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Abstract—The smart grid architecture, which represents a 

deep integration of information technology and power systems, 

brings many conveniences to people. However, due to the highly 

open communication network and complex information 

interaction environment, it also faces more security risks. 

Existing intrusion detection algorithms based on machine 

learning cannot cope with the increasing features in the Energy 

Internet. To address this issue, this paper proposes the Improved 

Gravitational Search Algorithm (IGSA) for feature selection. 

Our core idea is to utilize IGSA for efficient feature selection, 

reducing the learning cost of machine learning methods and 

improving detection accuracy. Furthermore, to enhance the 

algorithm's global search capability and robustness, a novel elite 

selection strategy and adaptive mutation strategy are introduced. 

Experimental results on three public datasets demonstrate that 

IGSA improves detection accuracy by an average of 11.14% 

compared to other feature selection methods.   

Keywords—smart grid, intrusion detection, feature selection 

I. INTRODUCTION 

The intellectualization and automation of the power grid 
have impacted an increasing number of related electrical 
devices and smart applications, which while bringing 
convenience, have also amplified the threat of cyberattacks on 
the grid. Furthermore, cyberattacks have become more 
diversified and complex, posing significant challenges to 
cyberspace security. To address these issues, the introduction 
of intrusion detection technology can effectively protect the 
smart grid. Currently, a mainstream approach for intrusion 
detection involves the use of machine learning methods for 
attack identification [1,2]. The application of machine learning 
algorithms to intrusion detection models can somewhat reduce 
the tedious work involved in model establishment and optimize 
the impact of inaccurate modeling on smart grid security 
research. At present, intrusion detection algorithms based on 
classic machine learning models such as Support Vector 
Machine (SVM) [3] and K-Nearest Neighbor (KNN) [4] are 
gradually being proposed and applied. However, as the feature 
dimensions and attack categories continue to increase, relying 
solely on machine learning models becomes insufficient to 
meet the basic requirements of intrusion detection tasks. To 
improve the detection accuracy of machine learning-based 

intrusion detection models, many scholars have employed 
feature selection methods in conjunction with machine learning 
for intrusion detection [5,6]. 

Due to the importance of feature selection, scholars have 
proposed various feature selection algorithms, which can be 
broadly categorized into two types: 1) Filter feature selection 
methods [7,8] and 2) Wrapper feature selection methods [9,10]. 
Filter methods utilize the inherent properties between features, 
such as mutual information, with typical algorithms including 
the Fisher score algorithm. Wrapper methods, on the other 
hand, employ classifiers to evaluate the quality of selected 
features, with common algorithms including Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), and 
Artificial Bee Colony (ABC). Although Filter methods are 
simpler to implement, they overlook the role of features in 
classifiers. Therefore, this paper opts for the Wrapper method. 
The main contributions are listed as follows: 

1) In this study, an Gravitational Search Algorithm (IGSA) 
algorithm is introduced that integrates the elitist strategy and 
adaptive mutation strategy. This integrated approach not only 
preserves the global search capability of the genetic algorithm 
but also enhances the precision of local search through 
simulated annealing techniques. The elitist strategy ensures the 
inheritance of superior genes, while the adaptive mutation 
strategy improves the flexibility and adaptability of the 
algorithm, enabling it to more effectively address complex 
optimization problems. 

2) The IGSA and K-Nearest Neighbor (KNN) algorithms 
are aptly combined to construct a novel intrusion detection 
system. By optimizing the parameter selection of KNN through 
IGSA, the accuracy and efficiency of intrusion detection are 
significantly improved. This hybrid method fully utilizes the 
global optimization capabilities of IGSA and the classification 
accuracy of KNN, providing a novel and effective solution for 
intrusion detection in smart grids. 

3) This study not only presents a novel approach for 
intrusion detection but also verifies its performance in practical 
applications through detailed experiments. Real-world network 
attack datasets are tested and compared with traditional 
intrusion detection methods. Experimental results demonstrate 
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significant advantages in key metrics such as detection 
accuracy and F1 score. 

 

II. RELATED WORK 

In recent years, numerous wrapper feature selection 
methods have been proposed. Gu [9] introduced a feature 
selection classifier based on genetic algorithms (GA). They 
compared GA on real datasets with traditional methods such as 
greedy search, demonstrating the superiority of their algorithm. 
Since then, a growing number of scholars have focused on 
implementing GA algorithms for feature selection [10-12]. 
Particle Swarm Optimization (PSO), as a swarm intelligence 
optimization technique, has also been applied to feature 
selection methods [13,14]. Tran [15] conducted a series of 
representative PSO-based studies, designing various 
initialization strategies, fitness functions, and search 
mechanisms to obtain high-quality feature subsets. 

Besides the aforementioned GA and PSO-based feature 
selection algorithms, several other interesting feature selection 
methods have been proposed, such as Artificial Bee Colony 
(ABC) [16-19], Ant Colony Optimization (ACO) [20], and 
Differential Evolution (DE) [21]. However, these algorithms 
tend to suffer from issues such as easily falling into local 
optimums and slow convergence rates. The IGSA algorithm 
proposed in this paper offers advantages of fast convergence 
and strong global search capabilities, effectively addressing the 
challenges faced by GA and PSO. 

 

III. IMPROVED GRAVITATIONAL SEARCH ALGORITHM 

The Gravitational Search Algorithm treats all particles as 
objects with mass capable of frictionless movement. Each 
particle is influenced by the gravitational pull of other particles 
in the solution space, resulting in acceleration towards particles 
with greater mass. Since the mass of a particle is correlated 
with its fitness value, particles with higher fitness values have 
greater mass. Consequently, particles with lower mass 
gradually approach the optimal solution in the optimization 
problem as they move towards particles with higher mass. A 
key characteristic of the Gravitational Search Algorithm is that 
particles do not rely on environmental factors to perceive the 
situation in their environment. Instead, they share optimization 
information through the interaction of gravitational forces 
among individuals. Therefore, without the influence of 
environmental factors, particles can still perceive the global 
situation and search the environment effectively. 

Assuming a D-dimensional search space containing N 
particles, the position of the i-th particle is denoted as: 

 
1 2( , , , , , ); 1,2, ,k d

i ii i iX x x x x i N= =K K K  (1) 

where
k

ix represents the position of the i-th particle in the k-th 

dimension. 

A. Calculation of Inertial Mass 

 

In the GSA algorithm, the mass of each particle is closely 
correlated with the fitness value obtained through particle 

information. During the t-th iteration, the mass of particle iX

is denoted as ( )iM t , as shown in formula (2). Since the mass 

M is calculated based on its corresponding fitness value, 
particles with greater mass are closer to the optimal position in 
the entire computational space, naturally exerting a stronger 
gravitational pull on other objects. 
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In the formula, ( )ifit t represents the fitness value of 

particle Xi, which is calculated using the objective function in 

the algorithm. ( )best t  denotes the best value achieved 

during the t-th iteration, while ( )worst t represents the worst 

value at that iteration. ( )iM t  is the normalized particle mass, 

obtained by calculating the percentage of each particle's mass 
relative to the total mass of all particles. 

For maximization problems, the formulas for calculating

( )best t and ( )worst t are as follows: 
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Based on the law of universal gravitation, the gravitational 
force exerted by particle j on particle i in the k-th dimension 
during the t-th iteration can be calculated using formula (4). 

 
( ) ( )

( ) ( ) ( ( ) ( ))
|| ( ), ( ) ||

k k

j

i j

i

k

i

j

j i

M t M t
F t G t x t x t

X t X t
= −  (4) 

In the formula, ( )G t  represents the gravitational 

constant, as specified in formula (5), while || ( ), ( ) ||i jX t X t  

denotes the Euclidean distance between particle i and particle j. 

 0

/( ) t T
G t G e

α−

=   (5) 

In the formula, 0G  represents the initial gravitational 

constant with a value of 100, α is a constant with a value of 20, 
and T denotes the maximum number of iterations. 

The total force acting on particle iX  in the k-th 

dimension equals the randomly weighted sum of forces exerted 
by all other particles. 

 
1, 1

( ) ( )
N

k k

i ij

j j

F t r F t
= ≠

=    (6) 

In the formula, r represents a random number between [0,1], 
indicating the random weight. 
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The acceleration of a particle can be calculated according to 
Newton's second law of motion, as shown in formula (7). 

 
( )

( )
( )

k

k i

i

i

F t
a t

M t
=  (7) 

This acceleration, calculated based on the resultant force 
acting on the particle and its mass, is used to update the 
particle's velocity and position according to formula (8). 

 
( 1) ( ) ( )

( 1) ( ) ( 1)

k k k

i i i

k k k

i i i

v t r v t a t

x t x t v t

 + = +
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 (8) 

In the formula, 
k

ix  represents the k-dimensional 

component of the position of the i-th particle, and 
k

iv  denotes 

the k-dimensional component of the velocity of the i-th 
particle. 

B. Elite Strategy 

The elite strategy refers to selecting the best-performing 
particles among the group to participate in the force and 
acceleration updates, aiming to prevent a decrease in the 
precision of convergence results caused by poorly performing 
particles. To avoid falling into local optima, the influence of 
more particles is considered during the initial iterations. 
However, as the iterations progress, the number of elite 
particles gradually decreases, meaning that poorly performing 
particles are phased out, and only the best-performing particles 
are involved in the updates towards the end of the iterations. 
Consequently, the number of elite particles is negatively 
correlated with the number of algorithm iterations, as 
determined by formula (9). 

 
1

( ( (1 ) ( )
100

last
last

numt
num round N num

T

−
= ⋅ + − ⋅  (9) 

C. Adaptive Mutation 

Through analysis of the GSA algorithm, it becomes evident 
that as the number of iterations increases, the magnitude of 
particle position shifts significantly diminishes. Hence, an 
adaptive mutation strategy is proposed to enhance the 
algorithm. Simultaneously, the mutation trigger rate should 
decrease as the iterations progress. Initially, a higher mutation 
rate can be employed to augment population diversity and 
strengthen the algorithm's global search capabilities. However, 
in later stages of the algorithm, reducing the mutation rate 
prevents the destruction of superior individuals, potentially 
leading to better precision. The expression for the mutation 
trigger function is given by: 

 

dim 1
( )

2 ( )t T
iTR e r ε

− ×

= × +  (10) 

In the formula, 
t

iTR  represents the mutation trigger value 

for the i-th particle during the t-th iteration. When 
t

iTR  > 0.5, 

mutation is triggered, and performing mutation operations on 
the particle at this point can achieve better results. Here, r is a 
random number between [0,1], dim represents the dimension of 

the solution space, and ε is a small constant, taken as 0.1 in this 
context. 

The formula for updating the particle position through 
uniform mutation is shown in equation (11) 

 ( ) (1 ) ( )
i i

x t r x t= +  (11) 

 where r represents a uniformly distributed constant in the 
range of [0, 1]. 

D. Evaluation Fitness 

The objective of IGSA is to reduce the number of features, 
in conjunction with the KNN classifier, to enhance the 
accuracy of intrusion detection.  

The evaluation metric for this experiment is accuracy: 
Accuracy is a metric used to evaluate the performance of 
classification models. It represents the proportion of correctly 
predicted samples by the model out of the total number of 
samples. A higher accuracy indicates stronger predictive 
capabilities of the model. 

 
TP TN

ACC
TP TN FP FN

+
=

+ + +

 (12) 

Here, TP represents true positives, TN stands for true 
negatives, FP denotes false positives, and FN indicates false 
negatives. 

IV. EXPERIMENT 

The equipment and software used in this experiment 
include an Intel 12700H CPU, 32GB of RAM, MATLAB 2022, 
and the Windows 11 operating system. 

For this experiment, we utilized the KDDCUP99 dataset 
(1999), the CICIDS dataset (Canadian Institute for 
Cybersecurity (CIC), 2018), and the UNSW-NB15 dataset 
(Moustafa and Slay, 2015). 

To validate the performance of the IGSA, this paper 
conducts comparative experiments using the basic Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), and 
Artificial Bee Colony (ABC) algorithms. The population size N 
and the maximum iteration count itermax are set as common 
parameters for each algorithm. Specifically, N is set to 100, 
itermax is set to 300, and each algorithm is independently run 
30 times. In addition, the selected feature subsets are all 
evaluated for performance on a KNN classifier with k = 2. 

A. Performance Evolution 

Table 1 presents a performance comparison of different 
feature selection methods on the KDDCup99, CIC-IDS-2017, 
and UNSW-NB15 datasets. The evaluation is primarily based 
on two key metrics: accuracy and F1-score. On the 
KDDCUP99 dataset, the ISGA algorithm demonstrates 
significant advantages, improving accuracy by 10.20%, 8.97%, 
and 13.49% compared to GA, PSO, and ABC, respectively. In 
terms of F1-score, ISGA also excels, showing an improvement 
range of 10.10% to 15.73% compared to the other three 
algorithms. On the CIC-IDS-2017 dataset, ISGA's performance 
advantage is even more pronounced. Its accuracy increases by 
16.96%, 13.79%, and 8.87% relative to GA, PSO, and ABC, 
respectively. In the comparison of F1-scores, ISGA's 
improvement is even more significant, especially when 
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compared to GA, with an increase of up to 20.03%. For the 
UNSW-NB15 dataset, ISGA also outperforms other algorithms 
in all evaluation metrics. Its accuracy is 9.48%, 7.17%, and 
11.36% higher than GA, PSO, and ABC, respectively. In terms 
of F1-score, ISGA's improvement relative to these three 
algorithms ranges from 10.80% to 14.18%. Based on the 
experimental results from the three datasets, it is clear that 
ISGA significantly outperforms the three algorithms (GA, PSO, 
ABC) in terms of both accuracy and F1-score. This superiority 
may be attributed to ISGA's balanced global search and local 
exploitation capabilities in searching for optimal solutions, or 
its algorithm design may be inherently more suitable for 
handling such complex problems. Especially on the 
CIC-IDS-2017 dataset, ISGA's improvement in F1-score 
relative to GA exceeds 20%, further demonstrating ISGA's 
excellent performance in handling specific problems. 

 

Fig. 1 analyzes the Accuracy scores of various feature 
selection methods across multiple experimental rounds, 
examining their respective stability. For instance, the accuracy 
performance of GA on the CIC-IDS-2017 dataset exhibits a 
significant distance between the upper and lower bounds of its 
box plot, with a relatively low median line, indicating a 
considerable range of fluctuation in Accuracy across multiple 
tests, representing unstable performance of GA. In contrast, 
ABC on the CIC-IDS-2017 dataset shows an even greater 
spread within the box plot, indicating a wider variation in its 
Accuracy, representing an even more unstable performance. 
Among the three datasets of KDDCUP99, CIC-IDS-2017, and 
UNSW-NB15, the boxes representing the performance of 
IGSA consistently occupy the highest positions overall, with 
the smallest span. Compared to the other three methods, IGSA 
demonstrates higher Accuracy, indicating superior and more 
stable performance. 

TABLE I.  PERFORMANCE COMPARISON 

Dataset Performance GA PSO ABC IGSA 

KDDCU
P99 

Accuracy 0.794  0.803  0.771  0.875  

Precision 0.748  0.773  0.737  0.857  

Recall 0.778  0.792  0.752  0.865  

F1-score 0.763  0.782  0.744  0.861  

CIC-IDS
-2017 

Accuracy 0.756  0.777  0.812  0.884  

Precision 0.721  0.742  0.782  0.865  

Recall 0.737  0.757  0.796  0.877  

F1-score 0.729  0.749  0.789  0.871  

UNSW-
NB15 

Accuracy 0.833  0.851  0.819  0.912  

Precision 0.764  0.814  0.792  0.883  

Recall 0.809  0.800  0.774  0.906  

F1-score 0.786  0.807  0.783  0.894  

 

 

 

(a) KDDCUP99 

 

(b) CIC-IDS-2017 

 
(c) UNSW-NB15 
 

Fig. 1. Accuracy performance of feature selection algorithms on datasets 
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CONCLUSION 

In this study, an Improved Gravitational Search Algorithm 
(IGSA) is proposed for selecting relevant features in the 
intrusion detection system of smart grids, aiming to enhance 
the accuracy of intrusion detection. By integrating IGSA with 
the K-Nearest Neighbor (KNN) classifier, a novel approach is 
created, which outperforms traditional feature selection 
methods. On three intrusion detection datasets, IGSA achieves 
a higher level in terms of both accuracy and F1 score. In 
summary, the IGSA-based feature selection method improves 
the accuracy and stability of intrusion detection models, 
highlighting its potential in enhancing the overall security and 
reliability of smart grid systems. 
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