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Abstract—Consider Lagrange systems with uncertain 

dynamics and unknown disturbances under input saturations in 
this paper. A disturbance observer is constructed to provide the 
estimate of the total disturbance lumped by uncertain dynamics 
and unknown disturbances of Lagrange systems. A new specified 
performance function with saturation characteristics (SPFSC) is 
developed to handle input saturations. Further, incorporating the 
developed SPFSC into a barrier function, based on the 
disturbance observer and the barrier function, a proportional- 
derivative controller with specified performance is proposed for 
position stabilization of Lagrange systems such that the position 
stabilization error settles within a specified tolerance error band 
in a specified settling time. Therein, the problem that the 
bandwidth of the controller approaches infinity when the time 
approaches the specified settling time is solved due to the SPFSC-
incorporated barrier function being injected into the position 
stabilization controller as its bandwidth and properly choosing 
the parameters of the SPFSC. Simulation results on a three-
degrees-of-freedom parallel robot show the effectiveness of the 
developed controller. 

Keywords—nonlinear systems, uncertain dynamics, unknown 
disturbances, input saturations, position stabilization control, 
specified performance 

I. INTRODUCTION 
The settling time and the steady-state error for the position 

stabilization control of nonlinear systems are important control 
performance index. For the settling time, finite-time control 
method can guarantee that the position stabilization error of 
Lagrange system converges in a finite time which depends on 
the initial conditions of Lagrange system and the design 
parameters of the controllers [1-2]. Further, to solve the above 
problem, the fixed-time control method is proposed where the 
finite time is independent of the initial conditions of Lagrange 
system, but the design parameters of the controllers [3-4]. 
However the finite-time and the fixed-time control methods 
cannot preset the settling time of nonlinear systems. 
Fortunately, the specified-time control method is recently 
developed, which can set the settling time of Lagrange system 
in advance, while being independent of initial conditions of 
Lagrange system and the design parameters of the controller 
[5-8]. 

For the trajectory tracking control of multiagent systems, 
based on a time scaling function whose value approaches 
infinity when the time reaches a specified time, [5] developed a 
proportional controller whose gain is the time scaling function 
such that the trajectory tracking error converges to zero in the 
specified time where, however, the high gain of controller may 
make the system unstable. For the trajectory tracking control of 
a class of dynamical systems, [6-7] designed a sliding mode 
controller whose sliding surface is an exponential function of 
system states such that the specified-time trajectory tracking is 
achieved, which can be only sued for the sliding mode 
controller design. For a trajectory tracking control of a class of 
non-strict feedback nonlinear systems, based on a fractional 
power function of time, [8] used a specified performance 
control method and backstepping technique to design a finite-
time adaptive tracking controller to achieve the predefined-
time trajectory tracking. However, the predefined time relies 
on the parameters of the fractional power function. 

On the other hand, for the trajectory tracking control of 
Lagrange system with unknown nonlinearities, Bechlioulis et 
al. [9] proposed a specified performance control method to 
design a robust adaptive controller using neural network, which 
firstly guarantees the trajectory tracking error converges to a 
specified tolerance error band in a finite time. In practice, input 
saturations can degrade the position stabilization control 
performance of Lagrange system and its stability. For the 
trajectory tracking control problem for a 6-degrees-of-freedom 
spacecraft rendezvous and docking operations under input 
saturations, [10] developed an adaptive anti-saturation 
appointed-time specified performance function (APPF) to 
design coordinated controller, which achieved the appointed-
time specified performance trajectory tracking. For trajectory 
tracking control problem for an unmanned underwater vehicle, 
[11] designed a new APPF and use backstepping technique to 
design a H∞  robust control strategy, which achieved the fixed-
time prescribed performance trajectory tracking. 

Inspired by the above discussions, this paper proposes a 
specified-performance position stabilization controller for 
Lagrange system with uncertain dynamics and unknown 
disturbances under input saturations. A disturbance observer is 
constructed to handle the total disturbance lumped by uncertain 
dynamics and unknown disturbances of Lagrange systems. A 
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specified performance function with saturation characteristics 
(SPFSC) is developed to handle input saturations. A barrier 
function is introduced. Based on the disturbance observer and 
the barrier function on this SPFSC, A position stabilization 
controller with specified performance for Lagrange system is 
proposed, which can guarantee that the position stabilization 
error of Lagrange system settles within the specified tolerance 
error band in a specified settling time. Compared with [7], the 
bandwidth of the controller is bounded due to the introduced 
barrier function being injected into the position stabilization 
controller as its bandwidth and properly choosing the 
parameters of the SPFSC, according to the control performance 
requirements and the actuating capabilities of Lagrange system. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. Problem Formulation 
Consider a three degrees-of-freedom Lagrange system 

 ( ) ( , ) ( ) w+ + =q q q q +q qM C G τ τ    (1) 

where [ ]T1 2 3, ,q q q=q is a state vector; [ ]T1 2 3, ,τ τ τ=τ  is the 

control input vector; [ ]T1 2 3, ,w w w wτ τ τ=τ  is the disturbance 

vector; 3 3( ) R ×∈qM , 3 3( , ) R ×∈qC q   and 3( ) R∈G q  are the 
parameter matrix or vector. 

Introducing the state vectors 1 =q q  and 2 =q q , and the 
output vector 1=y q , we can rewrite (1) as follows 

 1 2
1

2 1( )−

=
 = + d M qq

q q
τ





 (2) 

where [ ] [ ]1
0 1 1 1

T
1 2 3 2 2, , ( (( ) , ) )+ wd d d −= = − −d q q q qM C G τq  

denotes the total disturbances lumped by uncertain dynamics 
of the gangway and disturbance force and moments vector wτ . 

Assumption 1: ( , )C q q  and ( )G q  are uncertain. wiτ , 
1, 2,3i =  and its first derivative are bounded.  

The control objective of this paper is to propose a 
position stabilization control law with specified performance 
of Lagrange system with uncertain dynamics and unknown 
disturbances under Assumption 1 such that the position 
stabilization error can settle within a specified tolerance error 
band in a specified settling time. 

B. Prelimilaries 

Lemma 1 [12]: Suppose 

0 1 0 0
0 0 1 0

0 0 0 1
0 0 0 0 n n×

 
 
 
 =
 
 
  

A





    





, 

[ ] 11,0, 0 nR ×= ∈C   and diag( ,...2,1)n=H  being a diagonal 
matrix. For any constant 1α , there exist a vector nR∈L  and a 
positive definite matrix n nR ×∈P  such that 

 
T

1

2 3

( ) ( ) n n

n n n n

α
α α

×

× ×

 − − ≤ +


≤ + ≤

+



−A LC P P A LC A A
I P P

I
H H I

 (3) 

where −A LC  is Hurwitz; 2α  and 3α  are positive constants. 

Specified performance function: A specified 
performance function is developed as follows 

 
1

0( )( )
( )

r
d r

d
d

d

t
a a a t t

k
a

t
tt

t t

−
∞ ∞

∞

 −
− + <= 

 ≥

 (4) 

 
2

2
1 2

( )
1

cF F
r

F
ϑ

ϑ
−

= −
+

 (5) 

 
max max

min max

min min

,   
,      

,   
c

F F F
F F F F F

F F F

>
= ≤ ≤
 <

 (6) 

where 0a , 1ϑ , 2ϑ  and a∞  are positive constants; dt  is the 
specified time for error signals to settle within a specified 
tolerance error band ( , )a a∞ ∞− ; F  is the control force or 
moment, and maxF  and minF  are the maximum and the 
minimum control forces or moments, respectively. 

III. CREATION OF POSITION STABILIZATION CONTROL LAW 
WITH SPECIFIED PERFORMANCE 

A. Constrcution of disturbance observer  
we construct the following disturbance observer [13] 

 2

2

ˆ

( )
 = +


= − − +

d q KMq
q Kq K τ KMq

 (7) 

where 3ˆ R∈d  is the estimate of d , 3R∈q  is the auxiliary 
state vector of the disturbance observer, and 3R∈K  is a 
positive definite design matrix. 

Define the disturbance estimation error vector 3R∈d  
and the stability of the disturbance observer will be discussed 
later 
 ˆ= −d d d  (8) 

B. Position stabilization control law design 
Defining the position stabilization error 1 1i di iq qε −= , 
1, 2,3i =  and the velocity error 22 ii diq qε = −  and letting 

[ ]T1 2,i i iε ε=ε , we introduce a barrier function as follows 

 
2

1 2 2
1

( ) i
i i

i i

k
k

ρ ε
ε−

=  (9) 

where ik  is the specified performance function (4). 

Based on the disturbance observer and the introduced 
barrier function, we propose a position stabilization controller 
with specified performance for Lagrange systems as follows 
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 [ ]1 2 21 1
ˆ( ) ( ) ( )d d d= − + − + −F M β β dq q q q q q   (10) 

where 1β  and 2β  are the controller gain matrices. 

Substituting (10) into (2), we obtain the following position 
stabilization error dynamic equation 

i i i i i i i′ ′= −φ B Lε ε ε + Ξ  

i i i′= φ + Ξε                                          (11) 

where i i i i′ ′ ′= −φ φ B L , 
0 1
0 0i
 ′ =  
 

A , [ ]T0,1i =B , [ ]1 2,i β β′ =L  

and ( )T

i i=Ξ Φ d  with 
0 0 0
2 1 1i

 
 − − − 

Φ = . 

Using the pole placement method, we place all the 
characteristic roots of i′φ  in (11) at the desired positions i iω−∆  
with 1( )i i iρω ε=  being the bandwidth of the controller and i∆  
being a positive design constant, and then i′φ is Hurwitz. Let 

 2
2 2det( ) ( )i i is s ω× ′− = ∆+I φ  (12) 

According to (12), we have [ ]1 2,i ii β β′ =L  with 22
1i i iγβ ω=  

and 2 2 i iiβ γ ω= . 

Let 2
i i i R= ∈εE Ψ  with 2diag( , )i i iiω ω∆=Ψ . Taking the 

time derivative of iE , we get 

 i i i i i= +εΨ εE Ψ



  (13) 

where i i i iω=Ψ D H

  with diag( ,1)i i iω∆=D  and 
diag(2,1)i =H . 

Substituting (13) and i i i=E Ψ ε  into (11), we get 

1 1( )i i i i i i i i i ii i
− −′ ′= + −E ΨΨ E Ψ φ B L Ψ E +Ψ Ξ  

1 1 1
i i i i i ii i i i ii ii i iω − − −′ ′= + −D H Ψ E Ψ φΨ E Ψ B LΨ E +Ψ Ξ  

i
i i i i i i i i i i i i ii

i

ω
ω ω

ω
= ∆ ′ − ∆+H E φ E B L E +Ψ Ξ


 

i i i i i i i i iiω χ ω′= + ∆H E φ E +Ψ Ξ                                         (14) 

where 2
i

i
i

ω
χ

ω
′ =



, [ ]1,2i =L , and 
0 1
1 2ii i i

 ′= − =  − − 
φ φ B L . 

we know that iφ  is Hurwitz. Then 1
3

2
1 12 2i i i i i

i
i

k k
k

ε ε
χ

ε− +′ =




 due 

to 1( )ii iρω ε= . 

According to Lemma 1 and iφ  being Hurwitz, there is a 

positive definite matrix 11 12

21 22

i i
i

i i

p p
p p

 
=  
 

P  satisfying the 

following equation 

 
3

2 2

2 2 2 2

T T
1

2

i i i

i i i

i

i

i i i

i i

α
α α

×

× ×

 ≤ +


≤ + ≤

−



′ ′+φ I
I

P Pφ φ φ
I P H H P

 (15) 

where 1iα  can be any constant and 2iα  and 3iα  are positive 
constants. 

Select the Lyapunov function candidate for (8) and (14) as 

 T T1
2i i i iV = +E P E d d   (16) 

Taking the time derivative of (16), from (7), (14) and (15), 
we have 

T T T  i i i i i i iV = + +E P E E P E d d



  

T( )i i i i i i i i i i iiω χ ω′= + ∆H E φ E +Ψ Ξ P E  

T T( )i i i i i i i ii i i iω χ ω′+ +∆+E P H E φ E +Ψ Ξ d d   

T T( )i i i i i i i i i i i iω χ′= + +E P H H P E E PΨ Ξ  

T T T T( )i i i i i i i i ii iiω+ + +∆ +E φ P Pφ E Ξ Ψ P E d d   

2T
1( ) ( 2 )i i i i i i i i i i i iiω χ ω α ′≤ + ∆− −E P H H P E φ E  

T T T T
i i i i i i i i+ + +Ξ Ψ P E E PΨ Ξ d d   

2
1 2( 2 )i i i i i ii iω α ω χ α′≤ − ∆ − −  φ E  

T T T T
i i i i i i i i+ + +Ξ Ψ P E E PΨ Ξ d d   

T
1 2

2
( 2 )i i i i i iiα χ α ω′≤ − ∆ − −  + φ d d d    

21 222(2 )i i i i ip pω+ + d εd Φ   

2 T
1 2( 2 ) 6i ii i i i i i i i ipα χ α ω ω′≤ − ∆ − −  ++ φ E d d dε 

    

where 
[0 ),
supi i

t
χ χ

∈ +∞
′=  and { }21 22max ,i i ip p p= . 

According to Young's inequality and Assumption 1, we 
have 

1
2

2( 2 )i i iii i i i iV α χ α ω′≤ − ∆ − −  φ E  

2 2 2 T ( )3 3ii ipω ω+ −+ + −d d d Kd d      

222
min

2 T1 13 ( )
2 2i i i i ipω λω≤ + + − −

∇ 
− E d K d d d     

i i iV Cµ≤ − +                                                                    (17) 

where { }m
2

in ( ) 1min ,2 6i i i ii i pµ φ λω ω= − −P K  with 

1 3( 2 ) 3i ii i iiα χ α′∇ = ∆ − − −φ  and 21
2iC = d . 
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By properly choosing 1 2 1i iiα ′> +φ  and 33 ii iψ α∆ ≥ + , 
we have 0iµ > . Therefore, integrating the two sides of (17) 
yields 

( )0
( )0 exp

t t

i i i isV ds C d
τ

τµϖ≤ ≤ + ∫ ∫  

( )2

0 0 0

2 ( ) ( )3 exp
t t

i ii i i i ii dsp ds ds s
τ

ϖ ζ τω ω ω≤ ∇+ +− ∇∫ ∫ ∫  

( )2

0

23 ex (p )
t

i ii i dsp sµϖ ζ≤ + −∫  

( ) ( )0 0 0
e ( ) ( )xp

t

i i is sds d ds
τ τ
ω ω∇∫ ∫ ∫  

( )
2 2

0
ex

3
(p )

t

i i
i

i i ds
p

sµ
ζ

ϖ
φ

≤ + −∫ ( )0
exp 1( )

t

i i dssω −∇ 
  ∫  

( )
2

0

2

1 exp
3

( )i
i t

i
i

i ds
p

sϖ µ
ζ  ≤ + − − ∇  ∫  

2 23

i

i
i

ip ζ
ϖ +

∇
≤                                                                          (18) 

where ( )0
)( )exp (0

t

i i id Vϖ τµ τ= −∫ . 

Furthermore, from i i i=E Ψ ε  and (18), we know 

22 1
ii i
−= Ψ Eε  

2 21
ii

−≤ Ψ E  

21 2 2

min

3
( )

i i i
i

i i

p
λ

ζ
ϖ

−

≤ +
 
 ∇ 

Ψ

P
                                               (19) 

If 

 
21 2 2

min

23
( )

i
i

i
i

i

i

i

p
k

λ
ζ

ϖ
−

 +
 

∇
<



Ψ

P
 (20) 

then 1i ikε <  and further 1 ,   i i dia t tε ∞ ∀< ≥  from (4). Further, 
according to 1( )i i iρω ε= , there is 1i iω σ≥ , whereby we get 
from (19) 

 2

2 2

min

(0) 3
( )

i ii i
i

i i

V p
a
ζ

λ ∞

∇
∆ >

+
P

 (21) 

Therefore, if the parameters i∆  satisfying (21), the position 
stabilization error 1iε  settles within ( , )i ik k− , and then enters 
and no longer exceeds the specified tolerance error band 
( , )i ia a∞ ∞−  in the specified settling time dit . 

The previous facts prove the following theorem. 

Theorem 1: Consider a closed-loop system consisting of a 
three degrees-of-freedom Lagrange system (1) with uncertain 
dynamics and unknown disturbances under input saturations 
and Assumption 1, and the position stabilization controller (10). 
By appropriately selecting the design constants i∆  satisfying 

33 ii iψ α∆ ≥ +  and 2

2 2

min

(0) 3
( )

i ii i
i

i i

V p
a
ζ

λ ∞

∇
∆ >

+
P

, the position 

stabilization error 1iε  settles within ( , )i ik k− , and then enters 
and no longer exceeds the specified tolerance error band 
( , )i ia a∞ ∞−  in the specified settling time dit . 

IV. SIMULATIONS 
In this section, to illustrate the proposed position 

stabilization control law, we consider the stabilization of a 
three degrees-of-freedom parallel robot [14] whose 
mathematical model parameters are given in [14] in details. 

A. Simulations under our proposed position stabilization 
control 
The parameters of the SPFSC are chosen as follows: 

0 1.2ia = , 0.01ia∞ = , 1 0.6iϑ = , 2 0.5iϑ = , max1 3500NF = , 

min1 3500NF = − , max 2 30N mF = ⋅ , min 2 30N mF = − ⋅ , 

max 3 30N mF = ⋅ , min 3 30N mF = ⋅  and 2 sdit = . The 
parameters of the disturbance observer are chosen as follows: 

diag(10,10,10)=K . The parameters of controller are chosen 
as follows: 15i∆ = . The initial state of position and 
orientation vector of Lagrange system q  is set as 

[ ]T(0) 0.1 m,  0.1 rad,  0.1 rad= − −q , the desired state of 
position and orientation vector of Lagrange system q  is 

[ ]T0 m,  0 rad,  0 radd =q and the unknown disturbance is set 

as [ ]100sin( ) N,  30sin( ) N m,  30sin( )  N mw t t t= ⋅ ⋅τ . 

 
(a) 
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(b) 

 
(c) 

Fig. 1 The simulation results. (a) Position stabilization errors 
under F . (b) Control inputs. (c) The total disturbance 

estimation errors. 

The simulation results are depicted in Fig. 1(a)-(c) using 
solid lines. It can be seen from Fig. 1(a) that the position 
stabilization error settles within a specified tolerance error band 
( 0.01,0.01)−  in a specified settling time 2 sdit = , as proved in 
Theorem 1, which means the position stabilization control of 
Lagrange system satisfies the specified performance. Fig. 1(b) 
shows that the control inputs are reasonable. Fig. 1(c) shows 
that the disturbance observer can precisely estimate the total 
disturbance. 

V. CONCLUSIONS 
In this paper, a disturbance observer has been constructed 

to provide the total disturbance lumped by uncertain dynamics 
and unknown disturbances of Lagrange systems. a new SPFSC 
has been developed to handle input saturations and a barrier 
function on this SPFSC has been developed, based on which 
the position stabilization controller with specified performance 
for Lagrange system with uncertain dynamics and unknown 
disturbances under input saturations has been proposed. The 
problem that the bandwidth of the controller approaches 
infinity when the time approaches the specified settling time 
has been solved, and the bandwidth of the proposed controller 

can be guaranteed to be bounded due to the SPFSC-
incorporated barrier function being injected into the position 
stabilization controller as its bandwidth and properly choosing 
the parameters of the SPFSC. The proposed controller can 
achieve that the position stabilization error settles within a 
specified tolerance error in a specified settling time. 
Theoretical analyses and simulation results have proved the 
effectiveness of our proposed position stabilization controller. 
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