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Abstract— LiDAR-based semantic segmentation is crucial in
many robotic perception systems. Considering the data of
LIDAR has various views with diverse spatial features, more and
more semantic segmentation methods have been proposed to fuse
them for better segmentation accuracy. However, compared to
single-view segmentation, these multi-view methods that directly
fuse all features face inferior real-time performance and higher
computation costs. Therefore, this paper proposes a multi-view-
assisted semantic segmentation network via multi-level mutual
learning knowledge distillation (KD) to implement a high real-
time and accurate semantic segmentation at a lower cost. The
keys of the multi-level mutual learning-based KD strategy are
intra-view mutual learning and inter-view mutual learning. To
accelerate the computation and improve accuracy, we also
introduce a two-step fusion strategy to fuse features
hierarchically. Finally, we evaluated our approach on the
SemanticKITTI dataset. The experimental results demonstrate
that the proposed method competently improves efficiency and
accuracy.

Keywords— LiDAR, Semantic Segmentation, Multi-View
fusion, multi-level and mutual learning Knowledge distillation.

I. INTRODUCTION

Semantic segmentation is one of the crucial techniques in
autonomous robotic systems for fine-grained perception of the
environment and achieving specific task objectives [1]. As a
reliable and standard sensor in the field of environmental
sensing, Light Detection and Ranging (LiDAR) can offer
accurate spatial information over a wide range with robustness
to illumination changes. As the core module of environment
sensing technology, fast and accurate semantic segmentation is
a prerequisite for precise robot localization, reliable path
planning, and safe driving.

Recently, various LiDAR-based semantic segmentation
approaches have emerged, mainly including range-based
methods [2], voxel-based methods [3], and point-based
methods [4]. Nevertheless, each view has drawbacks, such as
the point view having good local geometric features but its

computation being relatively more significant. In contrast, the
voxel view reduces computation through voxelization.
However, the local details are lost, and the range view incurs
low segmentation accuracy due to projection errors, even
though features can be extracted fast through 2D convolution.
To surmount the issues introduced above, the strategy of multi-
view fusion has been proposed, which leverages the
complementary advantages of multiple views and achieves
more accurate segmentation.

However, making use of more views also brings several
drawbacks. Firstly, for multi-view semantic segmentation on
multi-channel LiDAR, such as HDL-64E, it is necessary to
trade off the segmentation accuracy and speed. Fusing more
views can improve the segmentation accuracy. However, it
will also incur higher computation costs, reduce the training
and inference speed, and may cause the network to be unable
to apply for some time-sensitive scenarios. Secondly, since the
multi-view data originates from the same sensor, they contain a
large amount of redundant information, and the redundant
information in each view branch not only reduces the real-time
performance but also may cause the network to over-fit since
this redundant data has been repeated many times in views.
Thirdly, each view has its drawbacks, such as a lack of local
details, and projection errors. The respective branch networks
trained based on these data will be affected by these problems,
resulting in limited semantic segmentation performance in
each branch. To overcome these issues, specific methods focus
on exploiting the potential of LIDAR data by fully utilizing
multi-view data and compressing redundancy features by
gated-based fusion, such as [5]. However, these methods
typically assign an individual encoder-decoder network for
each view and fuse multi-view features directly. Therefore, to
achieve high real-time and high-accuracy semantic
segmentation on LiDAR, exploring an efficient multiple-views
fusion method that improves accuracy, reduces redundant
features, and simplifies the network is necessary.

This paper proposes a multi-view-assisted semantic
segmentation network via multi-level mutual learning
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knowledge distillation. Due to the introduction of mutual
learning, all branches play the roles of teacher and student.
Therefore, the traditional training-inference branch and the
training-only branch are regarded as master branch and slave
branch. By trading off accuracy and real-time performance of
the inference phase, we choose the voxel view as the master
branch and select the point view and the range view as slave
branches. The respective FE head first extracts all view
features from view data. To achieve efficient fusion multi-view
features, we propose the multi-level- and mutual-learning-
based KD strategy, the keys of which are early intra-view
mutual learning (Early ML) in the first encode phase and inter-
view mutual learning (Latter ML) in the latter encoder phase
for slave branches. The Early ML is implemented to enhance a
single slave branch by combining the feature extract ability of
different structure/parameter networks, and the Latter ML is
used to achieve mutual boosting between slave branches by
fusing spatial information of different views. To accelerate the
computation and improve accuracy, we also import a two-step
fusion strategy to fuse features hierarchically. The first-step
fusion aggregates all slave branches’ features, and the second
further fuses the slave and the master branches while
weighting the fusion features to suppress the redundant portion.
This strategy not only comes true as a flexible fusion but also
implements a modular design for view extension.

II. METHOD

Fig. 1 illustrates the detailed structure of the proposed
network. The voxel view is depicted in green, and the slave
branches are shown in blue (range view) and red (point view).
The master branch is a baseline for training and inference,
indicated by solid lines. Other branches only used for training
are represented by dotted lines.

A. Structures of Master Branch
As shown in Fig. 1, for the point cloud � = �� �� �� ∈

ℝ3 , we obtain a point-to-voxel mapping in the l-th layer
through

��
����� = ��/�� ��/�� ��/�� �

� ∈ ℝNx3 (1)

where �� is the voxelization resolution in the l-th layer and ∙
is the floor operation. Point-to-voxel mapping is used to
transform the point view into a voxel view. Then, a hash
function is applied to calculate the unique hash value for each
voxel and obtain a hash index, which is used for transforming
the l-th layer voxel to the 0-th layer voxel. In this paper, we
first use the MLP-based FE head to extract features from
points. The whole slave branches can enhance the FE head
through KD. The point-view features extracted from the FE
head are converted to voxel view by the point-to-voxel
mapping index, which is obtained by (1). Then, voxel features
are processed by the encoder of MinkUNet-18cr5 and the
MLP-based decoder; this variant has been implemented in the
OpenPCSeg codebase [6].

B. Structures of Slave Branches
Due to the slave branches consisting of different view data,

an appropriate encoder is crucial for efficiently extracting
features. As shown in Fig. 1, there are two views: the point
view obtained from LiDAR directly and the range view
acquired by utilizing the projection formula (2) to project
points to an image plane.

� � � = 1
2

1 − ������(�,�)
�

��, 1 − ������(��−1)+���

�
��

�
, (2)

To enhance each slave encoder in the early encoding phase,
we extract features for each view by utilizing multiple
encoders, the network structure of which can be different or

Fig. 1. The framework of the proposed method. It consists of a master branch (voxel view) and two slave branches (point view and range view). Each branch
has an individual FE head and multiple encoders to extract features.

260



the same. The principle of this enhancement method is that the
classification results are related to different features extracting
ability [7] of different networks and different initial network
parameters [8][9]. Therefore, we adopt mutual learning to
enhance slave encoders in the early encoding phase. In this
paper, we adopt two PointNet networks with different initial
parameters for point view and adopt a deep network (ResNet34)
and a wide network (Inception V3) for range view. By the way,
considering that more encoders will lead to larger and larger
parameters, we could use only one encoder for a view if we
want faster training. Before distilling the knowledge from
slave branches to the master branch, we transform range
features from range view to point view for the first step by grid
sample shown in Fig. 2. To make full use of knowledge of
different branches, another mutual learning is implemented
between the sum of range features that have been grid sampled
and the sum of point features. Then, the range features and the
point features are added as first-step fusion features, which
play a teacher role in distilling beneficial knowledge to the FE
head of the master; in other words, the entire encoders in slave
branches before the first fusion are regarded as a large FE head
for the master branch. Then, the first-step fusion features under

point-view are voxelized by point-to-voxel mapping, which is
added with voxel features of the master branch as second-step
fusion features. We use MLP to generate the weight coefficient
to compress the redundant features. Finally, the weighted
second-step fusion voxel features are further encoded and
decoded by MinkUNet-34cr10. We implement final mutual
learning between the classification results of the master branch
and the slave branch.

III. EXPERIMENTS

A. Experimental Setup
 Dataset

The SemanticKITTI dataset[10] consists of 43,551 LiDAR
scans from 22 Velodyne HDL-64E LiDAR sequences, each
containing approximately 130,000 points. These 22 sequences
are categorized into three groups: the training set (sequences
00 to 10), the validation set (sequence 08), and the test set
(sequences 11 to 21).

 Evaluation Metrics

mIoU (mean intersection-over-union) is a common
evaluation metric to illustrate performance, which can be
defined as:

���� = 1
� �

� ���
���+���+���

� (3)

where ���, ��� and ��� represent true positive, false positive,
and false negative predictions for the given class c,
respectively, and C is the number of classes.

 Implementation Details

In this paper, the master branch adopts the baseline of
Minkowski-UNet18-CR0.5. The range view slave branch
employs the encoders of ResNet34 and Inception v3. The
point-view slave branch directly employs two PointNet
networks with different initial parameters. We only adopt
common data augment methods: flip, scaling, rotation and
transform. The voxel size is 0.5m, and the range size is [64,
2048]. We apply cross-entropy loss and Lovasz [11] loss for
semantic segmentation and KL divergence loss for distillation.
The batch sizes, learning rate, and epochs are 2, 0.16, and 64.
Models were trained using SGD optimizer and
CosineAnnealingWarmRestarts learning rate scheduler in an

TABLE I
CLASS-WISE AND MEAN IOU OF OUR PROPOSED METHOD AND SOME OTHER METHODS ON THE SEMANTICKITTI.

Fig. 2. The voxel view and range view are generated from the point view
by voxelizing and projecting. To distill knowledge in an uniform view,
the range features are transformed to point view through grid sampling
and then transformed to voxel view by point-voxel mapping.
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end-to-end manner on NVIDIA RTX 4090 GPU.

B. Results on SemanticKITTI
In this experiment, we compare the results of the proposed

method with the existing LiDAR segmentation methods. The
order of these methods in Table Ⅰ is sorted by mIoU results.
Table I shows that the mIoU result of our method reached
70.2%, which outperforms other methods except RPVNet.
Although our method and RPVNet utilize point, voxel, and
range views, our method is still 0.09% lower than RPVNet.
We believe the reason why the mIoU is lower is that the
RPVNet directly fuses point, voxel, and range view, which
obtains all information of all views. However, we only adopt
the voxel branch for inference and adopt KD to transform
beneficial knowledge to this branch during training. Inevitably,
information is lost during this KD process, resulting in a lower
accuracy. But at the same time, thanks to KD, our proposed
method obtains better real-time performance; the FPS of our
method reaches 25.13, which is much higher than 11.8 of
RPVNet. Therefore, our approach dramatically improves the
real-time performance without much loss of accuracy.
Considering both segmentation accuracy and real-time
performance, our method is more competitive.

C. Ablation Studies
We conducted extensive comparative experiments,

including voxel-view (V) segmentation, voxel-range-view (VR)
fusion segmentation, voxel-point-view (VP) fusion
segmentation, and voxel-point-range-view (VRP) fusion
segmentation. It's important to note that we trained the
networks with only 16 epochs to speed up the process. The
mIoU was evaluated on the SemanticKITTI validation set
(sequence 08). In Fig. 3, we present segmentation results for
individual objects across different views. From left to right,
these pictures are ground truth, V-based, VP-based, VR-based,
and VPR-based methods. In the ground truth image, different
colors illustrate different classifications, and cyan and white
represent incorrect and correct reasons in the remaining
pictures. From the Fig. 3, it can be seen that the segmentation
accuracy gradually increases as the number of views increases.
In addition, VR accuracy is better than VP, similar to the fact
that range-based RangeNet++ accuracy is higher than
PointNet-based PointNet++.

From the results in Table II, we can also observe that
compared with the baseline (V), the fusion-distillation of VR,

VP, and VRP is effective and can improve accuracy to varying
degrees. The improvement depends on different combinations
of views. The mIoU of the VR-based method is 65.6%, which
is higher than the mIoU of VP (65.2%). For the VIR mode, it
can reach the highest 66.5% mIoU. From this table, we can
also find that the accuracy depends on different FE heads. For
the VR and VRP fusion, we replace the MLP head of range
with a proximity convolution[12]. The proximity convolution
exploits range information to augment the spatial sampling
locations and effectively improve the transformation modeling
ability. It can be observed that employing proximity
convolution results in a noticeable improvement in accuracy.

We also compared the numbers of parameters, training
speed, and inference speed for different view assembly modes
in Table III. These modes are trained and inference separately.
For the convenience of comparison, the inference phase in this
table will contain all branches, unlike the actual case where
only the voxel branch is available during inference. The mIoU
is still obtained from all modes except the VRP. Here, we
adopted the encoder of MinkUnet in the OpenPCSeg codebase
as baseline (V). From Table III, it can be observed that when
adopting the baseline alone, the number of parameters is only

Groundtruth V VR VP VRP

Fig. 3. Segmentation result. From left to right: ground truth, V(baseline), VR, VP, VRP segmentation results. Cyan and white points represent
incorrectly and correctly classified points, respectively.

TABLE II
MEAN IOU OF DIFFERENT VIEWS, FE HEADS OF RANGE MODULE

TABLE III
PARAMETERS, TRAINING TIME, AND INFERENCE TIME OF DIFFERENT

VIEWS.
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2.5M. Due to the multi-view fusion of VR, VP, and VRP
modes, their parameters increase gradually. From Table III, we
can also find the VP mode with two same encoders has better
mIoU than the VP_Half mode, which only has one encoder.
The VR_ResNet and VR_Inception are VR-based modes that
utilize the encoder of ResNet and Inception, respectively. Their
mIoU illustrates that fusing two encoders with different
structures can improve accuracy. In this table, all multi-view
modes' training and inference speeds are vastly less than those
of the voxel-view mode. TABLE II and TABLE III
demonstrate that the proposed method combines the least
parameters of 2.5M (the fastest inference speed of 25.13 FPS)
and the best mIoU of 66.5.

Finally, we validate the effectiveness of mutual learning
under different stages in TABLE IV. We only test the early
mutual learning method (Early ML) for VP and VR modes.
For VRP, we test all mutual learning stages. From FRP mode
in this table, compared to the method without KD, it can be
found that all ML stages can improve accuracy. The accuracy
improvement of sequentially enabling Early ML, Late ML, and
Final ML was 0.16%, 0.11%, and 0.15%, respectively,

IV. CONCLUSION

This paper introduces a multi-view-assisted semantic
segmentation network via multi-level mutual learning
knowledge distillation to implement a high real-time and
accurate environmental perception at a lower cost. The
innovations of this paper include multi-level mutual learning
and two-step hierarchical fusion strategies. The experiments on
SemanticKITTI illustrate the validation of the combination of
these two strategies. Compared with other single-view or
multi-view methods, our method trades off real-time
performance and accuracy, maintaining high accuracy while
achieving high real-time performance.
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