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Abstract—For the processing of echo signals in defect 

detection, wavelet transform and principal component analysis 

are mostly used to extract features. However, the feature values 

obtained by these methods often lead to redundancy, resulting in 

the waste of a lot of resources for defect identification. This paper, 

in the context of defects in thick-walled steel plates with rough 

surfaces, proposes a defect category recognition classification 

method based on an autoencoder-BP neural network. It uses 

signals from electromagnetic ultrasonic and pulsed eddy current 

composite detection as the neural network learning signals. 

Impedance analysis is used to more comprehensively reflect the 

characteristics of defects, thereby improving the accuracy of 

defect identification. Autoencoder is selected to extract the 

geometric features of the composite detection signals, which can 

effectively extract useful features from the dataset. The feature 

dataset is then divided into training and testing sets. Simulation 

experiments show that the trained neural network model has 

achieved a classification accuracy of 90.8% in the testing. 

Keywords— Impedance Analysis Method; Defect Identification; 

Backpropagation Neural Network; Autoencoder 

I. INTRODUCTION 

The quality inspection requirements for large-scale 
equipment have become increasingly stringent, especially for 
thick-walled components widely used in water conveyance 
pipelines, aerospace, and other large-scale equipment [1]. Due 
to issues such as production processes, wear and tear, and 
material quality, thick steel plates often exhibit defects like 
welds, cracks, and holes [2]. Therefore, defect detection is of 
significant importance and value in ensuring product quality and 
timely identifying unknown potential hazards. It plays a crucial 
role in quality monitoring during product use. 

A classification method combining the fractal dimension of 
dynamic indicators and directional propagation neural network 
based on the Duffing system has been proposed for the 
recognition of minor defects [3]; A hierarchical clustering 
binary tree SVM multi-classification method based on inter-

class separability has been proposed for the recognition of 
pipeline defects [4]; An efficient method has been established to 
assist inspectors in quickly and accurately identifying the types 
of pipeline defects by combining deep learning and image 
processing techniques [5]; A method for recognizing pipeline 
corrosion defects has been proposed, which is based on the 
reflection signal of ultrasonic guided waves, using genetic 
algorithms and providing feedback to the classifier [6]. However, 
most of the aforementioned studies are based on thin-walled 
pipelines or flat panels, and the non-destructive testing data 
sources are based on one method of ultrasonic guided waves or 
eddy current detection. In such cases, there may be insufficient 
defect information in the detection data, leading to inaccurate 
defect identification, as well as long training times and oversized 
training sets for the neural network model. 

This paper focuses on thick steel plates with rough surfaces. 
To improve the accuracy of defect identification, we use the 
results of composite detection based on electromagnetic 
ultrasound and pulsed eddy current, which can more 
comprehensively reflect the geometric features and positional 
information of defects. We propose a classification method 
based on an autoencoder BP neural network, using impedance 
analysis to obtain the detection results, then using the 
autoencoder to extract useful features from the dataset, and 
finally importing them into the BP neural network for learning 
and classification. 

II. METHODOLOGY DISCUSSION 

Electromagnetic acoustic testing has a certain blind area near 
the surface of the steel plate being tested because the wave 
source is generated on the surface, making it suitable only for 
detecting defects on the lower surface and inside the steel plate. 
Pulsed eddy current testing is sensitive to surface and near-
surface defects of the steel plate due to the skin effect, but it 
cannot accurately detect when the thickness of the steel plate 
exceeds a certain range. Therefore, the composite detection of 

154979-8-3503-5030-2/24/$31.00 ©2024 IEEE

20
24

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

ut
om

at
io

n,
 C

on
tr

ol
 a

nd
 R

ob
ot

ic
s E

ng
in

ee
rin

g 
(C

AC
RE

) |
 9

79
-8

-3
50

3-
50

30
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CA
CR

E6
23

62
.2

02
4.

10
63

50
36



the two methods can complement each other's shortcomings, 
thereby expanding the detection range and improving the 
accuracy of detection. 

In ultrasonic testing and eddy current testing, the most 
commonly used analysis method is impedance analysis. 
Changes in the impedance of the detection coil can reflect 
whether there are defects. This paper will collect the impedance 
signals and extract geometric features through an autoencoder, 
and then import the feature values into a Backpropagation 
Neural Network for learning and classification. 

A.   Electromagnetic Ultrasonic and Pulsed Eddy Current 

Composite Inspection 

Principle of Electromagnetic Acoustic Transduction 
Inspection[7] : it is a non-contact inspection method that 
generates ultrasonic waves in conductive materials using an 
electromagnetic field. EMAT utilizes a coil to create an 
alternating magnetic field. When the coil is brought close to the 
conductive material, the alternating magnetic field induces 
currents in the material. These currents interact with the 
magnetic field to produce a Lorentz force, which results in the 
generation of ultrasonic waves at the surface of the material. 
EMAT can detect the internal structure and defects of materials, 
but it is difficult to detect near-surface defects.  

Principle of Pulsed Eddy Current Testing[8] : it is an 
inspection method based on the principle of electromagnetic 
induction, suitable for detecting surface and near-surface defects 
in conductive materials. In PECT, a transient excitation current 
is passed through a coil, generating a transient magnetic field. 
When this magnetic field acts on conductive materials, eddy 
currents are induced within the material. The secondary 
magnetic field generated by these eddy currents is detected by 
the detection coil. By analyzing the signals received by the 
detection coil, it is possible to determine the presence or absence 
of defects. 

This article adopts a mechanism-level composite inspection, 
which has a higher detection efficiency than the system-level 
composite. Mechanism-level composite refers to the common 
points between electromagnetic ultrasonic and pulsed eddy 
current in the detection principle, achieving simultaneous pulsed 
eddy current and electromagnetic ultrasonic detection under the 
same excitation source and detection hardware conditions[9]. 
Since both detection processes have the same physical process, 
both are achieved by detecting the changes in the eddy current 
on the conductor surface that cause changes in the electromotive 
force of the detection coil to obtain detection information. 
Therefore, it is possible to use a common detection coil, use the 
same excitation source, and obtain a composite detection signal 
containing pulsed eddy current and electromagnetic ultrasonic 
from the composite sensor. By separating the electromagnetic 
ultrasonic and pulsed eddy current signals, and then performing 
independent signal processing for each, the data fusion is carried 
out to obtain the detection information. 

B. Impedance Analysis Method 

For the composite inspection circuit, it can be equivalent to 
a circuit loop, and then according to Faraday's law of 
electromagnetic induction, the output impedance of the sensor 

coil can be expressed as： 

 �� � �� � ����
	
����
�� �� � �� � Δ�  (1) 

 �� � �� � ����
	
����
�� �� � �� � ΔL  (2) 

Rc and Lc are the resistance and inductance of the probe coil, 

respectively; � �  and � �  are the resistance and inductance of 
the target specimen, M is the mutual inductance coefficient 
between the probe coil and the target specimen. The complex 

impedance of the coil can be expressed as：     

  � � �
�    (3) 

When inspecting the steel plate, if there are defects, then the 
voltage signal on the receiving coil will be abnormal, and 
moreover, changes in parameters such as the location and size 
of the defects can also cause varying degrees of changes in the 
voltage signal. Therefore, we can determine the changes in 
impedance based on the detected voltage signal, and based on 
the characteristics of the impedance, we can infer the relevant 
information about the defects, meeting the requirements for 
defect detection. 

C. Autoencoder 

The autoencoder is shown in Fig.1, with the encoding and 
decoding networks respectively performing the functions of 
importing the original data and exporting the feature quantities. 
The amount of input data is equal to the number of output 
features. 

 
Fig. 1. Autoencoder 

The goal of the autoencoder is to reconstruct the input by 
taking the output of one layer as the input of the next, thereby 
reducing the difference between the input and output to achieve 
the purpose of feature extraction. There are many factors that 
affect the quality of the feature quantity, such as the number of 
hidden layers, the number of nodes per layer, the type of 
activation function in the hidden layers, the learning rate, the 
vector dimension, but the most significant influence comes from 
the number of hidden layers. When the encoder has too few layers, the 
features extracted by the autoencoder do not closely fit the original data; 
when the encoder has too many hidden layers, overfitting occurs, 
which prevents the extracted features from well reflecting the most 
essential characteristics of the original data. Considering all these 
factors, we specify that this autoencoder uses 2 hidden layers, which 
can achieve better feature extraction in the context of this paper. 
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In this context, the role of the encoding network is to encode 
the input data X to obtain feature variables with dimensions 
lower than X. The encoding process is as follows: 
 ℎ� � ��∑ ����� ! � "�  (4) 

 �� � ��∑ �!ℎ�#� ! � "!�  (5)  

The role of the decoding network is to restore the obtained 
low-dimensional feature variables to their original dimensions. 
The decoding process involves:   �$� � ��∑ �%��&� ! � "%�  (6) 

�� represents the original input data of the autoencoder; ℎ� and ��  are the outputs of the first and second layers, 

respectively; �$� is the output of the encoder. 
To ensure that the extracted feature quantities are what we 

need and to avoid redundancy or repetition in the features, we 

need to add a sparsity penalty term Ω(&)*�+, to the network for 

selection, making the network more selective. 

The loss function G after incorporating the sparsity constraint 

is:   - � -�./ � 0Ω12�34+( � 5Ω(&)*�+,  (7)  

-�./   refers to the mean squared error loss function, Ω12�34+(  and Ω(&)*�+,   are the L2 regularization term and 

sparsity penalty term, 0   and  5  are the regularization 
coefficients. After incorporating the sparsity penalty term into 
the system, it becomes possible to control the inactivation 
degree of the neurons in the hidden layer, thereby achieving the 
intended goals of improving network performance and 
accelerating the convergence rate. 

D. Backpropagation Neural Network 

The BP neural network consists of three parts: the input 
layer, the hidden layer, and the output layer. It adjusts the 
parameters during the forward propagation phase based on the 
error feedback from the output until the output results meet the 
expected requirements or a set number of computations is 
reached. Within its structure, nodes between each layer are 
connected by weights, and after each new computation, the 
weights are adjusted based on the results. The structural network 
is depicted in Fig.2. 

 
Fig. 2. BP neural network structure diagram 

The transfer function from the input layer to the hidden layer 
is             
    ℎ� � ��∑ ����� ! � "�  (8) 

The transfer function from the hidden layer to the output 
layer is            
     �$� � ��∑ �!ℎ�#� ! � "!�  (9) 

��  represents the original input data of the autoencoder 

network, ℎ� is the output of the first layer, �$� is the output of the 

encoder, which is the extracted feature quantity, � and " are the 
weights and biases, respectively. 

E. Finite Element Simulation Model Construction 

Finite Element Analysis is a numerical simulation technique 
that employs the Finite Element Method to generate a virtual 
environment within a computer to simulate a variety of physical 
phenomena.  

COMSOL Multiphysics is a finite element analysis software 
capable of solving and simulating multi-physics problems. 
COMSOL offers a physics-based traditional user interface and a 
system for coupling partial differential equations. It provides an 
integrated development environment and a cohesive workflow 
for applications in the fields of electrical, mechanical, fluid, 
acoustic, and chemical engineering. Therefore, we have chosen 
COMSOL as the platform for conducting finite element analysis 
of the electromagnetic acoustic and pulsed eddy current 
composite inspection model. 

Geometric modeling and material parameter configuration: 
the composite detection model is a three-dimensional model. 
The simulation model for the electromagnetic acoustic and 
pulsed eddy current composite detection is shown in Fig.3. The 
composite detection model is composed of a transmission coil, 
a reception coil, test specimen, a permanent magnet, and air 
region. The coil material is copper, which is used to excite the 
initial magnetic field and to receive the electromotive force 
feedback from the pulsed eddy current and electromagnetic 
ultrasound. The specific geometric and physical parameter 
settings are detailed in Table Ⅰ. 

The electromagnetic ultrasonic and pulsed eddy current 
composite detection model involves the coupling of electric 
fields with magnetic fields, as well as the coupling of 
electromagnetic fields with solid mechanics. The static magnetic 
field of the permanent magnet utilizes the no-current magnetic 
field feature in the AC/DC module, while other model regions, 
including the air domain, coils, and the test specimen, employ 
the magnetic field of the AC/DC module. 

TABLE I.  IMULATION PARAMETER SETTINGS 

 
Transmission/R

eception Coil 
Permanent 

Magnet 
Steel 
Plate 

Width/Radius[mm] 4 5 30 

Height[mm] 5 3 33 

Electrical 
Conductivity [S/m] 

6e7 7.14e5 8.7e6 

Number of Turns 100/150 - - 

Lift-off [mm] 2/1.5 8 - 

Young's Modulus[Pa] - - 3e11 

Density [Kg/m^3] - - 3900 

Poisson's Ratio - - 0.222 
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Fig. 3. Simulation model 

The solid mechanics module is utilized within the test 
specimen to simulate the generation and propagation of 
electromagnetic acoustics. In the physical field coupling settings 
for the electric and magnetic fields, the electromagnetic field 
coupling interface pre-defined by COMSOL is applied, 
encompassing Ampere's law, magnetic insulation, and initial 
value settings, among others. The excitation source is excited 
through the means of external current density. 

Mesh division: the mesh division significantly influences the 
outcomes of simulations, with several critical factors at play, 
such as the method of dividing the geometric model and the 
shape and size of each mesh element. These factors directly 
impact the computational time, memory requirements, and 
accuracy of the model's solution. A mesh that is too coarse can 
result in low precision and inaccurate outcomes; conversely, a 
mesh that is too fine can exponentially increase the 
computational time. 

In order to ensure computational precision while keeping the 
simulation duration brief, the mesh is refined in regions where 
the electromagnetic field is concentrated. The air and within the 
permanent magnet, utilize a free mesh division to minimize 
computation, as depicted in Fig.4. For the interior of the test 
specimen, which needs to simulate the propagation of ultrasonic 
waves, the mesh division should typically not be finer than one-
twelfth of the wavelength. 

 
Fig. 4. Mesh division (with air domain hidden) 

Simulating by continuously changing the geometric features 
of the defects, such as width, thickness, and position, width 
thickness, depth, changing the position relative to the coil, a total 
of 128 sets of data were ultimately obtained. 

III. SIMULATION ANALYSIS 

For this part of the experimental simulation, 128 sets of 
defect data were chosen, sourced from simulation experiments 
performed on COMSOL—electromagnetic acoustic and pulsed 
eddy current composite detection for thick steel plates featuring 
rough surfaces. The data encompasses surface defects, internal 
defects, and variations in defect shapes and locations. Initially, 
the acquired 128 sets of data are fed into a sparse autoencoder to 
extract valuable features; subsequently, these feature datasets 
are introduced to a Backpropagation Neural Network for the 
purpose of learning and classification. The parameter design of 
the sparse autoencoder is as shown in Table Ⅱ. 

TABLE II.  SPARSE AUTOENCODER PARAMETERS 

Parameter Name Value 

Maximum Number of Training 
Epochs 

400 

L2 Regularization Coefficient 0.004 

Control Coefficient for Sparsity 
Regularization 

4 

Expected Proportion of 
Training Samples 

0.15 

Following a comparison of the feature quantities extracted 
by the autoencoder, features with similar curves were manually 
filtered out as they are considered redundant information and 
have a less significant effect on defect identification and 
classification. The selected feature quantities for the subsequent 
experimental simulation are presented in Table Ⅲ. 

The feature data derived from the sparse autoencoder's 
output is split into training and testing sets in a ratio of 
approximately 4:1, which is then fed into the Backpropagation 
Neural Network (BPNN) for learning and classification. The 
parameter design is detailed in Table Ⅳ. 

TABLE III.  SELECTED FEATURE QUANTITIES 

Average s̅ � 19 :  
<

� !
=�  

Waveform Factor �>?/ A19 :  
<

� !
|=�|C 

Standard Deviation D+ � 19 :  
<

� !
E=� � =̄G%

 

Kurtosis 
19 :  

<

� !
�=� � =̅�H

D+H  

Impulse Factor =#)I/ A19 :  
<

� !
|=�|C 

Minimum Value ?#�� 
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Margin Factor =#)I/ A19 :  
<

� !
|=�|C

%
 

TABLE IV.  BP NEURAL NETWORK PARAMETERS 

Parameters value 

Maximum Number of Iterations 1000 

Target Training Error 0.000001 

Learning Rate 0.01 

Data labeled as category 1 signifies defective data, whereas 
data labeled as category 2 signifies non-defective data. Fig.5 and 
Fig.6 demonstrate that utilizing the features extracted by the 
autoencoder with a Backpropagation Neural Network for defect 
identification achieves a commendable level of accuracy. For 
category 1, the accuracy rates for the training and testing sets are 
97.4% and 90.9%, respectively; for category 2, the accuracy 
rates for the training and testing sets are 63.6% and 83.3%, 
respectively. 

 
Fig. 5. Training Set Recognition Results 

 
Fig. 6. Test Set Recognition Results 

IV. CONCLUSION 

Employing electromagnetic ultrasonic and pulsed eddy 
current composite detection can more thoroughly reveal the 
geometric information of defects in thick steel plates with rough 
surfaces. Utilizing impedance analysis to examine the echo 
signals from defects, followed by the application of an 
autoencoder to extract geometric features from the dataset, the 
autoencoder inherently provides effective feature extraction, 
preventing information redundancy. The Backpropagation 
Neural Network possesses strong learning capabilities and can 
achieve a high level of classification accuracy, making it suitable 
for the identification and categorization of defects in thick steel 
plates with rough surfaces. 
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