in
low-density large networks where greedy forwarding often
hits dead-ends. Enhanced neighborhood awareness can be
applied in load balancing by capturing the load status of 2nd

and 3rd order neighbors. Furthermore, our method’s partial
k-hop neighborhood awareness lays the groundwork for
developing effective strategies when a k-hop neighborhood
is insufficient, and can be adapted for k-hop neighborhoods
and 3D networks by adjusting the subset size m.

REFERENCES

[1] Eurocontrol, “Aviation Outlook 2050,” Main Report, Apr. 2022.
(visited on 10/28/2023).

[2] “White paper: Ubiquitous aviation connectivity with LDACS,” FRE-
QUENTIS AG, Technical Report, 2021. (visited on 10/28/2023).

[3] M. A. Bellido-Manganell and M. Schnell, “Towards Modern Air-to-
Air Communications: The LDACS A2A Mode,” in 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), Sep. 2019,
pp. 1–10. DOI: 10 . 1109 / DASC43569 . 2019 . 9081678. (visited on
10/28/2023).

[4] S. Lindner, K. Fuger, M. A. E. Ahmed, A. Timm-Giel, J. Hampel,
and M. Bellido, “MCSOTDMA Protocol Specification,” Zenodo,
Tech. Rep., Jun. 2023. DOI: 10.5281/zenodo.8079189. (visited on
03/31/2024).

[5] D. Medina, F. Hoffmann, F. Rossetto, and C.-H. Rokitansky, “A
Geographic Routing Strategy for North Atlantic In-Flight Internet
Access Via Airborne Mesh Networking,” IEEE/ACM Transactions
on Networking, vol. 20, no. 4, pp. 1231–1244, Aug. 2012. DOI:
10.1109/TNET.2011.2175487.

[6] S. Lindner, K. Fuger, M. A. E. Ahmed, and A. Timm-Giel, “Multi-
Channel Self-Organized TDMA for Future Aeronautical Mobile Ad-
Hoc Networks,” IEEE Transactions on Vehicular Technology, pp. 1–
15, 2024. DOI: 10.1109/TVT.2024.3380316. (visited on 03/31/2024).

[7] D. Medina, F. Hoffmann, F. Rossetto, and C.-H. Rokitansky, “A
Geographic Routing Strategy for North Atlantic In-Flight Internet
Access Via Airborne Mesh Networking,” IEEE/ACM Transactions
on Networking, vol. 20, no. 4, pp. 1231–1244, Aug. 2012. DOI:
10.1109/TNET.2011.2175487. (visited on 04/03/2024).

[8] M. Y. Arafat and S. Moh, “A Q-Learning-Based Topology-Aware
Routing Protocol for Flying Ad Hoc Networks,” IEEE Internet of
Things Journal, vol. 9, no. 3, pp. 1985–2000, Feb. 2022. DOI: 10.
1109/JIOT.2021.3089759. (visited on 10/15/2023).

[9] J. Zhou, Y. Chen, B. Leong, and P. Sundaramoorthy, “Practical 3D
geographic routing for wireless sensor networks,” in SenSys 2010 -
Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, 2010, pp. 337–350. DOI: 10 . 1145 / 1869983 .
1870016.

[10] X. Olive, “Traffic, a toolbox for processing and analysing air traffic
data,” Journal of Open Source Software, vol. 4, no. 39, p. 1518, Jul.
2019. DOI: 10.21105/joss.01518. (visited on 04/16/2024).

[11] Q. Vey, A. Pirovano, J. Radzik, and F. Garcia, “Aeronautical Ad
Hoc Network for Civil Aviation,” in Communication Technologies
for Vehicles, A. Sikora, M. Berbineau, A. Vinel, M. Jonsson,
A. Pirovano, and M. Aguado, Eds., Cham: Springer International
Publishing, 2014, pp. 81–93. DOI: 10.1007/978-3-319-06644-8 8.

[12] J. Valle Martinez, “Network 4D Trajectory CONOPS,” Technical
Report 23/08/28/46, Sep. 2023. (visited on 03/29/2024).



[13] M. A. Bellido-Manganell and M. Schnell, “Feasibility of the Fre-
quency Planning for LDACS Air-to-Air Communications in the L-
Band,” in 2021 Integrated Communications Navigation and Surveil-
lance Conference (ICNS), Apr. 2021, pp. 1–14. DOI: 10 . 1109 /
ICNS52807.2021.9441623. (visited on 03/31/2024).

[14] C. S. Chen, Y. Li, and Y.-Q. Song, “An exploration of geographic
routing with k-hop based searching in wireless sensor networks,”
in 2008 Third International Conference on Communications and
Networking in China, Aug. 2008, pp. 376–381. DOI: 10 . 1109 /
CHINACOM.2008.4685045. (visited on 11/26/2023).

[15] Y. Li, C. S. Chen, Y.-Q. Song, Z. Wang, and Y. Sun, “Enhancing
Real-Time Delivery in Wireless Sensor Networks With Two-Hop
Information,” IEEE Transactions on Industrial Informatics, vol. 5,
no. 2, pp. 113–122, May 2009. DOI: 10.1109/TII.2009.2017938.
(visited on 11/26/2023).

[16] G. Calinescu, “Computing 2-Hop Neighborhoods in Ad Hoc Wire-
less Networks,” in Ad-Hoc, Mobile, and Wireless Networks, S. Pierre,
M. Barbeau, and E. Kranakis, Eds., ser. Lecture Notes in Computer
Science, Montreal, Canada: Springer, 2003, pp. 175–186. DOI: 10.
1007/978-3-540-39611-6 16.

[17] K. C. Lee, U. Lee, and M. Gerla, “Geo-opportunistic routing
for vehicular networks,” IEEE Communications Magazine, vol. 48,
no. 5, pp. 164–170, May 2010. DOI: 10.1109/MCOM.2010.5458378.
(visited on 01/31/2024).

[18] K. Na Nakorn, Y. Ji, and K. Rojviboonchai, “Bloom Filter for Fixed-
Size Beacon in VANET,” in 2014 IEEE 79th Vehicular Technology
Conference (VTC Spring), Seoul, South Korea: IEEE, May 2014,
pp. 1–5. DOI: 10 . 1109 / VTCSpring . 2014 . 7022849. (visited on
01/31/2024).

[19] F. Klingler, R. Cohen, C. Sommer, and F. Dressler, “Bloom Hopping:
Bloom Filter Based 2-Hop Neighbor Management in VANETs,”
IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp. 534–
545, Mar. 2019. DOI: 10 . 1109 / TMC . 2018 . 2840123. (visited on
11/26/2023).

[20] M. Ahmed and K. Fuger, LDACS Greedy K-Hop Simulator, Zenodo,
Jul. 2024. DOI: 10.5281/zenodo.12911062. (visited on 04/19/2024).


