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Abstract—Compared with optical images, underwater sonar 

images suffer from blurry edges, obscure features, and noisy 

underwater environments, while the small computing power of 

AUVs further limits the application of large models in 

underwater environments. To improve the tracking performance 

of AUV. In this paper, on the basis of siamese network, we 

designed a lightweight single-object tracking model applied in 

multibeam forward-looking sonar scenarios, which incorporates 

the attention mechanism in the feature extraction stage to make 

the model focus on the target candidate region with high weight, 

and next the feature fusion module is used to dilute the non-

target region features and highlight the features of the region 

with high similarity, and finally, the output is detected to obtain 

the target position. The experimental results show that this 

model can achieve 63% accuracy while keeping the 0.75M 

parameter count on our sonar dataset. 

Keywords—Sonar scenarios; Single-target tracking; 

Lightweight model; Feature fusion; Attention mechanism 

I. INTRODUCTION 

Target tracking is one of the important research projects in 
intelligent robot vision, which can be widely used in public 
surveillance, automatic driving, intelligent identification 
tracking, and so on. In underwater environments, acoustic 
devices are commonly used for underwater target tracking, 
which are categorized into: traditional acoustic sensor arrays 
(TASA), underwater sensor networks (UWSN), and imaging 
sonar [1]. Typically, AUVs use active imaging sonar to detect 
targets at long range. Researchers have carried out many in-
depth research works on visual target tracking, which are 
mainly categorized into: correlation filtering algorithms [2], 
and deep learning-based algorithms. Correlation filtering 
online target tracking algorithm started in MOSSE, using 
Fourier transform to achieve the effect of fast computation and 
high frame rate, which is favored by the industry. Deep 
learning has received a lot of attention in the classification and 
recognition of targets. With the proposal of Deep Learning 
Tracker (DLT) algorithms, target tracking has begun the era 
based on deep learning [3]. As the first deep learning-based 
algorithm SiamFC uses a twinned convolutional network to 
extract features, matches the template and the features of the 
searched image, and thus tracks the target [4]. The method 
extracts target features through a pre-trained convolutional 

neural network, however, twinned convolutional networks 
focus on the localization problem and are not able to accurately 
adjust to changes in the shape of the target. To address this 
problem, the SiamRPN algorithm combines the twin network 
with Fast-RCNN's RPN to deal with the target tracking 
problem in a classification and regression manner, which 
accurately tracks the target location and effectively regulates 
the shape [5]. Subsequent version of DaSiamRPN [6] increase 
the model discriminative properties from data, while 

improving the search area to adapt long time tracking，and 
SiamRPN++ [7] introduce more training datasets and 
incorporate location-balanced ResNet to obtain better 
generalization ability and solve the problem that the Siam 
network could not be deepened. To improve target tracking 
accuracy, the ATOM algorithm divides the target tracking into 
target estimation and classification [8]. Since the proposal of 
Transformer, it has been widely used in natural language 
processing. With help of Transformer [9], TransT[10]  
incorporates Transformer inside the target tracking, and 
establishes the correlation between templates and the search 
region through large-scale offline training.The MixFormer [11] 
algorithm proposes a hybrid attention module, which integrates 
the two tasks of feature extraction and feature fusion, and 
allows the model to abandon the traditional feature extraction 
network, thus realizing more targeted feature extraction, and 
incorporates online templates to realize the matching of 
multiple templates with the search region, which greatly solves 
the problems of target deformation, target occlusion, and fast 
movement. 

However, most of the above studies are for ground or 
airborne target tracking, and there are few studies on 
underwater target tracking. Literature [12] created a 
representation of region information in light of the Gaussian 
particle filter, which proposed the weighted integration 
strategy combining the area and invariant moment. Some 
scholars study on underwater fish tracking based on visual 
images [13]. This paper [14] describes the development of the 
tracking filter that fuses USBL and processed sonar image 
measurements for tracking underwater targets for the purpose 
of obtaining reliable tracking estimates at steady rate, even in 
cases when either sonar or USBL measurements are not 
available or are faulty. Literature [15] carried out target 
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tracking based on forward-looking sonar images with the 
application of SiamFC. Underwater target tracking based on 
acoustic images is more difficult than visual target tracking, 
there are additional difficulties in low image resolution, few 
target texture features, almost no color features, and many 
noise clutter points.  

Constrained by the limited arithmetic power of the AUV 
like Fig. 1, a lightweight underwater sonar target tracking 
model is designed in this paper. Firstly, a concise backbone is 
designed as the feature extraction part of the twin network, and 
an attention mechanism is incorporated to increase the weight 
on the region of interest and reduce the noise effect. The 
feature extractor trains offline to avoid interference in online 
low-resolution videos. Secondly, for the template and features 
of the region to be searched, multi-dimensional feature 
interactions are performed to further disperse the noise effects, 
the feature map regions fused with similar targets are weighted 
to highlight the targets to be searched, and finally, the design 
of the detection head is performed. To ensure the detection 
speed, the features of classification and regression are shared, 
and then two-branch prediction and regression are used. The 
experimental results show that compared with the traditional 
twin network, this model has a better tracking effect and 
lighter model size. 

 

 

 

 

 

 

 

Fig.1. AUV named “Haishi Jinqiangyu” 

II. DATASETS 

The experimental dataset is several continuous moving 
videos of a moving remotely operating vehicle (ROV) 
captured by an AUV utilizing a multibeam sonar in a river. 
While the video was acquired, the AUV was kept immobile 
and the ROV was moved under human control, and in order to 
make the experimental dataset closer to the real situation, the 
ROV was controlled to move under the occlusion, overlap the 
original paths, move out of the field of view and return again, 
move between bubbles created by itself, and dive down to the 
depths and then float up again. In the meantime, the 
surroundings will suffer from interference from fish activity. 
Fig. 2 are the data samples in different cases. There are 12 
video segments, totaling about 28 minutes in length, and due to 
the slow movement of the underwater target, sampling is taken 
at intervals of frames to produce the training and test sets. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Obscured target and target moving to deeper water 

III. ALGORITHM 

Since AUVs have to ensure mobile dexterity, most of them 
are small in size and have limited terminal arithmetic. 
Therefore, the algorithms have to be as lightweight as possible 
while maintaining a good effect. The algorithms designed in 
this way are more composite to the operational scenarios of 
AUV. 

The flowchart of the lightweight sonar target tracking 
algorithm is shown in Fig. 3. In order to keep the lightweight, 
the idea similar to SiamFC is still chosen to establish two 
branches to process the initial frame and the current frame 
respectively, and then the discriminative similarity is used to 
get the tracked target area.Through the previous position of the 
target, a proximity region can be first selected as the area to be 
searched. Thus, the inputs to the model are a 112*112 template 
and a 256*256 area to be searched. After the shared weight 
feature extraction backbone, this link uses the fused attention 
mechanism to make the model focus on the higher-weight 
region. The extracted templates with different specifications 
are fused with the search region features, and the smaller 
template features are used as a convolution kernel in searching 
the searched region features. While considering to maintain the 
lightweight characteristics of the model, the ordinary 
convolution is improved with depth separable convolution[16], 
which can reduce the number of parameters without 
significantly reducing the performance. In the specific 
implementation process, to avoid the influence of noise on the 
search background, a multilevel feature fusion operation is 
adopted, in which the high-level convolution is continuously 
carried out parallelly, and the features of the original search 
region are then fused. Finally, we get a feature map that 
generally suppresses noise and highlights the target. At last, 
the feature map is input to the detection head for target 
detection, and the maximum response position is the target's 
current position, thus realizing tracking. 

 

 

 

 

 

 

Fig.3. The overall structure of the algorithm 
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A. Backbone 

Due to the low resolution of the sonar image and the small 
size of the target, the target is seen as an ill-defined bright 
yellow spot from a human viewpoint. Fish, obstacles, etc. in 
the environment are also shown as bright yellow spots. This 
leads to excessive noise in the image display. How to 
distinguish between the target bright spots and noise bright 
spots becomes the first problem to be solved to improve the 
correct rate of recognizing and tracking the target.  

The first thing that comes to mind is that sonar images have 
a very distinct color differentiation, with the background 
appearing black and the range detectors generally appearing 
bright yellow. This limits the number of channels above the 
color dimension, so it naturally occurs to us that we could use 
a channel attention module to allow the model to learn to 
distinguish between background and target. It is trained to give 
high weight to a portion of the channels that show a strong 
correlation with the target color. 

Once we have obtained the possible targets filtered through 
the channel domain, we would like to avoid jumps in tracking 
by further manipulation of the spatial domain to restrict the 
model's attention to regions where the likelihood of the target's 
occurrence is high, such as within a certain radius of the target. 
Since the ultimate goal is to restrict the weighting of the 
attention to a certain region, we design a Spatial channel 
Attention (SA) module that uses the local optimal weights 
instead of the all-all pixel attention weights for the region. For 
the selection of the optimal weights, we use a composite of 
maximum pooling and average pooling to finally get the 
attention matrix and then do the operation with the feature 
map.A detailed depiction of Attention module is shown in 
Figure. 4. 

 

 

 

 

 

 

Fig.4. Attention module process 

B. Fusion Module 

Due to limitations in computing power and the impact of 
noise, the sonar target tracking model is not updated online. 
Since the sonar image has unclear details, directly following 
the template features to perform similarity matching in the 
search area, on the one hand, is hindered by the blurred and 
small details of the target, which will cause great interference 
from non-targets, and on the other hand, is affected by the air 
bubbles and obstacles during the target's moving process, all of 
which will make the accuracy of the tracking degrade. We 
refer to the idea of feature enhancement, using multi-
dimensional features of the region to be searched 
superimposed on the template features, which has two 
advantages. First, in the process of feature superposition, when 
the template features are operated as a sliding window, the 
feature maps of the regions with large similarities will be more 

prominent, and the background and noise regions will be more 
evenly faded. The second is that the fused feature maps are 
then inspected by the detection head, which provides a 
secondary assurance of the similarity between the tracked 
target and the template.  

We use the template features of the first frame as the 
convolution kernel and perform the convolution operation in 
the region to be searched. We call this step feature fusion 
because the results output from each step of the convolution 
are obtained by the template and the current region together. 
Considering the light weight of the model, we replace the 
traditional convolution with the deep separable convolution in 
this step as shown in Fig. 5, and finally output the fused feature 
map. In order to ensure that the deeper semantic information 
can also be fused and disclosed, we design a multi-layer fusion 
operation. Finally, to avoid the features of the region to be 
searched in the initial state being diluted in the process of 

continuous fusion, we perform a “concat” operation on the 
result at the end of each fusion, and then send it to the next 
layer of fusion. 

 

 

 

 

 

Fig.5. Fusion module 

IV. RESULTS OF THE EXPERIMENT 

A. Experimental Environment 

The algorithm is implemented using the Pytorch 
framework. The hardware and software environments are: 
Intel(R) Core (TM) i5-13400, 2.50 GHz; 16 GB of RAM; and 
NVIDIA GeForce GTX3060 with 12 GB of video memory. 
Development environment: Windows 11 64-bit operating 
system; CUDA11.8 and CUDNN8.7 for GPU acceleration; 
Pytorch deep learning framework, version 2.0.1 and torch-
vision 0.15.2; Python, version 3.8; Visual Studio Code. The 
number of interval frames in the dataset was random in the 
interval [1, 3]. Some of the not-labelable and occluded images 
were manually eliminated after manual screening. The training 
batch size is set to 32, and the Adam optimizer is used with an 
initial learning rate of 1e-4 and weight decay of 1e-5 for a total 
of 300 rounds of iterations. 

B. Evaluation indicators 

Precision (P) indicates the number of successfully tracked 
frames as a percentage of the total number of frames 
successfully tracked. To judge whether the tracking is 
successful or not, the Euclidean distance from the center of the 
predicted frame to the center of the real frame is calculated to 
be less than 20, and the precision reflects the proximity 
between the center of the predicted frame and the center of the 
real frame. Since the boundary of the target is difficult to 
define when labeling itself, and there are errors in the 
boundary of the IoU, the accuracy in terms of distance is 
chosen as a fist indicator. And Expect Average Overlap rate 
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(EAO) is a more comprehensive single-target tracking 
performance evaluation index by combining tracker average 
overlap and robustness, and the larger the EAO value, the 
better the tracking performance. 

C. Results 

A comprehensive comparison of the effectiveness of 
current target tracking algorithms with smaller model sizes on 
homegrown datasets is presented below Table I: 

TABLE I.  ALGORITHM PERFORMANCE COMPARISON 

Algorithm 
Evaluation indicators 

P EAO Size(M) 

SiamFC 0.574 0.396 - 

SiamFC++ 0.530 0.414 13.9 

SiamRPN 0.577 0.433 5.24 

SiamRPN++ 0.673 0.495 11.2 

DaSiam 0.512 0.428 19.6 

LightTrack 0.520 0.470 1.97 

Ours 0.631 0.452 0.75 

With the above experimental results, we can see that in 
terms of target tracking in sonar images, the accuracy of our 
model can reach 63.1%, which is only 4.2% less than that of 
SiamRPN++, which is better than other twin neural network 
series models.The EAO of this model is 4.3% less compared to 
the optimal one, but the number of parameters of the model is 
significantly reduced, by about 93% compared to the accuracy 
optimal model. Compared to LightTrack [17], which has the 
lowest number of parameters, the accuracy is improved by 
about 11% and the amount of parameters is reduced by about 

61% ，only 0.75 million parameters.The lightness and validity 
of this model is demonstrated. 

In order to further validate the effect of the individual 
modules on the model, ablation experiments were conducted 
on the sonar dataset with SiamFC  as the benchmark. The other 
group uses our original benchmark. The results of the 
comparison are presented in Table II. 

TABLE II.  ABLATION EXPERIMENT RESULTTS 

Algorithm P 

SiamFC 0.574 

SiamFC+Attention 0.582 

SiamFC+Attention+Fusi
on 

0.604 

Our benchmark 0.363 

Benchmark+Attention 0.519 

Benchmark+Attention+
Fusion 

0.631 

The experimental results show that in the SiamFC-based 
experiments, the addition of the Attention module and the 
Fusion module can further increase the model's tracking 
effectiveness in the sonar environment, with accuracy 

improvements of 0.8% and 2.2%, respectively. In the second 
set of experiments, due to our benchmark structure is too 
simple to recognize the target with various noise interference, 
the accuracy is only 36.3%, but after the feature processing of 
Attention module, it can separate the background from the 
high weight region to reduce the interference, and the accuracy 
is increased by 15.6%. the Fusion module can overcome the 
shallow feature hierarchy brought by the separation 
convolution problem, resulting in a further 11.2% increase in 
accuracy. 

As shown in Fig. 6 and 7, the target generates a lot of 
bubbles during the motion process, which produces a certain 
amount of occlusion on the subsequent motion path, resulting 
in feature blurring. At this time, SiamFC and LightTrack 
incorrectly recognize the noise as the target due to the lack of 
deep feature extraction means. Our algorithm with the addition 
of attention will filter out the highlighted region as the region 
of interest and reduce the black region weight. In the 
subsequent feature fusion stage, weighting the template 
features with the region of interest, the non-target will be 
diluted and blurred out due to different contours and features, 
while the real target will be continuously deepened with 
features. Finally, the feature map that highlights the target 
region and dilutes the rest of the noise is obtained and finally 
recognized accurately. In Fig. 8, although the algorithms all 
accurately tracked the target, our model incorporates an 
attention region and integration of the target region, so that the 
recognition frame is more accurately targeted. 

 

 

 

 

 

 

 

 

 

Fig.6. Bubble occlusion scene 1 

 

 

 

 

 

 

 

 

Fig.7. Bubble occlusion scene 2 
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Fig.8. Motion Scene 

V. CONCLUSION 

In this work, we review the existing algorithms for target 
tracking and propose a lightweight tracking algorithm that can 
be applied to end devices for target tracking for applications in 
underwater sonar scenarios. The algorithm is based on twin 
neural networks, and in the feature extraction stage, for the 
characteristics of single color composition of sonar images and 
highlighting of object regions, a combined attention module is 
designed to increase the weights of regions of interest. Then 
for the characteristics of sonar imaging with low pixels, 
unclear edges, and much noise influence of template matching, 
the feature fusion module is designed as a means of composite 
template and searching region features, which can effectively 
lighten the noise influence and highlight the region with high 
similarity to the target. Finally, the resulting feature map is 
detected to get the current target position information. The 
experimental results show that the tracking of sonar images 
can reach 63% accuracy. In the future, we will further discuss 
the model improvement method that can update the template 
features online and take the template position into account, so 
as to realize more accurate single-target tracking of sonar. 
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