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Abstract—In this paper, a novel backstepping controller 

considering thruster system dynamics is proposed. Firstly, a 

practical ship dynamic positioning control algorithm is 

formulated leveraging the thruster system dynamics, along with a 

finite-time convergent disturbance observer and an auxiliary 

dynamic system designed for finite-time convergence. The 

designed dynamic positioning closed-loop control system is 

uniformly ultimately stable. The advantages of the developed 

control scheme are that first, it addresses a multitude of potential 

challenges that the dynamic positioning system could encounter 

amidst intricate sea conditions, which is conducive to the 

implementation of the algorithm in maritime practice; Second, 

thruster system dynamics were considered to ensure smooth 

changes in actual control variables, aligning more closely with 

engineering realities. Finally, the control's effectiveness stays 

consistent. algorithm was validated through simulation, 

reinforcing its practical applicability. 

Keywords— Dynamic Positioning; Unmeasurable Speed; 

External Disturbances; 

I. INTRODUCTION  

 Ship dynamic positioning technology is a kind of positioning 

technology applied to the ship to keep floating automatically at 

sea without mooring. With the development and progress of 

marine technology, ship dynamic positioning has also been 

gradually developed. The initial dynamic positioning system 

relies on a linear control approach. which is ineffective due to 

the highly nonlinear ship model. As nonlinear control 

technology advances, the control strategy for ship dynamic 

positioning systems progressively transitions from linear to 

nonlinear methods. 

In practice, accurately gathering both position and velocity 

data can be challenging. Additionally, classification society 

standards mandate that when a ship's sensors fail, observers 

must supply the necessary information. The integration of a state 

observer into the dynamic positioning control system enables 

dynamic positioning control to be achieved effectively by solely 

utilizing the vessel's location and directional data [1]. Hence, the 

dynamic positioning system's output feedback controller, which 

employs an observer, demonstrates remarkable fault tolerance 

[2].  

The thruster's capacity to generate adequate thrust, following 

the directives of the control algorithm, remains a pivotal aspect 

of the ship's dynamic positioning system [3]. The thruster, 

capable of generating the required thrust to maintain the ship in 

the desired position and heading according to the control 

algorithm, is an important component of the ship’s dynamic 

positioning system [4]. 

  When operating within a genuine marine context, the 

operational limitations of the thrusters and external 

environmental interferences on their blades hinder them from 

fully executing the control signal and generating the intended 

thrust, ultimately leading to a reduction in thrust efficiency [5]. 

Consequently, for practical applications, it becomes imperative 

to incorporate the thruster system dynamics equation into the 

control law design process. This ensures that the generated 
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control signal enables the actual thrust outputted by the thruster 

to achieve an optimal control effect. 

Building upon the aforementioned considerations, this paper 

also takes into account unmeasurable ship speed, external 

disturbances, and input saturation. and thruster system dynamic 

simultaneously for the first time in a dynamic positioning output 

feedback control system [6]. This paper's primary contributions 

can be summarized as follows: 

1) To enhance its practical relevance, this paper considers an 

extensive range of potential challenges that the dynamic 

positioning system may encounter in intricate marine 

environments. 

2) The utilization of a finite-time convergence disturbance 

observer effectively addresses unknown disturbances, resulting 

in a substantial improvement in convergence rate when 

compared to a conventional disturbance observer. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A.  Problem formulation 

Dynamic positioning mathematical model with thruster 
system dynamic can be described as  

𝜂̇ = 𝐽(𝜓)𝑣                                        () 

𝑀 𝑣̇ = −𝐷𝑣 + 𝜏 + 𝜏𝑑                              () 

𝜏̇ = −𝐴𝑡𝑟𝜏 + 𝐴𝑡𝑟𝜏 𝑝                                          () 

where 𝜂 = [𝑥, 𝑦, 𝜓]T   indicates the position of the ship in 
the north-east coordinate system, where 𝑥, 𝑦,and 𝜓 are used as 
the surge position, sway position and heading respectively. 
𝐽(𝜓) ∈ 𝑅3×3 indicates the following rotation matrix given by 

𝐽(𝜓) = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

]                   () 

where J−1(𝜓) = JT(𝜓)  and ∥ J(𝜓) ∥= 1. M ∈ R3×3  is an 
inertia matrix.𝐷 ∈ 𝑅3×3  is a hydrodynamic damping matrix. 

𝜏 = [𝜏1, 𝜏2, 𝜏3]T  

𝜏𝑝𝑖 = sat(𝜏𝑐𝑖) = {
sgn(𝜏𝑐𝑖)𝜏𝑀𝑖 |𝜏𝑐𝑖| ≥ 𝜏𝑀𝑖

𝜏𝑐𝑖 |𝜏𝑐𝑖| < 𝜏𝑀𝑖
 , 𝑖 = 1,2,3    () 

where 𝜏𝑀𝑖 > 0  indicates the saturation limits, 𝜏𝑐 =
[𝜏𝑐1, 𝜏𝑐2, 𝜏𝑐3]T  indicates the commanded thrust force and 
moment vector. The difference between 𝜏𝑝 and 𝜏𝑝 is 𝛥𝜏 = 𝜏𝑝 −
𝜏𝑐.   

III. DESIGN OF SHIP DYNAMIC POSITIONING CONTROL 

SYSTEM 

A. Design of high-gain state observer 

In practice, 𝜂(𝑡) and its first derivative 𝜂̇ (𝑡) are bounded. 

The high-gain state observer is constructed as follows: 

{
𝛿 𝜋̇1 = 𝜋2

𝛿 𝜋̇2 = −𝜆1𝜋2 − 𝜋1 + 𝜂(𝑡)
                          () 

where 𝜋1, 𝜋2 ∈ 𝑅3  are the state vectors of the high-gain 

observer. The estimations of 𝜂(𝑡) and its first derivative 

𝜂̇ (𝑡)  are 

𝜂̂ = 𝜋1                                               () 

𝜂̇̂ =
1

𝛿
𝜋2                                            () 

Hence, according to (8) and (1), the estimation 𝑣  can be 

shown as 

𝑣 = 𝐽𝑇(𝜓) (
1

𝛿
𝜋2)                                    () 

According to (7), we get 
 𝜂̂ − 𝜂 = 𝜋1 − 𝜂

 = − 𝛿
̇

𝜓
                                    () 

According to (10), we get 

∥ 𝜂̂ − 𝜂 ∥= 𝛿 ∥ 𝜓̂ ∥≤ 𝛿𝐵1                        () 

where B1 is a positive constant. 

Similarly, according to (1), (9), 𝐽−1(𝜓) = 𝐽𝑇(𝜓) 

 𝑣 − 𝑣 = −𝛿𝐽𝑇(𝜓) 𝜓̇                                () 

According to (12), ∥ 𝐽(𝜓) ∥= 1,we  get 

∥ 𝑣 − 𝑣 ∥= 𝛿 ∥ 𝜓̈ ∥≤ 𝛿𝐵2                          () 

where B2 is a positive constant. 

B. Design of  finite-time convergent disturbance 

observer 

In this paper, a finite-time convergent disturbance observer 

is used to estimate the unknown as  

𝑝 = 𝑝 − 𝑝                                       () 

The differential equation for constructing the estimation 

error 𝑝 is  

      𝑝̇ = −𝐷1 𝑝 − 𝐷2| 𝑝 |𝛾𝑠𝑔𝑛(𝑝) − 𝜏𝑑𝑠𝑔𝑛(𝑝) − 𝜏𝑑                 () 

According to (2), (8), (9), the derivation of 𝑝 gives 

𝑝̇ = −𝐷𝑣 + 𝜏 − 𝐷1 𝑝 − 𝐷2| 𝑝 |𝛾𝑠𝑔𝑛(𝑝) − 𝜏𝑑𝑠𝑔𝑛(𝑝)   () 

where and 𝐷2 = diag{𝐷21, 𝐷22, 𝐷23} are parameter matrices, 
𝜏𝑑 is the disturbance upper bound vector. 0 < 𝛾 < 1.  

Defining 𝜏̂𝑑 as an estimate of 𝜏d, the fixed-time convergent 
disturbance observer can be obtained according to (16) as 

τ̂𝑑 = −𝐷1 p̃ − 𝐷2| p̃ |𝛾sgn(p̃) − 𝜏𝑑sgn(p̃)        () 

C. . Dynamics controller design 

In this section, the primary focus is on designing a dynamic 
positioning nonlinear control scheme. 

Define the error vector as follows: 

 𝑆1 = 𝜂 − 𝜂𝑑                            () 

𝑆2 = 𝑣 − 𝛼1                                   () 

𝑆3 = 𝜏 − 𝛼 2                                                 () 

According to (1), the derivation of (18) yields 

𝑆̇1 = J(𝜓)v                                    () 

Select the Lyapunov function candidate as following: 

𝑉1 =
1

2
𝑆1

𝑇𝑆1                                     () 

According to (19) and (21), the derivation of (22) yields 

V̇1 = S1
𝑇 Ṡ1

 = S1
𝑇J(𝜓)(S2 + α1)

                            () 
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Design the intermediate control function vector α1 as 

α1 = −J𝑇(𝜓)K1𝑆1                                 () 

Substituting (24) into (23), the collation gives 

V̇1 = S1
𝑇J(𝜓)S2 + S1

𝑇J(𝜓)α1

 = −S1
𝑇K1S1 + S1

𝑇J(𝜓)S2

                          () 

According (2), the derivative of (19) is 

𝑀 𝑆̇2 = −𝐷𝑣 + 𝜏 + 𝜏𝑑 − 𝑀 𝛼̇1                         () 

Establish the Lyapunov function candidate as following: 

𝑉2 = 𝑉1 +
1

2
𝑆2

𝑇M𝑆2                             () 

According (25), (26), the derivative of (27) is 

𝑉̇2 = 𝑉̇1 + 𝑆2
𝑇𝑀 𝑆̇2

 = −𝑆1
𝑇𝐾1𝑆1 + 𝑆1

𝑇𝐽(𝜓)𝑆2 + 𝑆2
𝑇(−𝐷𝑣 + 𝜏 + 𝜏𝑑 − 𝑀 𝛼̇1)

   () 

Define the intermediate control function vector α2 as 

α2 = −K2S2 − J𝑇(𝜓)S1 + Dv − τ̂
𝑑

+ M α̇
1

       () 

According to (3) and 𝛥𝜏 = 𝜏𝑝 − 𝜏𝑐, the derivative of (20) is 

𝐴𝑡𝑟
−1 Ṡ3 = 𝐴𝑡𝑟

−1 𝜏̇ − 𝐴𝑡𝑟
−1 α̇

2

 = −𝜏 + 𝜏𝑐 + 𝛥𝜏 − 𝐴𝑡𝑟
−1 α̇

2

             () 

In order to solve the input saturation, an auxiliary dynamic 
system is shown as follows: 

𝛏̇ = {
−𝐾𝜉1

𝜉 − 𝐾𝜁2
|𝛏|𝑟0 −

∑ |𝑠3,𝑖𝛥𝜏𝑖|3
𝑖=1 +0.5𝐾𝜁̃3

𝛥𝜏T𝛥𝜏

∥𝛏∥2
+ 𝐾𝜁3

𝛥𝜏 ∥ 𝛏 ∥≥ 𝜁̃
0

𝟎3×1 ∥ 𝛏 ∥< 𝜁̃
0

    () 

where 𝜉 = [𝜉1, 𝜉2, 𝜉3]T  is the state vector of the auxiliary 

dynamic system, 𝜉̃
0

> 0 is a positive constant. 

 

Theorem 1. The state vector 𝜉 = [𝜉1, 𝜉2, 𝜉3]T can converge to 
zero in finite time. 

Proof of Theorem 1. Establish the Lyapunov function 
candidate as following: 

𝑉FCADS =
1

2
𝜉T𝜉                                 () 

When∥ 𝛏 ∥≥ 𝜉̃
0
,  the derivative of (32) is 

𝑉̇𝐹𝐶𝐴𝐷𝑆 = 𝜉𝑇 𝜉̇                                                                            

                        = −𝜉T𝐾𝜉
1
𝜉 − ∑ 𝐾𝜉

2
,𝑖

3

𝑖=1

|𝜉̃
𝑖
|

𝑟
0

+1
− ∑|𝑠3,𝑖𝛥𝜏𝑖|

3

𝑖=1

 

−
1

2
𝐾𝜉

3
𝛥𝜏T𝛥𝜏 + 𝐾𝜉

3
𝜉T𝛥𝜏                             () 

−2

𝑟
0

+1

2 𝜆min (𝐾𝜁
2
) 𝑉𝐹𝐶𝐴𝐷𝑆

𝑟
0

+1

2
       

 The state vector 𝜉 = [𝜉̃
1

, 𝜉̃
2

, 𝜉3]
T

 converges to 0 in finite 

time when 𝜆min (𝐾𝜁1
) >

1

2
𝐾𝜁3

 . Theorem 1 is proved 

Then, the control law for dynamic positioning state feedback 
is developed as 

𝜏𝑐0 = −𝐾3𝑆3 + 𝜏 + 𝐴𝑡𝑟
−1 𝛼̇2 + 𝐾𝜉𝜉 − 𝑆2           () 

The formulation of the novel error vector is as follows.: 

𝑆̂1 = 𝜂̂ − 𝜂𝑑                                                     () 

𝑆̂2 = 𝑣 − 𝛼̂1                                     () 

𝑆̂3 = 𝜏 − 𝛼̂2                                     () 

 where  

𝛼̂1 = −𝐽T(𝜓)𝐾1 𝑆̂1                        () 

𝛼̂2 = −𝐾2 𝑆̂2 − 𝐽𝑇(𝜓) 𝑆̂1 + 𝐷 𝑣 − 𝜏̂𝑑 + 𝑀 𝛼̂̂1     () 

Noting the new error vector: 

 𝑆̃1 = 𝑆̂1 − 𝑆1                                     () 

  𝑆̃2 = 𝑆̂2 − 𝑆2                                     () 

 𝑆̃3 = 𝑆̂3 − 𝑆3                                     () 

According to (11), (18), (24), and (45) yields 

𝑆̃1
T

𝑆̃1 = ∥∥𝑆̂1 − 𝑆1∥∥
2

 ≤ 𝛿2𝐵1
2

                           () 

According to (24), (40) and (51) yields 

∥∥α̂1 − α1∥∥ = ∥∥−JT(𝜓)K1 𝑆̂1 + JT(𝜓)K1𝑆1∥∥

 ≤ ∥∥K1∥∥𝛿𝐵1

     () 

In the light of (11), (13), (4), (19), (24), (35), (44) and (46), 
we have 

𝑆̃2
T

𝑆̃2 = ∥∥𝑆̂2 − 𝑆2∥∥
2

 ≤ (∥ 𝑣 − 𝑣 ∥ +∥∥𝐾1∥∥ ∥ 𝜂̂ − 𝜂 ∥)2

 ≤ 𝛿2(𝐵2 + ∥∥𝐾1∥∥𝐵1)2

                         () 

According to (10), (11), (18), (24), (35) and (40), we have 

∥∥𝛼̂̂1 − α̇1∥∥ = ∥
∥(−J𝑇(𝜓)K1 𝑆̂1)

′
− (−J𝑇(𝜓)K1S1)′

∥
∥ 

      ≤ ∥∥S𝑇(𝑟)∥∥∥∥K1∥∥𝛿B1 + ∥∥K1∥∥𝛿B2                  () 

where  𝑆(𝑟) = [
0 −𝑟 0
𝑟 0 0
0 0 0

] 

 Since 𝜂 and 𝜂̇ are bounded, according to (1) 𝑣 is bounded, 
then r is bounded. Then  𝑆(𝑟)  is bounded. 

Set  
                             ∥ S(𝑟) ∥= ∥∥S𝑇(𝑟)∥∥ ≤ B3                                () 

where B3 is a positive constant. 

Hence, according (46) and (47) 

∥∥𝛼̂̂1 − 𝛼̇1∥∥ ≤ ∥∥𝐾1∥∥𝛿(𝐵1𝐵3 + 𝐵2)                 () 

Similarly, 

∥∥𝛼̇̂2 − 𝛼̇2∥∥ ≤ 𝐵4                                            () 
where B4 is a positive constant. 
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According to (43), (45), (13) and (48), we have 

∥∥𝛼̂2 − 𝛼2∥∥ ≤ ∥∥𝐾2∥∥𝛿(𝐵2 + ∥∥𝐾1∥∥𝐵1) + 𝛿𝐵1+∥ 𝐷 ∥ 𝛿𝐵2 

              +√2𝑉𝑑𝑜(0)4 +∥ 𝑀 ∥ ∥∥𝐾1∥∥𝛿(𝐵1𝐵3 + 𝐵2)      () 

Then, according to (42), (37), (20) and (50), we have 

𝑠̃3
𝑇 𝑠̃3 ≤ (∥∥𝐾2∥∥𝛿(𝐵2 + ∥∥𝐾1∥∥𝐵1) + 𝛿𝐵1+∥ 𝐷 ∥ 𝛿𝐵2 

  +√2𝑉𝑑𝑜(0)4 + ∥ 𝑀 ∥ ∥∥𝐾1∥∥𝛿(𝐵1𝐵3 + 𝐵2))
2

 () 
Therefore, the control law for dynamic positioning using output 

feedback is formulated as: 

𝜏𝑐 = −𝐾3 𝑆̂3 + 𝜏 + 𝐴𝑡𝑟
−1 𝛼̂̂2 + 𝐾𝜁 𝜉̂ − 𝑆̂2             () 

IV. SYSTEM STABILITY ANALYSIS  

Establish the Lyapunov function candidate as following: 

𝑉 =
1

2
𝑆1

𝑇𝑆1 +
1

2
𝑆2

𝑇𝑀𝑆2 +
1

2
𝑆3

𝑇𝐴𝑡𝑟
−1𝑆3 +

1

2
𝜉𝑇𝜉 +

1

2
𝑝𝑇 𝑝    () 

Derivation of (53), we have 

𝑉̇ = 𝑆1
𝑇 𝑆̇1 + 𝑆2

𝑇𝑀 𝑆̇2 + 𝑆3
𝑇𝐴𝑡𝑟

−1 𝑆̇3 + 𝜉𝑇 𝜉̇ + 𝑝𝑇 𝑝̇      () 
According to (19), (21), (24), Young’s inequality and ∥

𝐽(𝜓) ∥= 1, we get 

𝑆1
𝑇 𝑆̇1 = 𝑆1

𝑇𝐽(𝜓)(𝑆2 + 𝛼1)

 ≤ −𝑆1
𝑇𝐾1𝑆1 +

1

2
𝑆1

𝑇𝑆1 +
1

2
𝑆2

𝑇𝑆2

               () 

According to (20), (26), (29), ∥ 𝐽(𝜓) ∥= 1, 𝜏̃𝑑 = 𝜏𝑑 − 𝜏̂𝑑 ,and 

Young’s inequality and we get 

  𝑆2
𝑇𝑀 𝑆̇2 = 𝑆2

𝑇(−𝐷𝑣 + 𝜏 + 𝜏𝑑 − 𝑀 𝑑̇1) 

          ≤ −𝑆2
𝑇𝐾2𝑆2 −

1

2
𝑆1

𝑇𝑆1 +
1

2
𝑆2

𝑇𝑆2 +
1

2
𝑆3

𝑇𝑆3 +
1

2
𝜏̃𝑑

𝑇 𝜏̃𝑑() 

When ∥ 𝛏 ∥≥ 𝜉0 , according to (42) and Young’s inequality, 

we get 

𝜉T 𝜉̇ = −𝜉T𝐾𝜉1
𝜉 − ∑ 𝐾𝜁2,𝑖

3

𝑖=1

|𝜉𝑖|
𝑟0+1 − ∑|𝑠̂3,𝑖 𝛥𝜏𝑖|

3

𝑖=1

 

                        −
1

2
𝐾𝜁3

𝛥𝜏T𝛥𝜏 + 𝐾𝜉3
𝜉T𝛥𝜏 

                ≤ −𝜉T𝐾𝜉1
𝜉 − ∑ |𝑠̂3,𝑖 𝛥𝜏𝑖|3

𝑖=1 +
1

2
𝐾𝜉3

𝜉T𝜉                  () 

When ∥ 𝛏 ∥< 𝜉̃
0
 according to (31) and Young’s inequality, 

we get 

𝜉T 𝜉̇ = 0                                         () 

          
1

2
𝜉T𝐾𝜉

T𝐾𝜉𝜉 < −
1

2
𝜉T𝐾𝜉

T𝐾𝜉𝜉 + 𝜉0
2

∥∥𝐾𝜉
T𝐾𝜉∥∥          () 

𝑆3
T𝛥𝜏 ≤

1

2
𝑆3

T𝑆3 +
1

2
∥ 𝛥𝜏 ∥2                    () 

In (61), according to (42), (51) and Young’s inequality 

yields 

𝑆3
T𝛥𝜏 − ∑ |3̂3,𝑖 𝛥𝜏𝑖|

3
𝑖=1 = 𝑆3

T𝛥𝜏 − 𝑆̂3

T
𝛥𝜏

 ≤
1

2
(∥∥𝐾2∥∥𝛿(𝐵2 + ∥∥𝐾1∥∥𝐵1) + 𝛿𝐵1

 +∥ 𝐃 ∥ 𝛿𝐵2 + √2𝑉𝑑𝑜(0)4

() 

According to (57) (62), we get 

𝑉̇ ≤ −2𝜇1𝑉 + 𝐶1                               () 

where 

𝐶1 =
1

2
𝐵4

2 +
1

2
𝛾2 −

1

2
𝛿2(𝐵2 + ∥∥𝐾1∥∥𝐵1)2 

+
1

2
√2𝑉𝑑𝑜(0)𝑒−2𝐷1min𝑡                                 () 

𝜇1 = min {𝜆min(𝐾1), 𝜆min [(𝐾2 −
1

2
𝐼3×3) 𝑀0

−1],     () 

𝜆min [(𝐾3 −
1

2
𝐴𝑡𝑟

−1(𝐴𝑡𝑟
−1)𝑇 +

1

2
𝐾3𝐾3

𝑇) 𝐴𝑡𝑟]        () 

𝜆min (𝐾𝜉1
−

1

2
𝐾𝜉

T𝐾𝜉 −
1

2
𝐾𝜁3

𝐼3×3) , 𝜆min(𝐷1)}     () 

Satisfying 

𝜆min(𝐾1) > 0                                     () 

𝜆min(𝐾2) >
1

2
                                     () 

𝜆min (𝐾3 −
1

2
𝐴𝑡𝑟

−1(𝐴𝑡𝑟
−1)𝑇 +

1

2
𝐾3𝐾3

𝑇) > 0       () 

𝜆min (𝐾𝜉1
−

1

2
𝐾𝜉

T𝐾𝜉 −
1

2
𝐾𝜁3

𝐼3×3) > 0       () 

𝜆min(𝐷1) > 0                                   () 

When ∥ 𝛏 ∥≥ 𝜉̃
0
, substituting (55)-(56), (58)-(60) into (54), 

we get 

𝑉̇ ≤ −2𝜇2V + 𝐶2                                              () 

where 

𝜇2 = min {𝜆min(K1), 𝜆min [(K2 −
1

2
I3×3) M0

−1] ,       () 

𝜆min [(K3 −
1

2
A𝑡𝑟

−1(A𝑡𝑟
−1)𝑇 +

1

2
K3K3

𝑇 −
1

2
I3×3) A𝑡𝑟]      () 

1

2
𝜆min(K𝜉

TK𝜉), 𝜆min(D1)}                            () 

Satisfying 

𝜆min(𝐊𝟏) > 0                                   () 

𝜆min(K2) >
1

2
                                    () 

𝜆min (K3 −
1

2
Atr

−1(Atr
−1)𝑇 +

1

2
K3K3

𝑇 −
1

2
I3×3) > 0 () 

𝜆min(K𝜉
TK𝜉) > 0                                 () 

𝜆min(D1) > 0                                    () 

Substituting (64) and (74) yields 

𝑉̇ ≤ −2𝜇𝑉 + 𝐶                                   () 

where 𝜇 = min{𝜇1, 𝜇2} and 𝐶 = max{𝐶1, 𝐶2} 

V.   SIMULATION AND COMPARISON STUDIES 

This section entails the execution of dynamic positioning 

simulation experiments aimed at elucidating the effectiveness of 

the suggested control strategy. Here, an example involving a 

supply vessel named Northern Clipper is provided., measuring 

76.2 m in length and weighing 4.591 × 106 kg, is simulated 

utilizing the provided model parameters along with the thruster 

specifications detailed as follows:  

𝑀 = [
5.3122 × 106 0 0

0 8.2831 × 106 0
0 0 3.7454 × 109

]   () 

D = [
5.0242 × 104 0 0

0 2.7229 × 105 −4.3933 × 106

0 −4.3933 × 106 4.1894 × 108

]   () 

𝐴𝑡𝑟 = [
0.2 0 0
0 0.2 0
0 0 0.2

]                             () 
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The investigation addresses the input saturation of the ship's 

thrusters, and Table 1 delineates the restrictions concerning the 

input saturation of the supply vessel's thrusters. 

The scene parameters are set as b(0) = [10𝑘𝑁, 10𝑘𝑁, 10𝑘𝑁
]𝑇 , T = diag(103, 103, 103), Ψ = diag(3 × 104, 3 × 103, 3 ×
105). 

TABLE I.  THRUSTER INPUT SATURATION LIMIT VALUES IN SURGE, 
SWAY, AND YAW 

 Thrusters Limit values 

In surge τM1 3.76815 ∗ 
102(KN) 

In sway τM2 6.8072 ∗ 
102(KN) 

In yaw τM3 7.31 ∗ 102(KN) 

The targeted ship location and orientation are 𝜂𝑑 =
[0𝑚, 0𝑚, 0∘]𝑇  and the initial states are η(0) = 

[20 m, 20 m, 10∘]𝑇 , v(0) = [0 m/s, 0 m/s, 0∘/s]𝑇 , τ(0) =

[0,0,0]𝑇 , ξ(0) = [5 × 104, 5 × 104, 5 × 104]𝑇 , η̂ (0) =
[20 m, 20 m, 10∘]𝑇 , 𝜁̂ (0) = [2,2,0.4]𝑇 , 𝜎 (0) = [0,0,0]𝑇 ,  The 
design parameters are α1 = 25, α3 = 20 ， K1 =
diag(0.1,0.1,0.1) ， K2 = diag(1 × 107, 1 × 107, 8 × 109) ，
K𝜉1 = diag(5,3,5)，K𝜉2 = diag(2,2,5)，𝐾𝜉3 = 0.02，𝜉0 =

20，𝑟0 =
6

7
，K3 = diag(0.8,0.8,0.8) and K𝜉 = diag(5,5,5). 

The contrast between the control law presented herein, 
incorporating thruster system dynamics, and the control strategy 
addressed in [7]., which disregards these dynamics, highlights 
the smoother transitions and improved alignment with 
engineering principles exhibited by the control law proposed in 
this paper. 

 

 

 

 

 

 

 

 

 

Fig. 1. Horizontal motion trajectory of the ship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Ship position and heading. 

 

   

 

 

 

 

 

 

 

 

Fig. 3. Ship speed. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Actual thrust of the ship 
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Fig. 5. External interference forces on ships 

The continuous lines in Figs. 1-4 depict the simulation results 

of the dynamic positioning control algorithm τc proposed in this 

study, while the dotted lines illustrate the simulation outcomes 

of control law τ0 suggested in [7] 

In Fig.4, The control methodology advocated in this paper 

generates a smooth control variable without any sudden changes. 

In contrast, the control method described in [7] exhibits 

significant fluctuations and abrupt variations in the control 

signal, particularly around the initial time period. This 

underscores the practicality and relevance of the control law 

proposed in this paper compared to the approach described in 

[7], as it more closely aligns with engineering reality. Fig.5 

shows the external interference forces on the ship. 

VI. CONCLUSION 

 This paper proposes a new backstepping controller that 
considers the dynamic characteristics of ship propulsion systems 

when a ship is subjected to unknown time-varying disturbances, 
in response to the problem of unmeasurable and input saturation 
of the ship. The controller combines a high gain State observer, 
a finite time Auxiliary power unit and a backstepping controller, 
which is obviously different from the traditional backstepping 
controller. Finally, this paper considers the dynamic 
characteristics of the propulsion system to ensure that the control 
signal generated by the controller remains stable and does not 
undergo sudden changes, regardless of whether the ship is under 
strong or weak interference.  

Future research will concentrate on two primary areas. 

Firstly, the refinement of the control algorithm proposed in this 

paper will be pursued to adeptly address dynamic positioning 

control complexities under diverse marine conditions. Secondly, 

investigations will extend to dynamic positioning scenarios 

encompassing varying initial yaw angles, with a further 

extension of the study into automated berthing applications. 
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