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Abstract—The application of exoskeleton robots in industrial 

assembly and other fields plays a significant role in alleviating 
low back pain caused by work-related musculoskeletal disorders 
and improving work efficiency. Currently, the ankle joints of 
lower limb exoskeleton robots used in this field are all treated as 
passive joints. Ankle is important for weight-bearing joints of 
human lower limbs in the stability and flexibility of daily 
activities. To this end, the authors of this paper have designed a 
cable-driven ankle exoskeleton structure to achieve active 
dorsiflexion and plantarflexion movements in the sagittal plane. 
To compensate the modeling error and estimate the perturbation, 
neural network (NN) and nonlinear disturbance observer (NDO) 
are used.  A time-varying barrier Lyapunov function is used to 
design an adaptive backtracking controller to constrain the 
system output error and ensure the tracking performance and 
safety of the robot. A healthy subject participates in the 
experiment wearing the cable-driven ankle exoskeleton. the 
experimental is conducted to validate performance of the 
proposed controller. 

Keywords—exoskeleton robot, ankle joint, adaptive control, 
cable-driven 

I. INTRODUCTION 

Work-related musculoskeletal disorders (WMSDs) is 
closely related to excessive physical load and specific work 
postures, which are particularly common in the manufacturing 
sector. These disorders not only affect the physical and mental 
health of operators but also result in significant economic 
losses [1]. Exoskeleton robots, as a type of human-robot 
interaction device, have been applied in various scenarios such 
as patient rehabilitation and assembly work. In assembly 
settings, the purpose of exoskeleton robots is to alleviate the 
muscle fatigue of assembly workers, thereby ensuring worker 
health and improving work efficiency. Scholars have 
conducted relevant studies and developed a series of prototype 
exoskeleton robots. 

Among the exoskeletons mentioned above, which are used 
in the field of work assembly, a notable feature is that the hip 
and knee are actuated as active joints, while usually treating the 
ankle joint as a passive joint. However, ankle is important for 
weight-bearing joints of human lower limbs  in the stability 
and flexibility of daily activities.  [2, 3]. The ankle joint of the 
patient is prone to varus, foot drop and other spasms, which 

seriously affect the patient's standing and walking; The ankle 
trochlear joint is prone to varus sprain in plantar flexion, and 
the patient's lack of strength increases the risk of sprain. The 
ankle joint provides 60% of the force for the gait during the lift, 
so training the joint for flexion is necessary. Therefore, the 
design of  active ankle joint exoskeletons with driven 
mechanisms is of great significance for enhancing the 
application effects of exoskeletons used in the field of 
industrial assembly [4]. 

To this end, the authors of this paper have designed a cable-
driven ankle exoskeleton structure to achieve active 
dorsiflexion and plantarflexion movements in the sagittal plane, 
as shown in Fig. 1. For such an exoskeleton robot, its motion 
control becomes another important issue. 

 
Fig. 1. 3D model of the cable-driven ankle exoskeleton robot for walking 
assistance. 

The control of the ankle exoskeleton robot for walking 
assistance is important for human-robot coordination [5]. 
Proportional-integral-derivative (PID) controller [6] do not 
require complete dynamics of the exoskeleton robot, but it only 
operates suitably in regulation problems with limited 
performance. Another approach is using the controllers based 
on dynamic models. However, the model of exoskeleton robot 
is nonlinear, and the model parameters uncertainty influence 
the control performance. Furthermore, friction is also needed to 
be compensated [7]. In order to achieve friction compensation, 
a lot of dynamic friction models are built [8, 9] but these 
models need a calibration process [10], especially for complex 
mechanical structures, accurate friction models are difficult to 
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obtain. To overcome this problem, adaptive controller based on 
neural network (NN) has more obvious advantages [11]. Asl et 
al. compensated the unknown dynamics for a lower limb 
exoskeleton [12]. Therefore, NN is an effective way of 
dynamically compensation for the control of the  proposed 
exoskeleton robot. 

In addition to the fact that exoskeleton robots differ from 
ordinary industrial robots, it is necessary to consider the control 
issues caused by the human being within the control loop. [13]. 
The human body can be regarded as an unknown perturbation 
to the robot, which will affect the movement deviation of the 
robot.  Using nonlinear disturbance observer (NDO) is a 
method to estimate above unknown perturbation [14]. At the 
same time, there is a relatively important human-robot safety 
problem, so the system output of the robot is constrained. 
Barrier Lypanunov function (BLF) is an effective way to deal 
with dynamic processes [15]. In terms of exoskeleton 
applications, tan-type BLF [16, 17] has been used. However, 
these algorithms are mainly used for upper limbs, not for lower 
limbs. 

Therefore, in this paper for the proposed cable-driven ankle 
exoskeleton, a BLF-based adaptive controller is designed. The 
main contribution of the paper are as follows. An adaptive 
controller with time-varying tan-type BLF is proposed for 
cable-driven ankle exoskeleton robot. The overall framework 
of the control system is proposed and stability analysis is 
conducted. The experimental is conducted to validate 
performance of the proposed controller. 

The rest of the paper is organized as follows. The problem 
formulation and preliminaries involved in the BLF-based 
adaptive controller is described in Section II . The BLF-based 
adaptive controller is designed  and its stability is analyzed in 
Section III. Experiments are conducted in Section IV. Finally, 
the conclusion is presented in Section V. 

 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. System Descrption 

The plantar flexion motion of the cable-driven ankle 
exoskeleton is the active movement, which is cable-driven as 
described in Fig. 1. The dorsiflexion is the passive movement 
achieved by the spring. The other movements of the ankle 
exoskeleton robot are in a free state to reduce and avoid the 
discomfort of the human lower limbs during gait and 
motivation. Aiming at the uncertainty of ankle rotation axis in 
different patients, a mechanism configuration with redundant 
degrees of freedom was proposed, which could realize the 
reachable working space in a small area. Aiming at the ankle 
joint prone to varus sprain, a four-link mechanism with 
variable stiffness was proposed. The scale parameters were 
designed and the spring stiffness was selected according to the 
gait data to realize the effects of small interference in the range 
of gait motion, large torque and limit position in the limit 
Angle. According to the joint torque during the gait process, 
the constrained spring stiffness in three rotation surfaces was 
selected respectively. The degree of freedom (DOF) and range 
of motion (ROM) for ankle exoskeleton robot are shown in 
Table I. 

TABLE I.  DOF AND ROM OF THE ANKLE EXOSKELETON 

DOF ROM [deg] Actuator 
Dorsiflexion/Plantarflexion -30~40 Active 

Eversion/Inversion -30~20 Passive 
External/Internal rotation -10~10 Passive 

 
The ankle joint is a dorsiflexion/plantarflexion movement 

with single degree of freedom driven by the cable, in which the 
axis diameter of the cable pulling shaft is ra, the distance 
between the rotation center of joint and cable pulling shaft is 
la1, the distance between the rotation center of joint and the 
cable rotating shaft is la2, and the Angle of the ankle joint is θa 
(Fig. 2). 

 
Fig. 2. Symbols in kinematic modeling. 

If the change of the axis diameter caused by the change of 
the cable length during rotation is ignored, the length of the 
cable is satisfied 

2 2 2
1 2 1 22 sina a a a a a al l l l l r     (1) 

The dynamical model is 

     , dM C G              (2) 

where M , C and G  respectively represents the inertia, 
Coriolis and centripetal force, and the gravity term.   is the 
actuation torque corresponding to the generalised coordinates. 

d is total disturbance torque.  

Property [18]: 2M C is skew-symmetric. That is, 

  2, 2 0y M C y    . 

Assumption: d , d  and d  are all bounded. 

B.  Preliminaries 

The NDO algorithm allows the estimated disturbance ˆd  to 

track d . Mohammadi et al proposes an NDO to eliminate 
acceleration measurements as followed [14] 

   -1 -1

ˆ
d d 2 2

d 2

= LM z + Lx + LM Cx +G u

D = + Lx

  






 (3) 

where L is the gain coefficient. 

The RBFNN can be represented as [19] 

     T
NN NN NN Z W Z Z    (4) 
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where m
NN  Z   denotes the input vector. l nW  is 

weight matrix and l  is the number of neuros. 

     1 , ,
T

NN NN l NN     Z Z Z  is the basic function of 

RBFNN and  i NN Z  is the Gaussian function as 

     
2

exp , 1, ,
T

NN i NN i
i NN

i

i l
   

  
  

Z u Z u
Z 


 (5) 

where m
i u and i  respectively represents the center of 

the field and the width of the Gaussian function. For a 
sufficiently lager l , there exists an optimal weight matrix as 

*W  and an approximation error  *
NN Z  such that 

                  * *T
NN NN NN Z W Z Z    (6) 

If the node center is appropriately chosen, then  * NN Z  

is bounded. The optimal matrix *W  is only used for analytical 

purpose and replaced by its estimation Ŵ  in practical systems. 

The estimation of  NN Z  is described by 

                ˆ ˆ T
NN NNZ W Z   (7) 

And the estimation error is * ˆ W W W . Thus 

                    ˆ *T
NN NN NN NN  Z Z W Z Z     (8) 

III. BLF-BASED ADAPTIVE CONTROLLER DESIGN 

The generalised variables are defined as 1x   and 

2 dx   for practical applications and 1d dx  . Then, the 
state-space equation of (2) can be provided as follows: 

             

 
1 2

1
2 2 d

x x

x M Cx G u


     


 

 
(9) 

The tracking error is 1 1 1de x x  and 2 2 1e x a . 1a   

donates the auxiliary variable. Differentiating of 1e  yields to 

1 2 1de x x   . Then 1a  is defined as 
2 22

21 1
1 1 2 2

1

2 2 2
2 2 21 1 1
1 12 2 2

1

tan cos
2 2

2 1
tan sec cos

2 2 2 d

e e
a k

e

e e e
e x

z

 

 
   

 

 

 
  

   
    

 (10) 

A smooth and bounded performance function is defined as  

                0
ptt e       (11) 

where 0 ,   and p  are all positive constant.  
The BLF is considered as 

             
22
1

1 2
tan

2

e
V 


 

 (12) 

The time derivative of (12) along (10) is obtained as 

             2
1 1 1 2 1

TV k e e e     (13) 

where 1k  is control gains. And   is a term, which is defined 

as  2 1 2 2
1sec 2 e     . 

With the avoidance of terms explosion, a first-order filter 
is designed 

                2 1 1 1 1 1, 0 0a a a a a    (14) 

here, 2  . 
Define the control torque as 

             2 2 1 1 1n n n dk e M a C a G f e       τ    (15) 

where 1 1f Ma Ca G    . 

Applying RBFNN to approximate f  as 

                * *Tf  W Z Z   (16) 

where *W  is the optimal metric. 1 2 1 1

TT T T Tx x     Z . 

f  are bounded,  ZZ . The estimation can be written 

as  ˆ ˆ Tf  W Z . So the control torque in (14) can be written 

as 

              2 2 1 1 1
ˆ ˆT

n n n dk e M a C a G e       τ W Z    (17) 

The dynamics can be written as 

                *
2 2 2 2 1

T
dMe k e Ce e      W Z Z     (18) 

where ˆd d d     and dτ  is bounded such that d d  . 

The updating law is 

               1

2
ˆ ˆT

e


  W W
   (19) 

where Γ  is positive constant.   is positive constant.  
The Lyapunov function is considered as  

             2
2 2

1

2
V Me  (20) 

Using property and submitting (17) then 

                2 *
2 2 2 2 2 2 1 2

T
dV k e e e e e e     W Z Z      (21) 

Theorem: for the given robot system, if the controller is 
defined by (17), and updating law is designed by (19),  0  

and  0  satisfy certain conditions, then the proposed 

controller is stable with the adjustment of the control 
parameters and the close-loop system is robust. 
Proof: The estimation error of (14) is 2 2 2dy x x  . Thus, 

1
2 2 2dx y    and 2y can be rewritten using 2B , as followed 

              2 2 2 1 2 2 1
2

1
, , , dy y B e e y x


      (22) 
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The Lyapunov function is considered as follows 

              1
1 2 2 2

1 1

2 2
T TV V V tr y y   W Γ W   (23) 

Then, the derivative of (23) is 

             

 
2

2 2 1
1 1 2 2 2

*
2 2 2 2 2

2

2 ˆtan
2

1

T

d

e
V k e k e tr

e e y y B

    

 
     

 

W W
 




 

 


 (24) 

And then 

             * *1 1ˆ
2 2

T T T   W W W W W W    (25) 

             
2* 2 *2 2 *

2 2 2

1 1

2 2
e e e        (26) 

             2 2 2 2
2 2 2

1 1

2 2d d de e e         (27) 

Then (24) can be derived 

 2 2 2
1 1 2 2 2

2

1 1
( 1)

2
TV k e k e y tr B      W W  


 (28) 

where   21 2 1 * 1 *2 2 2T
dB tr     W W . 

Then, a calculation is haven as 

V V B     (29) 

The proposed controller is stable with the adjustment of 
the control parameters   and the close-loop system is robust. 
The control diagram is shown in Fig. 3. 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed NN-based adaptive 
controller (NNAC) was evaluated. A healthy subject 
participated (age: 28, weight: 80kg. height: 185cm) in the 
experiment wearing the exoskeleton robot (Fig. 4). The subject 
walked on a treadmill wearing the proposed ankle exoskeleton. 

The desired ankle motion path is obtained by 
parameterized generation method [20]. A total of 

47N  nodes were chosen for RBFNN-based adaptive 
controller. The centers are evenly distributed in 

 1.5 1.0 0.5 0 0.5 1.0 1.5   and 50   in (9). 

Parameters of updating laws were 0.01   and 0.01 . 
Control gain for NDO was chosen as 0.02X . The control 
gains were 1 10k  , 2 90k   and 2 0.005  . The parameters 

in (15) were selected as 0 10deg  , 2.5deg   and 

1p  ,that is, the final tracking error range is within 2.5 deg. 
A PID controller was compared with the proposed NNAC in 
the article. 

 

 

Fig. 4. The participator wearing the exoskeleton robot. 

The experimental results have been shown in Figs. 5-6 and 
Table II. Fig 5 shows desired trajectory for ankle exoskeleton 
robot during a gait cycle. The comparison by the maximum 
absolute error (MAE) and integral of absolute error (IAE) [21] 
has been shown in Table II and Fig. 6. According to the results 
shown in Table II, the NNAC has smaller MAE and IAE than 
the PID controller, which obviously validates the performance 
of the NNAC. Better control performance can be obtained after 
a more proper design of the control parameters in PID 
controller. However, the predefined output constraints may be 
violated in the comparison experiment as shown in Fig. 6. 
Under the action of proposed NNAC, the tracking error 
gradually converges to a certain range. According to results, 
the NNAC can meet the requirements of walking assistance. 

TABLE II.  COMPARISON OF NNAC AND PID CONTROLLER 

Controller MAE [deg] IAE [deg] 
NNAC 2.2724 0.6256 

PID 3.2979 0.8970 

 

 

Fig. 3. Control diagram of the system. 
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Fig. 5. Desired trajectory for ankle exoskeleton robot during a gait cycle. 

 
Fig. 6. Tracking error with different controllers. 

V.  CONCLUSION 

To compensate the modeling error and estimate the 
perturbation, NN-based NDO is used.  A time-varying barrier 
Lyapunov function is used to design an adaptive backtracking 
controller to constrain the system output error and ensure the 
tracking performance and safety of the robot. A healthy subject 
participates in the experiment wearing the cable-driven ankle 
exoskeleton. The experimental is conducted and the 
performance of the proposed controller is compared with a PID 
controller. 
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