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Abstract—The paper presents an improved YOLOv8 model
tailored for the detection of defects in air-jet loom tire cord fabric,
a critical component in the automotive industry. Current defect
detection methods, predominantly manual, are inefficient and
prone to errors, necessitating an automated solution. Leveraging
advancements in machine vision and deep learning, this study
presents an vision-based defect detection model that tackles the
distinctive obstacles posed by the complex background, variations
in target sizes, and indistinct defect features of tire cord fabric
defects. The proposed model integrates a novel BiFPN (Bidirec-
tional Feature Pyramid Network) into the YOLOv8 framework to
enhance feature fusion and employs a Dynamic Head mechanism
to improve scale, spatial, and task awareness. Additionally, a
new loss function, Wise-Inner-Shape IoU, is introduced to refine
the localization of defects. The model’s effectiveness is assessed
utilizing a custom dataset of air-jet loom tire cord fabric,
demonstrating a notable 4.0% enhancement over the original
YOLOv8 architecture in the mean Average Precision (mAP) at a
threshold of 0.5. The results show that the model is effective in
achieving precise defect detection,which is essential for upholding
quality standards of tire cord fabric in industrial production.

Index Terms—Air-jet loom tire cord, Defect detection,
YOLOv8 architecture, Industrial manufacturing

I. INTRODUCTION

The thriving development of the automotive industry is

closely linked to the increasing demand for travel, leading to

a continuous rise in the per capita ownership of automobiles.

As cars serve as the primary means of transportation, tires,

as a crucial component, attract significant attention in the

automotive industry. The quality of the cord fabric layer

significantly influences the strength of the tire. Therefore,

achieving efficient quality control during the production of

cord fabric has become a widely discussed focus. Currently,

most weaving workshops rely on manual visual inspections,

which are inefficient, costly, demand high expertise, and are

prone to errors, making it challenging to meet industrial

requirements. Hence, there is an urgent need for automated

solutions.

This work was supported by the Fundamental Research Funds for the
Central Universities (Grant No. 2023ZYGXZR009), the National Natural
Science Foundation of China (Grant No. 62173102), and the Guangzhou
Science and Technology Project (Grant No. 2023B01J0037).

The development of machine vision technology has made

image-based defect detection techniques crucial for enhancing

production efficiency in various industries. In recent years,

CNNs have been widely applied in image processing for

their excellent feature extraction and generalization. Object

detection methods, including both single-stage algorithms like

YOLO [1], known for their efficiency and real-time capabil-

ities, and two-stage methods like Faster R-CNN [2], which

use a two-step strategy, have been integrated into defect

detection by numerous researchers. These models are being

applied in various industrial settings. For instance, Xie et al.

[3] introduced a feature-enhanced algorithm FE-YOLO for

industrial surface detection. Xu et al. [4] presented a technique

for identifying flaws in metal surfaces using a modified YOLO

model that incorporates features for small defects. Hu and

Wang [5] proposed a Faster R-CNN based detection model for

PCB defect detection. A two-stage algorithm for PCB defect

identification was proposed by Hu and Wang [5]. Gao et al.

[6] proposed a FCN-RCNN model for efficient and accurate

detection of multiple tunnel defects in the complex subway

environment.

To our knowledge,there is little research available on detect-

ing cord defects in air-jet loom machine cord fabric. Tang et al.

[7] introduced a method utilizing Gabor filters for identifying

defects in cord fabric yarn. Considering the similarities in

defect features between fabric defects and cord fabric de-

fects, our research requires the exploration of pertinent fabric

defect detection algorithms. Li et al. [8] introduced a broad

yet efficient network for detection,which includes multi-scale

analysis,filter factorization,pooling at multiple locations,and

reducing parameters. Jun et al. [9] presented a framework

for automatic fabric inspection through local defect prediction

and global defect recognition steps. In order to tackle the

problem of data imbalance in detecting fabric defects, Jing

et al. [10] introduced Mobile-Unet for defect segmentation,

using a median frequency balancing loss function.

Despite the notable results achieved in defect detection,

there are still challenges to be addressed. Firstly, the defects in

air-jet loom cord fabric exhibit wave-like features concentrated

in the vertical direction of a single yarn and are often small

in size. Secondly, to achieve reliable results, these algorithms

necessitate a substantial quantity of annotated images, and
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acquiring defect images in industrial settings poses difficulties.

Building upon these points, this paper addresses the prac-

tical challenge of defect detection in air-jet loom tire cord

fabric and introduces an object detection model leveraging the

YOLOv8 framework. Fig. 1 illustrates the setup of an Air-Jet

Loom Tire Cord Inspection System in a factory environment.

In order to maintain quality control throughout production,

this system is made to monitor and identify flaws in tire

cord textiles in real time. By leveraging our algorithm and

detection system, the system enables accurate assessment of

tire cord fabric quality, thereby enhancing product quality and

production efficiency.

Fig. 1. Air-Jet Loom Tire Cord Inspection System Setup in Factory Environ-
ment

II. METHOD

A. Problem analysis

Air-jet loom tire cord is a special type of textile product,

whose defect types are significantly different from those of

common fabric defects, making the defect detection of tire

cord fabric an important complement to the fabric defect

detection area.

From the captured images, a series of cords can be observed,

neatly arranged and extending from the left to the right of

the image in a vertical direction, with tightly spaced intervals

between the cords. Overall, the detection system must target

seven main categories of defects, including abnormal threads,

entangled threads, hand joints, air splices, spliced joints,

insects, and cotton fluff, to ensure the tire cord fabric meets

high-quality standards. Fig. 2 presents the defect categories

and image characteristics observed in tire cord inspection. To

provide readers with a clearer understanding of the character-

istics of each defect, we selected images with more prominent

features. It is crucial to note that defect images in practical

situations may be more intricate. In the image’s right portion,

we showcase the challenges encountered in defect image

detection.

The following challenges are encountered in designing

algorithms for these cord defects:

• Complex Background: The tire cord fabric yarns are

twisted from multiple fine yarns, horizontally arranged

and dense, sometimes even partially overlapping, making

Fig. 2. Defect Categories and Image Characteristics in Tire Cord

the background information in the images exceptionally

complex.

• Large Variations in Target Sizes: Some defect images

may only exhibit nodal features at the endpoints of

the yarn, while others may define the entire yarn as a

defective area. Due to the high image resolution, there

is a significant variation in the sizes of different defect

targets, making it difficult to simply define defect areas

using rectangular boxes.

• Indistinct Defect Features: The differences between de-

fects and the background are subtle. For example, defects

like entangled threads may only exhibit nodal features in

small areas and are easily confused with other yarns. Even

to the naked eye, it is challenging to accurately identify

defects.

Besides the challenges posed by defect features, the dataset

dilemma is also a significant issue. Currently, there is no

publicly available dataset for air-jet loom machine tire cord

fabric, thus defect image data can only be obtained by con-

tinuously capturing images during the production process and

manually selecting defective images from a large number of

images. Moreover, accurate annotation of the data is required

by process experts. Additionally, the probability of occurrence

varies for each type of defect, leading to potential issues of

sample imbalance in scarce data situations.

To tackle the previously listed obstacles and meet the high

requirements of industrial defect inspection systems for real-

time performance, this paper will introduce the YOLOv8

model as the foundational algorithm. Considering the speci-

ficity and complexity of this task, we have made corresponding

improvements to YOLOv8 to achieve high-precision defect

detection for tire cord fabric.

B. Improved YOLOv8 model

The YOLO series is widely used in the industry due to its

accuracy and efficiency. YOLOv8 is the recent iteration of the

YOLO series. The three primary components of YOLOv8 are

the loss function, head, neck, and backbone.
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Fig. 3. Improved YOLOv8 network architecture

Firstly, the backbone part replaces the C3 module in

YOLOv5 with the more efficient feature extraction C2f mod-

ule, optimizing network size and performance through residual

connections and bottleneck structures.

The neck part handles multi-scale feature maps from the

backbone, including an SPPF module, a PAA module, and

two PAN modules, constructing a feature pyramid through the

combination of FPN and PAN.

The head part processes the three-layer feature maps from

the Neck. The initial detection head splits into a detection

and a classification branch, each with its own loss function.

The classification branch adopts Varifocal Loss, while the

regression branch uses CIoU Loss + Distribution Focal Loss

format.

YOLOv8 offers models in the n/s/m/l/x scales. Considering

the real-time requirements in industrial defect detection scenar-

ios, the proposed method is based on the version of YOLOv8n.

To tackle the intricate problems associated with air-jet loom

tire cord defect inspection, this paper introduces Bi-directional

Feature Pyramid Network (BiFPN) [11] into the neck part

of YOLOv8n to construct a feature pyramid, enhancing the

model’s feature fusion capability. Meanwhile, the head part

introduces Dynamic Head (Dyhead) [12] to strengthen the

model’s capabilities in Scale-awareness, Spatial-awareness,

and Task-awareness. Furthermore, by combining the character-

istics of Wise-IoU [13], Inner-IoU [14], and Shape-IoU [15],

this paper introduces the Wise-Inner-Shape IoU loss function

to achieve more precise defect localization. Fig. 3 displays the

enhanced network architecture, showcasing the modifications

and improvements made to the original design.

C. Improved Neck and Head

a) Intergrating BiFPN into neck layer: As mentioned

earlier, YOLOv8 integrates FPN and PAN [16] to construct a

feature pyramid, thus fully integrating multi-scale information.

However, FPN and PAN alone cannot efficiently integrate

features of different scales. PAN may miss certain small-sized

target information when processing features from FPN, which

would lead to inadequate small-sized target detection. BiFPN

is an improvement based on PAN, which reconstructs the

pathways and inserts two additional lateral connection paths,

achieving more effective fusion and promoting the propagation

of features’ context. Its adaptive feature adjustment mechanism

adjusts features between different levels according to task

differences, thereby improving the effectiveness of feature

fusion. Considering the significant differences in the sizes of

various tire cord fabric defects, the introduction of BiFPN

enables the model to fully understand defects of different

sizes, improve the contextual understanding of defects, and

avoid false positives or false negatives. Moreover, its simpler

parameters and computational load make it suitable for the

scenarios requiring rapid response and immediate processing.

Details about the design of BiFPN are illustrated in Fig. 3

Fig. 3. Different feature network design: FPN, PAN and BiFPN

b) Intergrating Dyhead into head layer: Although the

Decoupled-Head structure adopted by YOLOv8 improves de-

tection accuracy, in complex detection scenarios of air-jet

loom tire cord fabric, challenges such as fabric scale changes

and possible overlapping adjacent threads exist. At this point,

YOLOv8’s detection head cannot fully perceive the multiscale,

spatial, and task information.

To better adapt the model to the diversity of feature scale

caused by different target sizes and learn the unique positional

relationship features possibly implied by different shapes and
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spatial positions of different targets, this paper introduces the

Dynamic Head framework (Dyhead) into YOLOv8. Given the

feature tensor F ∈ RL×S×C , Dyhead transforms three types

of attention into sequential arrangements, each attention focus-

ing on one model, thus forming a nested attention function,

described by (1):

W (F) = πc (πs (πL(F) · F) · F) · F (1)

where W is the attention function, πL(·), πS(·), and πC(·)
represent the scale-aware attention module, spatial-aware at-

tention module, and task-aware attention module, respectively.

Fig. 4 depicts the structure of Dyhead.

Fig. 4. Overview of Dynamic Head framework.

Dyhead integrates various attention mechanisms into the

head,enhancing the detection head’s perception capabilities in

terms of scale,spatial location,and multitasking. This enables

the detection of small-scale targets to be more flexible and

precise. Enhancing the model’s scale perception ability can

better cope with the large differences in defect sizes caused

by the ambiguity of defect regions and category differences.

Spatial awareness refers to the deformation and rotation of ob-

jects under different viewpoints, with changes in their contours

and positions. Strengthening spatial awareness can enhance

the detector’s generalization ability. Enhancing the model’s

ability to perceive tasks allows it to adjust to the various

representations of different defects. To sum up, by introducing

Dyhead, the model’s adaptability to tire cord fabric defect

detection tasks is enhanced, leading to improved accuracy.

D. Improved Loss Function

The regression loss function has a major effect on how

well object detectors localize. IoU(Intersection over Union)

measures bounding box accuracy against ground truth. In the

regression loss of YOLOv8, CIoU is used instead, as illustrated

in Fig. 5, where l = ρ2(b, bgt) represents the Euclidean

distance between the centers of the two boxes, and c represents

the diagonal distance of their minimum enclosing rectangle.

CIoU Loss = 1− CIoU = 1−
(
IoU − ρ2

(
b, bgt

)
c2

− αv

)
(2)

υ =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(3)

Fig. 5. Schematic diagram of CIoU

α =
υ

(1− IoU) + υ
(4)

The calculation formulas are shown in Equations (2), (3), and (4).
Here, wgt and hgt are the width and height of the ground truth box,
while w and h are the width and height of the predicted box. v is
a penalty term representing the disparity between two boxes, with a
larger discrepancy leading to a larger v. α is the weight of v.

However, CIoU does not fully consider the influence of sample
quality and may not sufficiently characterize the shape and size of
defective target boxes. Therefore, introducing a loss function designed
reasonably for task requirements can greatly improve the model’s
performance.

a) Wise-IoU: Complex detection needs may reduce localiza-
tion effectiveness if loss functions are merely improved for high-
quality sample fitting. In this regard, Wise-IoU introduces a dynamic
non-monotonic focusing mechanism (FM). By more reasonably allo-
cating small gradient gains, Wise-IoU enables bounding box regres-
sion by emphasizing anchor boxes of average quality, consequently
minimizing the influence of low-quality samples on bounding box
regression. Wise-IoU comprises three versions. The version we are
utilizing here is Wise-IoU v3. Equations (5) and (6) provide the
formula for WIoU:

LWIoUv3 = rRWIoULIoU (5)

RWIoU = exp
(x− xgt)

2 + (y − ygt)
2

(W 2
g +H2

g )∗
(6)

The variables within RWIoU are defined as follows: x and y
represent the expected center coordinates of the predicted box, while
xgt and ygt denote the coordinates of the real box’s center. Wg and
Hg represent the dimensions of the GT box, respectively. The r-values
applied to RWIoU represent non-monotonic focusing coefficients.

b) Inner-IoU: Inner-IoU considers the specificity of the tar-
get and flexibly uses supplementary bounding boxes with varying
scales for various samples, thereby improving regression convergence
efficiency. By using small auxiliary bounding boxes for samples
with high IoU and larger auxiliary bounding boxes for samples with
low IoU, the model’s generalization ability for complex samples is
enhanced. This approach is adopted to expedite network convergence.
The formula can be found in Equations (7) to (13).

bgtl = xgt
c − wgt ∗ ratio

2
, bgtr = xgt

c +
wgt ∗ ratio

2
(7)

bgtt = ygt
c − hgt ∗ ratio

2
, bgtb = ygt

c +
hgt ∗ ratio

2
(8)

bl = xc − w ∗ ratio
2

, br = xc +
w ∗ ratio

2
(9)

bt = yc − h ∗ ratio
2

, bb = yc +
h ∗ ratio

2
(10)

inter = (min(bgtr , br)−max(bgtl , bl))∗(min(bgtb , bb)−max(bgtt , bt)
(11)
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union = (wgt ∗ hgt) ∗ (ratio)2 + (w ∗ h) ∗ (ratio)2 − inter (12)

IoU inner =
inter

union
(13)

Where the GT box and predicted box are denoted as bgt and b
respectively. (xgt

c , ygt
c ) represents the center point of the GT box,

while (xc, yc) denotes the center point of the anchor. The widths
and heights of the GT box and anchor are represented by wgt, hgt,
w, and h respectively. The variable ratio corresponds to the scaling
factor, typically within the range of values [0.5, 1.5].

c) Shape-IoU: Although CIoU considers the shape similarity
between ground truth and anchor boxes by adding a shape loss term
on top of IoU, it still fails to fully characterize the effects of bounding
box form and scale for different objects. Consequently, Shape-IoU
calculates the loss by focusing on these impacts, aiming to improve
localization accuracy. The formula for shape-iou is shown in Equation
(14) to (20).

ww =
2× (wgt)scale

(wgt)scale + (hgt)scale
(14)

hh =
2× (hgt)scale

(wgt)scale + (hgt)scale
(15)

ww =
2× (wgt)scale

(wgt)scale + (hgt)scale
(16)

distanceshape = hh×(xc−xgt
c )2/c2+ww×(yc−ygt

c )2/c2 (17)

Ωshape =
∑

t=w,h

(1− e−ωt)θ, θ = 4 (18)

ωw = hh×
∣∣w − wgt

∣∣
max(w,wgt)

(19)

ωh = ww ×
∣∣h− hgt

∣∣
max(h, hgt)

(20)

Here, the term ”scale” denotes the scale factor, which correlates
with the defects’ scale in the dataset. Additionally, ”ww” and ”hh”
represent the weight coefficients in the both directions, respectively,
with values determined by the shape of the ground truth box. The
following is the corresponding loss formula for it:

LShape−IoU = 1− IoU + distanceshape + 0.5× Ωshape
(21)

d) Wise-Inner-Shape-IoU: We proposes a new loss function
called Wise-Inner-Shape IoU, which combines three methods: Wise-
IoU, Shape-IoU, and Inner IoU. Firstly, the use of Wise-IoU reduces
the influence of low-quality samples on bounding box regression. This
is crucial for handling common defects in cord fabrics. Secondly,
Shape-IoU considers the influence of the shape and scale of the
target box on localization accuracy. In cord fabric defect detection,
considering shape similarity is crucial for accurate positioning due
to the large differences in defect shapes and sizes. Finally, Inner-
IoU introduces the concept of auxiliary bounding boxes, allowing the
model to flexibly select appropriate scales to handle targets. This is
highly effective for dealing with situations where there are significant
scale differences in cord fabric defects because different defects may
have different scales, requiring flexible adjustment.

By considering these three methods comprehensively, the Wise-
Inner-Shape IoU loss function can better handle the diversity of scale,
shape, and features in cord fabric defect detection tasks, thereby
achieving more precise localization. Our suggested loss function is
as described below:

L = r×RWIoU × (1− IoU inner +distanceshape +0.5×Ωshape)
(22)

In the equation, r, RWIoU , IoU inner , distanceshape,
omegashape have been previously introduced in the preceding text
and are not reiterated here.

III. EXPERIMENT

A. Dataset and Experimental Setup

a) Dataset: As an essential part of factory production, the
quality of dataset directly affects the final quality of the textiles.
However, up to now, there has been no dataset specifically for air-jet
loom tire cord fabric. In this study, we have constructed a self-built
dataset focused on tire cord fabric.

The construction of the dataset was complex and challenging.
Firstly, the scarcity of defective samples necessitates manual selection
of a large proportion of unknown samples to gather sufficient defect
images covering all categories. Secondly, professionals in the relevant
domains were invited to annotate the photos in-depth in order to
guarantee the correctness of the annotations and the quality of the
dataset. As mentioned earlier, the constructed dataset includes seven
categories. There are 722 high-quality photos total in the dataset,
each with a resolution of 2048 × 1024 pixels. The dataset was split
into training,validation,and test sets in an 8:1:1 ratio to evaluate the
model’s performance and improve training efficiency.

b) Experimental Setup: The experimental platform is
equipped with a 12th generation Intel(R) Core(TM) i5-12400F CPU
and an NVIDIX GTX 3060 12GB GPU. The software environment is
Ubuntu 20.04, 64-bit, with Python 3.10 and the Pytorch 2.0.1 frame-
work, using Cuda 11.8. The training parameters are as follows(Table
I):

TABLE I
TRAINING PARAMETERS

Training Parameters Values
Initial Learning Rate 0.01
Optimizer SGD
Optimizer Momentum 0.937
Optimizer Weight Decay Rate 0.0005
Number of Images per Batch 16
Number of Epochs 300

c) Evaluation Metrics: The following metrics are mainly
used in this experiment to assess the performance of the improved
YOLOv8 on the air-jet loom tire cord fabric dataset:

Precision: The proportion of accurately identified samples to all
samples that were detected. Precision = TP

TP+FP

Recall: The proportion of samples in the test set that were suc-
cessfully identified to all samples in the test set. Recall = TP

TP+FN

Accuracy: The proportion of correctly identified samples among
all samples. Accuracy = TP+TN

TP+TN+FP+FN

The Precision-Recall (P-R) curve is the graph created by using
precision as the y-axis and recall as the x-axis. The Average Precision
(AP), a performance evaluation indicator for a model’s performance
on the PASCAL VOC dataset, is the area under the curve. The average
precision for each category over the whole dataset is represented by
the mean, or mAP, which is computed in Equation (23):

mAP =
1

N

N∑
i=1

APi (23)
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B. Experimental Result
This paper’s experiments are all based on the YOLOv8n model.

To confirm the efficacy of the approach suggested in this paper, we
carry out several ablation studies. The effects of the modifications
we made to different model components are displayed in Table II.

TABLE II
ABLATION STUDY

Base model BiFPN Dyhead Wise-Inner-Shape-IoU Precision Recall mAP50
YOLOv8n × × × 0.443 0.619 0.602
YOLOv8n × × × 0.408 0.642 0.615
YOLOv8n × � × 0.549 0.624 0.617
YOLOv8n � � × 0.548 0.646 0.631
YOLOv8n � × � 0.446 0.653 0.627
YOLOv8n × � � 0.635 0.467 0.628
YOLOv8n � � � 0.555 0.605 0.642

From the results, it is evident that the introduction of BiFPN
improves feature fusion effectiveness and accuracy by optimizing
cross-scale connections, allowing for more precise detection and
localization of various industrial defects. This led to a 1.3% gain in
mAP50 over the baseline. Integrating Dyhead enhanced the model’s
information utilization across feature levels and spatial positions,
improving its adaptability for tire cord fabric defect detection. The
introduction of Dyhead led to improvements in Precision, Recall,
and mAP50, with mAP increasing by 1.5%. When both BiFPN
and Dyhead were introduced simultaneously, the model’s mAP50
showed a comparable increase of 2.9%. Additionally, we carried
out comparative experiments using various combinations of modules
along with the upgraded loss function. The results demonstrated that
when BiFPN, Dyhead, and our Wise-Inner-Shape-IoU loss function
were introduced, the best performance was attained by the model.
Eventually, our model enhances the mAP50 by 4.0% compared
to the baseline. This result demonstrates the effectiveness of our
proposed enhancements, achieving accurate detection for tire cord
fabric defects.

TABLE III
PERFORMANCE OF DIFFERENT LOSS FUNCTIONS

Model IoU Precision Recall mAP50
YOLOv8+BiFPN+Dyhead CIoU 0.548 0.646 0.631

WIoU 0.476 0.588 0.632
InnerIoU 0.516 0.515 0.594

Wise-Inner-MDPIoU 0.353 0.684 0.544
Wise-ShapeIoU 0.446 0.653 0.627

Wise-Shape-FocalIoU 0.393 0.708 0.589
Wise-Inner-ShapeIoU 0.555 0.605 0.642

To demonstrate the effectiveness of the combined Wise IoU,
Inner IoU, and Shape IoU loss function, we utilized the improved
YOLOv8 model integrated with BiFPN and Dyhead as the baseline,
and compared the results using different loss functions, as shown in
the Table III. The combinations with MDPIoU [17] and FocalerIoU
[18] are also tested here. From the experimental results, it is evident
that when employing the Wise-Inner-Shape IoU loss function, the
model can enhance its representation and generalization capabilities
for defects of various sizes, ultimately yielding the most significant
improvement in mAP50.

IV. CONCLUSIONS

In conclusion, this paper has successfully addressed the critical
challenge of defect detection in air-jet loom tire cord fabric by
proposing an enhanced YOLOv8 model. The integration of the
BiFPN has significantly improved the model’s capability to fuse
features from different scales, enabling it to effectively identify and
localize defects against complex backgrounds. The introduction of the
Dynamic Head mechanism has further refined the model’s perception
of scale, spatial relationships, and task-specific features, leading to a
more accurate and robust detection of various defect types.

The novel Wise-Inner-Shape IoU loss function has played a crucial
role, leading to a significant improvement in localization precision.
Through extensive experiments conducted on a meticulously curated
dataset of air-jet loom tire cord fabric, we have validated the supe-
rior performance of the improved model. Achieving a comparable
increase of 4.0% in relation to the YOLOv8 baseline model, our
method demonstrates substantial improvements in defect detection
performance.
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