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Abstract—Indoor localization based on wireless communica-
tion networks has attracted a lot of attention in research. It
can deliver better accuracy than a traditional Global Navigation
Satellite System (GNSS) and operate in environments where
satellite signals can not be received. Although more accurate
methods have been published, fingerprinting based on Received
Signal Strength (RSS) remains interesting. Such a system can
be deployed on top of most existing networks without imposing
additional requirements or restrictions to the communication.
However, existing solutions usually require a larger number of
base stations with known locations (anchors) within a mobile
node’s reception range. This is required to prevent ambiguous
fingerprints and deliver accurate results. However, it also in-
creases the network’s energy consumption and operating cost.
In this paper, we present a new approach that uses multi-
frequency fingerprints to eliminate this requirement and operates
with only a single anchor node while achieving accuracy that is
comparable to existing solutions. In order to efficiently collect
RSSI fingerprints across multiple frequencies, we introduce a
measurement methodology using Software Defined Radio (SDR).

Index Terms—Indoor Localization, Multi-Frequency, Location
Fingerprinting, Software Defined Radio

I. INTRODUCTION

Indoor localization systems based on wireless communica-
tion signals are a common research topic because they can
often deliver better accuracy compared to a traditional Global
Navigation Satellite System (GNSS). Additionally, these sys-
tems may be used in situations where other localization is
not available such as areas where satellite signals can not be
received. Localization that uses a device’s Received Signal
Strength Indication (RSSI) to determine its position is espe-
cially interesting because such a system can easily be deployed
on top of an existing wireless network primarily intended
for communication. However, most such systems discussed
in existing literature either require a larger number of base
stations with a known location (anchors) to be within a node’s
reception range for accurate operation or depend on special-
ized hardware that is not present in most Commercial Off-the-
Shelf (COTS) devices. Because having a large number of base
stations is not required in common communication-oriented
networks, it creates additional deployment and maintenance
effort and increases a deployment’s energy consumption. Ad-
ditionally, measuring the RSSI in parallel to multiple base
stations may not easily be possible with all wireless standards.
In some cases, this may require an explicit scan of the available
base stations during which the device can not perform regular
communication. This limits the device’s usability and could

also result in increased energy consumption which can be
challenging for battery-operated devices. In contrast, a solution
that does not require additional base stations can be deployed
without any changes to the existing hardware and would
allow localization without increasing the network’s energy
consumption.

In this paper, we make the following contributions:
• We propose and evaluate an indoor localization approach

that uses multi-frequency RSSI measurements to operate
with only a single base station on unmodified COTS
hardware.

• We adapt established localization algorithms for a multi-
frequency use case.

• We implement a measurement platform using Software
Defined Radio (SDR) to efficiently measure across a large
number of frequencies within a short amount of time.

We achieve this by leveraging the complex multipath signal
propagation that is often encountered in indoor environments
and the fact that most effects contributing to these signal
propagation patterns are frequency-dependent.

We begin this paper in Section II with a discussion of
existing methods for indoor localization and previous work
related to RSSI-based systems on which we base our research.
Then, we present our measurement methodology for collecting
a database of RSSI fingerprints and localization algorithms
in Section III and IV. In Section V, we present and discuss
an evaluation of our localization system’s performance and
compare it to results from related publications. Additionally,
we discuss potential optimization of our methodology based on
these results. Following that, we implement and demonstrate
our system on COTS hardware using Bluetooth Low Energy
(BLE) in Section VI. Finally, we conclude the paper and
discuss future work in Section VII and Section VIII.

II. RELATED WORK

Using communication signals to localize nodes in a wireless
network has been studied extensively in literature. Table I
provides an overview of different types of localization methods
for single- and multi-anchor scenarios and briefly describes
their method of operation as well as the hardware requirements
for implementing each method. This also highlights how our
approach implements a localization system with previously
unachievable properties as it does not require specific or
uncommon hardware capabilities on mobile nodes and base
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Single/multi-anchor Method of operation Publications Additional hardware requirements

Multi-anchor

RSSI fingerprinting [1], [7], [8], [9], [12]
[15], [17], [27], [29] None

RSSI-based ranging [2], [3], [4], [19], [35] None
ToF-based ranging [14], [22] Precise measurement of signal timing

Multi-frequency phase difference-based ranging [20], [28] Measurement of phase difference
AoA + RSSI-based ranging [18] Rotating directional antenna

Single-anchor

CSI [30], [31], [32], [33] IEEE 802.11 hardware with CSI support

Multi-direction RSSI fingerprinting [10], [11], [24] Directional antenna array/
Steerable directional antenna

Multi-frequency RSSI fingerprinting Our approach None
AoA/DoA [10], [21], [34] Antenna array

TABLE I: Overview of localization methods discussed in related work and hardware requirements for implementing each
method
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Fig. 1: Architecture of RSSI-based localization systems using a mobile node M and different configurations of fixed anchor
nodes Ai

stations other than measuring the RSSI across multiple fre-
quencies while also only requiring a single anchor. Fig. 1
illustrates these different configurations.

Many existing approaches use the measured RSSI of a
wireless connection to one or multiple anchors in order to
determine the location of the mobile node. This can be im-
plemented using fingerprinting, where the RSSI measurement
is compared to a database of reference values with known
positions and the value with the highest similarity is used
as the localization result [7], [8], [12], [15], [17], [27], [29].
In addition to simple comparison of fingerprints, approaches
based on deep learning have also been shown to produce
high-accuracy localization results from fingerprint data [1],
[9]. Because RSSI fingerprints with only a single data point
are highly ambiguous and can usually match many different
locations, these systems require each fingerprint to contain
multiple measurements in order to deliver usable results. This
is often implemented by measuring the RSSI of connections
to multiple anchors but it has also been demonstrated by
using directional antennas to measure the RSSI in different
directions at each location [10], [11], [24]. Using directional
antennas does however limit the usability of such a system as
it introduces a requirement for specialized hardware.

An alternative possibility for RSSI-based localization is
ranging, where nodes use the measured signal strength to
calculate their distance to multiple anchors based on a wireless

propagation model and determine their location using mul-
tilateration [2], [3], [4], [19], [35]. Instead of using RSSI,
ranging can also be implemented by measuring the signal’s
Time of Flight (ToF) [14], [22] or phase differences between
signals on different frequencies [20], [28]. However, RSSI
may be a preferred choice for general purpose localization
systems because typical COTS hardware may not be equipped
to measure ToF and phase angles with sufficient precision, if
at all.

Additionally, localization based on WiFi Channel State
Information (CSI), which includes information about the am-
plitude and phase angle of individual Orthogonal Frequency
Division Multiplexing (OFDM) subcarriers in IEEE 802.11
connections, has also gained popularity. Many publications
have demonstrated high localization accuracy based on CSI
data, even when only a single anchor/access point is used [30],
[31], [32], [33]. However, in addition to not being possible
when using most wireless standards other than WiFi, this data
may not always be available as measurement and collection of
CSI is only supported by a limited selection of WiFi chipsets
[16].

Finally, several publications have demonstrated systems that
enable localization based on a signal’s Angle/Direction of
Arrival (AoA/DoA) which require specialized antenna setups
such as a rotating directional antenna [18] or an antenna array
[10], [21], [34]. Furthermore, [26], [34] and [29] demonstrate



that data from on-device sensors such an accelerometer or
a compass can be combined with radio-based localization
to further improve accuracy if the device being located is
equipped with such sensors.

In this paper, we implement RSSI-based fingerprinting using
a signal across different frequencies to obtain multiple data
points for each fingerprint. We choose this because the ability
to measure the signal’s RSSI is a commonly found feature
on COTS hardware, allowing such a system to be deployed
on many different platforms while other methods often limit
hardware compatibility through additional requirements.

A large downside of fingerprinting-based approaches is
the required fingerprint collection. High-accuracy localization
requires a fingerprint database containing a large number of
reference points, which can take a large amount of time and
effort to collect. To solve this problem, several publications
demonstrate algorithms to extrapolate virtual fingerprints from
a small number of real measurements using wireless propaga-
tion models to greatly reduce the amount of work required
[13], [17], [36]. Common approaches include using the One-
slope and Multi-wall models introduced in [6]. The One-
slope model only considers the path loss caused by signal
propagation in free space using empirical parameters from
reference measurements to influence the model’s behavior.
On the other hand, the Multi-wall model also includes the
additional attenuation caused by walls within the signal’s path
through a parameter that has to be measured for each type of
wall in the environment. In this paper, we use the methodology
shown in [17] which is based on the One-slope model. While
this increases the required effort compared to approaches that
use the Multi-wall model because measurements are required
to be performed in each room, it reduces the potential error.
This error could result from inaccurately measured attenuation
caused by a wall or incorrect assumptions about a wall’s
structure. For example, a wall’s attenuation could be affected
by varying thickness, materials or internal pipes or conduits
which are easy to overlook while conducting a measurement.

The benefit of measuring on multiple frequencies has pre-
viously been shown in various existing publications. In [25],
the authors analyze multi-frequency fingerprinting and note an
overall increase in the uniqueness of fingerprints, which can
improve the accuracy of localization systems. [7], [8], [19],
[23] and [35] all evaluate multi-frequency measurements for
localization using off-the-shelf hardware and protocols such
as BLE [8], [19], [23] or IEEE 802.15.4/Zigbee [7], [35] for
both ranging- and fingerprinting-based systems using multiple
anchors. They find an improvement in localization accuracy
when using data collected across multiple frequencies. [12]
and [27] use different wireless standards that operate within
different frequency bands to achieve a similar result.

III. FINGERPRINT COLLECTION

As mentioned in Section II, localization systems using
RSSI fingerprinting require collecting a database of reference
fingerprints for each environment in which the system is
intended to be used. If the time and effort required for this

phase are too large, the system becomes impractical for real-
world use. Measuring across multiple frequencies can worsen
this problem, as several common wireless technologies such
as IEEE 802.11 or IEEE 802.15.4 can only operate on a
single channel at a time, requiring separate independent mea-
surements for each frequency at every reference location. To
solve this issue, we develop a measurement methodology using
SDR for this initial fingerprint collection. Using SDR allows
sending and receiving multiple signals at different frequencies
simultaneously, limited only by the bandwidth of the SDR
hardware and the processing capability of the computer used.
This greatly reduces the number of individual measurements
required at each location. Furthermore, SDR makes it possible
to transmit a signal designed specifically for this measurement,
which maximizes the amount of data obtained over a period of
time compared to existing protocols which may for example
be limited by a fixed packet structure.

In this section, we first present our SDR-based measurement
methodology, followed by a brief evaluation to determine the
ideal duration for each measurement. Finally, we describe the
algorithm we use for predicting RSSI values in order to further
reduce the number of required measurements, which we base
on a previous publication with adjustments to adapt the
algorithm for multi-frequency measurements. The complete
measurement process described in this section is laid out in
Fig. 2.

A. Measurement methodology

We use an Ettus Research URSP N210 SDR as a stationary
transmitter in combination with a USRP B205mini connected
to a laptop as a mobile receiver with two identical non-
directional antennas with a gain of 7 dBi at 2.4 GHz attached
to both SDRs. This setup allows for measuring across all
unlicensed frequency bands that are commonly used by off-
the-shelf hardware. During our measurements, we concentrate
on the 2.4 GHz (2.4-2.48 GHz) and 5 GHz (5.725-5.875 GHz)
Short Range Device (SRD) bands with a distance of 1 MHz
between individual measurements using the highest transmis-
sion power that is permitted by local regulations. Using this
configuration results in a total of 230 individual RSSI values
at different frequencies per measurement point. The position
of the mobile receiver during each measurement is recorded
by hand. Because the SDR’s bandwidth is not sufficient to
measure across an entire frequency band in one step, the
center frequency of both SDRs is switched in regular time
intervals to move through both bands in steps of 10 MHz. This
bandwidth is dictated by the available processing capacity of
the computers used to run the signal processing. Switching
frequencies is coordinated using the computer’s system clocks
which are synchronized over the network before starting a
measurement. Because the B205mini does not report the
measured RSSI in a known absolute unit, we always consider
the relative path loss. To calculate this, we capture a reference
value by placing both SDRs directly next to each other. We
measure for 100 s on each frequency to obtain a reference
value by calculating the average over this time.
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Fig. 2: Measurement and localization process
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Fig. 3: Maximum observed deviation using different measure-
ment durations at different transmitter gains

Because we are measuring the entire unlicensed frequency
band, we expect interference with other wireless transmitters.
This requires a method to detect if our measurement sig-
nal is being received correctly to avoid falsifying the result
by unknowingly recording the signal strength of a different
transmission source. To achieve this, we transmit Binary
Frequency Shift Keying (BFSK)-modulated data within our
signal and only consider a measurement valid if the data
was correctly demodulated. This data consists of a repeating
randomly generated sequence with a length of about 0.1 s that
is transmitted at 1 kb/s. The receiver requires that one full
sequence is received without errors, otherwise the affected
RSSI samples are discarded. Finally, we calculate the average
RSSI for each measurement to correct for fluctuations caused
by the SDR hardware.

B. Measurement duration

To find an optimal value for the measurement duration t,
we place the transmitting and receiving antenna directly next
to each other to minimize propagation effects. We measure the
RSSI for a total of 100 s at each end as well as the center of
both frequency bands using a single B200mini for transmitting
and receiving. Additionally, we vary the transmitter’s gain in

steps of 10 dB to simulate different amounts of path loss. We
then calculate averages for different time windows t ≤ 5 s
and compare those to the average calculated over the entire
100 s. During this step, we consider different possible positions
of each time window by moving it in steps of 50 ms to
obtain a distribution of possible differences. Fig. 3 shows
the maximum observed deviation of the calculated average
for different values of t over all frequencies at different
transmitter gains. Based on this data, we set the final value
of t at 2 s as this lowers the maximum difference compared
to a longer measurement duration below 1 dB. We consider
this an acceptable trade-off between measurement accuracy
and the time requirement of performing a full measurement.
Furthermore, we increase the actual measurement duration to
4 s to enable successful measurements even if the reception
of the measurement signal is intermittently interrupted by
external interference.

C. RSSI prediction

As discussed in Section II, we use the method demonstrated
in [17] based on a modified variant of the One-slope model [6]
to predict the signal strength from a small number of reference
points to reduce the number of measurements needed to create
the fingerprint database. Using M reference points with real
measurement results, this model predicts the signal strength P
with a distance d between the transmitter and the receiver at
the predicted location as

P =
1

M

M∑
m=1

(
P0m + 10γ log

(
d

d0m

))
(1)

with distance d0m and signal strength P0m for each reference
point m and an empirical propagation coefficient γ. Because
this model does not factor in losses caused by obstacles such
as walls, we only use reference points that have a direct line
of sight to the current position. This information is extracted
automatically from a floor plan of the building where we
perform our experiments. Following the procedure shown in
[17], we measure one reference point for each corner of a



room. For rooms that are not rectangular or contain major
obstacles, we add additional reference points so that every
position within the room has a direct line of sight to at least
four. Using this procedure, we are able to collect reference
measurements in around 5-10 minutes per room, compared to
potentially several hours if no prediction is used, depending
on the chosen resolution. As we expect the possibility of
failed measurements on some frequencies due to wireless
interference, we ignore frequencies that do not have at least
four usable reference points in a particular room. Because [17]
does not specify a procedure to determine a value for γ, we
chose the following algorithm to find an ideal value using the
measured reference fingerprints:

1) The algorithm iterates over all pairs of fingerprints i, j
that have an unobstructed line of sight between them.

2) The distances di, dj between i, j and the transmitter are
calculated.

3) Using the measured power Pi at i, the power Ppred that
is predicted by the One-slope model for j is calculated.

4) The difference between Ppred and the real measured
power at j is calculated.

5) The Root Mean Squared Error (RMSE) over all differ-
ences is calculated for all pairs i, j.

6) The process is repeated for different values of γ and the
value that produces the lowest RMSE is used as the final
result.

We begin with an experimentally selected range of values for
γ and run an iterative search where each iteration narrows the
search range around the previously found best candidate. This
procedure is repeated to determine γ for each frequency.

With this methodology, we can calculate a map of finger-
prints for any desired resolution. We chose a resolution of
one pixel per cm with the intention of setting it as high as
possible for the initial evaluation to prevent it from negatively
impacting the results while keeping the required memory to
process and store each map within a reasonable margin. At this
resolution, the uncompressed maps amount to about 9.2 GiB
for a map that includes all frequencies.

IV. LOCALIZATION ALGORITHM

To determine a wireless node’s position, we adapt the algo-
rithm described in [17] for multi-frequency data. the algorithm
calculates a distance metric between the node’s measured RSSI
and the fingerprints predicted in sec. III-C for every possible
location that has a fingerprint available. Following that, the
fingerprint with the overall smallest distance is selected as
the node’s position. As metric for the distance between a
measurement p and fingerprint q, we use the RMSE

RMSE(p, q) =

√√√√ N∑
i=1

(pi − qi)2

N
(2)

which is demonstrated in [8]. The implementations in [8] and
[17] use fingerprints containing measurement data from N
different anchor nodes. We instead use data measured over
N frequencies. Unlike the Euclidean distance used in [17],
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Fig. 4: Error distribution for single- and multi-frequency
localization

using a mean allows this metric to work when the number of
available measurements N is different between locations. With
our fingerprint database, this can be the case when frequencies
are excluded due to wireless interference during fingerprint
collection as mentioned in sec. III-A.

Our approach uses all available frequencies that have a valid
measurement in both the node’s current RSSI sample and
the fingerprint that it is being compared to. We implement
a minimum threshold for the number of frequencies which
we set to one tenth of the total number of frequencies that are
being used during a measurement. If the number of frequencies
with valid data that can be compared during localization
drops below this threshold, the associated location is not
considered as a possible result. This is implemented because
the algorithm could otherwise perform identical to a single-
frequency approach in areas with few valid measurements (for
example, in case of a weak signal) which could incorrectly
bias the localization towards these areas. We consider this
equivalent to a realistic deployment where a node does not
attempt to determine its position if the signal is detected as
being too weak.

V. EVALUATION

In this section, we evaluate the achievable localization ac-
curacy using our approach. Following an initial best-case eval-
uation using all available frequencies, we also investigate the
performance impact of using fewer frequencies to potentially
reduce computational complexity and memory requirements.

A. Localization performance

To evaluate the performance of our localization approach,
we conduct measurements inside our university building with
an area of about 23 m x 20 m which is a similar size to
the areas that were used for evaluations in several related
publications [4], [17], [23], [27]. The area primarily contains
offices alongside a single computer lab. We position the
transmitter inside one of the offices next to a wall in what we
consider to be a realistic possible location for a wireless access
point. We chose this because in a real-world deployment,
the transmitter’s location would be dictated by the already
installed hardware. After collecting fingerprints for each room
as described in Section III, we collect a total of 32 additional
test points at randomly selected locations. When measuring
the location of these points, we estimate an error of ±5 cm.
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Fig. 5: Error distributions for localization using different numbers of frequencies

Then, we run the localization algorithm shown in Section IV
and calculate the Euclidean distance between each point’s
predicted and real locations as the localization error. Fig. 4
shows the error distribution using our multi-frequency ap-
proach and a second distribution using only a single frequency
for comparison. For the single-frequency case, a different
localization error is calculated for each available frequency.
These are shown as a single distribution over all calculated
errors within the figure.

As expected, localization using only a single frequency
results in large errors due to single-frequency fingerprints
being highly ambiguous. The comparison in Fig. 4 shows that
using multiple frequencies greatly reduces both the average
and maximum error. This shows that the result obtained
with our multi-frequency approach is not incidental for this
environment and an improvement is made over the naive
single-frequency scenario where bad localization performance
is expected. With a mean accuracy of about 5.8 m, our result is
comparable to the result published in [17] which was measured
using six anchors in an environment roughly half the size
of our evaluation area. This shows that a multi-frequency
approach can produce similar results as existing systems while
only requiring a single anchor.

B. Frequency selection

The initial evaluation has demonstrated the achievable ac-
curacy while measuring across two entire frequency bands.
Using such a large number of frequencies however results in
high computational complexity for the localization process and
storage requirements for the fingerprint database. Depending
on how easily the node can measure its RSSI across multiple
frequencies, it can also increase the time required to acquire
a full RSSI sample. To find a potential trade-off between
accuracy and complexity, we run the localization using dif-
ferent numbers k out of n total frequencies. Ideally, we would
repeat the localization using all

(
n
k

)
possible combinations

of frequencies to obtain a full distribution of all possible
results. However, this creates an impossibly large number of

combinations. Thus, we limit the evaluation to a maximum
of 10 000 combinations for each n by randomly selecting
frequencies while avoiding duplicate combinations. Fig. 5
shows the resulting error distributions for different numbers
of frequencies, with the last distribution to the right of the
figure showing the result for localization using all frequencies.
These results clearly show: 1) adding additional frequencies
never decreases localization accuracy; 2) the performance
barely changes after around 70 or more frequencies are being
used. Additionally, there is a significant jump between the
distributions using 220 and the full 230 frequencies. This can
be explained because of the random selection, the distribution
for 230 frequencies contains only one data point for each test
location for a total of 32 values, while the distribution for 220
frequencies contains 32 · 104. As a result of this difference,
these two distributions are not suited for direct comparison.
However, this suggests that some frequency combinations may
result in better accuracy than others. This lines up with the
findings published in [7] which conclude that pre-selecting an
ideal set of frequencies achieves the same accuracy as using
all available frequencies with much lower complexity.

Following this result, we attempt to find a generic method to
make such an ideal frequency selection. First, we investigate
the effect of using multiple frequency bands as this adds
a potential requirement to the hardware used and may be
unavailable if the radio is limited to a single frequency band.
Fig. 6 shows the localization error when using all frequencies
from each of the two measured frequency bands as well as
the full result using both bands that was previously shown in
Fig. 4/6 for comparison. Because the 5 GHz band is larger
than the 2.4 GHz band, we consider the possibility that the
larger number of frequencies might impact the result. To
work around this issue, we also perform localization using
a subset of consecutive frequencies from the 5 GHz band the
same size as the 2.4 GHz band using every possible position
of this set within the 5 GHz band. The resulting distribution
is labeled ”5 GHz (limited)” in Fig. 6. These results show:
Localization in the 5 GHz band results in a lower median
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Fig. 6: Error distribution for localization using a single fre-
quency band
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Fig. 7: Error distributions for localization using different
numbers of frequencies with equal distance

error compared to the 2.4 GHz band, but we also observe a
larger maximum error. The lower median may be caused by the
larger number of frequencies because the limited case results
in a higher median that is closer to what can be seen for
the 2.4 GHz band. Furthermore, none of the two frequency
bands appears to be sufficient by itself to obtain the error
distribution obtained by using measurements from both bands
simultaneously. Given this result, we conclude that if possible,
any available frequency band supported by the used hardware
should be included in measurements to obtain the best possible
localization accuracy.

Considering the significant difference between frequency
bands, we formulate the hypothesis that the distance between
two frequencies plays an important role in determining the
localization accuracy due to a greater difference in propagation
characteristics. If this was the case, selecting few frequencies
that are spaced far apart could be an ideal choice to reduce
localization complexity. To verify this theory, we use different
numbers n of frequencies in each frequency band which we
lay out so that the distance ∆f is equal between all of them
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Fig. 8: Example of BLE/SDR calibration (f = 2.45GHz)

and the entire frequency band is covered. We test this scenario
for up to 100 frequencies because we expect results using more
to be highly similar based on the data shown in Fig. 5 and
thus not interesting for this evaluation. The results are shown
in Fig. 7 alongside the error distribution obtained while using
all 230 frequencies for comparison. Most distributions appear
similar to what is shown in Fig. 5 at the same number of
frequencies. However, there is a visible improvement while
using a low number of frequencies (n ≤ 30). From this, we
can conclude that although using a large number of frequencies
results in the best accuracy, if the number of usable frequencies
is limited, it is ideal to select frequencies that cover as much
bandwidth as possible across all available frequency bands.

VI. OFF-THE-SHELF IMPLEMENTATION

After demonstrating the possibility of single-anchor local-
ization using SDR, we try to follow the same approach using
COTS wireless hardware. We choose a BLE connection for
this task because connected BLE nodes use frequency hopping
to constantly change their communication channel across the
entire 2.4 GHz band [5]. By measuring the RSSI for empty
packets that are sent during each BLE connection event while
no data is being transmitted, this allows quickly collecting
RSSI values for a large number of different frequencies. We
implement the following measurements on Laird Connectivity
BL654 development boards running a version of Zephyr OS
with a small modification that allows us to access the RSSI
after every received packet and relay it to an attached computer
over the board’s serial interface. While measuring RSSI values,
we collect 10 samples for each BLE channel. As interference
from other wireless transmissions in the area can cause us to
not receive enough packets on some channels in reasonable
time, we set a time limit of 120 s after which we stop the
measurement and save results only for channels where we have
received RSSI values for at least 10 packets.

The BLE hardware and the SDR are likely to have different
radio characteristics. Thus, we first perform a calibration phase
so that we can use RSSI fingerprints collected using SDR
to localize a BLE node. For this purpose, we measure RSSI
fingerprints using both a BLE node and an SDR at identical
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locations. By doing so, we can directly compare the results
from both devices and derive parameters to convert between
them. A database of RSSI fingerprints collected using the SDR
is already available after the initial SDR-based evaluation (Sec-
tion V). We collect the BLE fingerprints in the same locations,
allowing us to utilize the already collected SDR fingerprints
for this step. While this suggests the option of generating
the fingerprint database using the BLE measurements directly,
we observed a limited reception range for this hardware,
resulting in significantly fewer fingerprints which would make
it impossible to create a fingerprint database that covers a large
enough portion of our measurement area using the method
chosen in Section III-C. Because the BL654 hardware is able
to report RSSI in a known absolute unit (dBm), we do not
calculate relative values as we do for data captured with the
SDR (see Section III-A). We then calculate a linear regression
to obtain parameters for each frequency that allow us to
calculate the expected BLE RSSI from measurements taken
with the SDR. An example of this calibration for a single
frequency is shown in Fig. 8.

For the evaluation, we measure RSSI fingerprints in the
same locations that we used during the evaluation in Section V.
Due to the limited range with BLE, we omitted points in rooms
in which the signal was too weak to reliably complete the
measurement. This greatly reduces the number of usable data
points. Thus, we add additional randomly selected locations
for a total of 19 points. The resulting localization error distri-
bution is shown in Fig. 9. Overall, the result is similar to the
result of our initial evaluation using SDR. This confirms that
our multi-frequency localization approach can be implemented
using COTS hardware, achieving an accuracy comparable to
what we presented in our initial evaluation. The only limiting
factor is the number of frequencies and frequency bands usable
by the given hardware and wireless standard.

VII. CONCLUSION

In this paper, we demonstrate a method for RSSI-based
indoor localization that can function with only a single anchor
by utilizing multiple frequencies. Our evaluation shows that
this method can deliver comparable accuracy to existing RSSI-
based methods from literature that require multiple anchors
to be within the localized node’s reception range in order
to function. We introduce a measurement approach using
SDR to efficiently collect RSSI fingerprints across several
frequencies at the same time. This allows for quickly creating
the required fingerprint database for a given environment.
Finally, we implement our localization method on off-the-

shelf BLE hardware, demonstrating the applicability of our
approach on real-world devices as opposed to using SDR
exclusively.

While our evaluation shows that our method does not
achieve the same accuracy as some other state-of-the-art meth-
ods based on measurements such as phase difference or CSI,
it does not have any of the additional hardware requirements
needed to use those systems. This allows our method to be
used across a wide range of unmodified COTS devices, making
it especially useful in situations where a localization system is
needed while the choice of hardware is limited or dictated by
other external factors. We identify the main limitation of our
system to be the required memory to store the reference fin-
gerprint database, which may be too large for some memory-
constrained embedded devices. This could however be solved
by implementing the actual localization on a central server
which processes fingerprints received from nodes over the
network. Furthermore, like any fingerprinting-based solution,
our system requires maintenance as reference fingerprints need
to be updated after making significant changes to the environ-
ment (such as moving furniture). Because of the implemented
fingerprint prediction (see Section III-C), we consider this
effort to be minimal enough to not reduce the practicality
of our system as updating the reference fingerprints only
requires a small number of measurements to be conducted
within rooms where the environment was changed while all
other fingerprints can be retained.

VIII. FUTURE WORK

As future work, we are interested in implementing this
localization algorithm on other devices using different wireless
standards. BLE has the significant advantage of frequency
hopping, which allows BLE nodes to quickly collect RSSI for
many different frequencies. In contrast, many other wireless
standards can not easily switch between different frequencies
during operation. One example of this limitation is WiFi,
which is of particular interest for future research due to its
widespread usage. While it is possible to measure RSSI values
for each OFDM subcarrier in a WiFi connection by collecting
CSI, this only captures a limited continuous section of the
wireless spectrum which may not give ideal performance as
shown in Section V-B. A solution for this may be available
in WiFi 7. This version of the standard allows devices to
use multiple frequency bands simultaneously. Furthermore, we
consider using machine learning techniques rather than the
simple matching based on similarity of two fingerprints used
in this paper. Such approaches have delivered good results in
other localization systems (as discussed in Section II). Finally,
future work should study the impact of the environment’s lay-
out on localization accuracy using this method as the observed
difference in signal propagation between different frequencies
depends mostly on multipath effects. Consequently, we suspect
that environments with lots of possible obstacles might be
better suited for the deployment of a localization system using
our approach.
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J. Thielecke, “System and signal design for an energy-efficient multi-
frequency localization system,” in Proceedings of the IEEE Topical
Conference on Wireless Sensors and Sensor Networks (WiSNet), 2014.

[21] M. Passafiume, S. Maddio, G. Collodi, and A. Cidronali, “An enhanced
algorithm for 2D indoor localization on single anchor RSSI-based
positioning systems,” in Proceedings of the European Radar Conference
(EURAD), 2017.

[22] P. Pettinato, N. Wirström, J. Eriksson, and T. Voigt, “Multi-channel two-
way time of flight sensor network ranging,” in Proceedings of the 9th
European Wireless Sensor Networks Conference (EWSN). Springer
Berlin Heidelberg, 2012.

[23] J. Powar, C. Gao, and R. Harle, “Assessing the impact of multi-channel
BLE beacons on fingerprint-based positioning,” in Proceedings of the
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), 2017.

[24] M. Rzymowski, P. Woznica, and L. Kulas, “Single-anchor indoor
localization using ESPAR antenna,” IEEE Antennas and Wireless Prop-
agation Letters, vol. 15, 2016.

[25] M. A. Skoglund, G. Hendeby, J. Nygårds, J. Rantakokko, and G. Eriks-
son, “Indoor localization using multi-frequency RSS,” in Proceedings of
the IEEE/ION Position, Location and Navigation Symposium (PLANS),
2016.

[26] F. Tong, B. Ding, Y. Zhang, S. He, and Y. Peng, “A single-anchor mobile
localization scheme,” IEEE Transactions on Mobile Computing, vol. 23,
no. 1, 2024.

[27] J. Tuta and M. B. Juric, “MFAM: Multiple frequency adaptive model-
based indoor localization method,” Sensors, vol. 18, no. 4, 2018.

[28] G. von Zengen, Y. Schröder, S. Rottmann, F. Büsching, and L. C.
Wolf, “No-cost distance estimation using standard WSN radios,” in
Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), 2016.

[29] Q. Wang, J. Li, X. Luo, and C. Chen, “Fusion algorithm of WiFi and
IMU for indoor positioning,” in Proceedings of the 3rd International
Conference on Information Science, Parallel and Distributed Systems
(ISPDS), 2022.

[30] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor
localization with a deep learning approach,” IEEE Internet of Things
Journal, vol. 3, no. 6, 2016.

[31] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for
indoor localization: A deep learning approach,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 1, 2017.

[32] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, and L. M. Ni, “CSI-based indoor
localization,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 7, 2013.

[33] Z. Wu, Q. Xu, J. Li, C. Fu, Q. Xuan, and Y. Xiang, “Passive indoor local-
ization based on CSI and naive bayes classification,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 48, no. 9, 2018.

[34] F. Ye, R. Chen, G. Guo, X. Peng, Z. Liu, and L. Huang, “A low-cost
single-anchor solution for indoor positioning using BLE and inertial
sensor data,” IEEE Access, vol. 7, 2019.

[35] A. Zanella and A. Bardella, “RSS-based ranging by multichannel RSS
averaging,” IEEE Wireless Communications Letters, vol. 3, no. 1, 2014.

[36] Y. Zhao, Y. Ji, L. Zhu, and H. Yang, “Iterative filling incomplete
fingerprint map based on multi-directional signal propagation in large-
scale scene,” in Proceedings of the 21st International Conference on Al-
gorithms and Architectures for Parallel Processing (ICA3PP). Springer
Berlin Heidelberg, 2021.


