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Abstract: The leg kinematic parameters of quadruped robots, 

including connecting rod length and joint angle, often deviate 
significantly due to machining and assembly errors. This 
inaccurate knowledge can lead to foot-end position errors and 
ultimately affect precise state estimation and control. Directing 
against this issue, this paper introduces the concept of a virtual 
fixed base and designs a non-redundant parameter identification 
method. The virtual fixed base is established by 4 marking points 
on the body, determining a hypothetical coordinate system, which 
is used to solve the hand-eye calibration problem of quadruped 
robots. This study provides the overall process of the kinematic 
parameter identification method. Simulation and experiment 
results show that the identified kinematic parameters converge to 
their actual value and the foot-end position accuracy is improved 
by over 80% after parameter compensation. 

Key-words: Kinematic parameter identification; Quadruped 
robots; Virtual fixed base; Hand-eye calibration; Least square 
method 

I. INTRODUCTION 

In recent years, the theoretical research and practical 
application of quadruped robots have made great progress[1-3]. 
However, the actual kinematic parameters of robots, including 
connecting rod length and joint angle, often deviate from the 
design values affected by factors such as machining accuracy 
and assembly errors. This will affect the accuracy of the 
kinematic model, leading to significant errors in foot-end 
position and velocity, ultimately affecting the control accuracy[4].  

Compared with fixed-base heavy-duty industrial robots, 
there are few feasible methods to identify the kinematic 
parameters for quadruped robots. Most of the existing researches 
focuses on fixed-base heavy-duty industrial robots[5-8], which are 
not applicable for quadruped robots with a floating base. Zhu[9] 
proposed an effective kinematic self-calibration method for 
dual-manipulators based on virtual constraints to estimate the 
actual kinematic parameters of the robots. Du[10] designed an 
online robot calibration method that can quickly identify robotic 
kinematic parameters without stopping the robot, thereby greatly 
improving the operating efficiency of the robot. Zhang[11] 
presented an analytical method to determine the identifiable 
kinematic parameters for serial-robot calibration under various 
identification conditions. 

Hand-eye calibration strategy is a key component in 
parameter identification[12-14]. Jiang[15] proposed a hand-eye 

calibration method based on the RGB-D camera reprojection 
error. Zhong[16] designed an adaptive controller to compute the 
orientation and position of the eye to the hand through a two-
stage process, which enables parameter estimation in low-
dimensional space. Jiang[17] significantly improved the 
localization accuracy of the robot by discussing a kinematic 
calibration method based on Extended Kalman Filtering and 
Particle Filtering. The traditional calibration method requires a 
fixed base coordinate system. However, the body of quadruped 
robots is usually considered as a floating base, which leads to 
uncertainty in the hand-eye transformation matrix. This means 
traditional hand-eye calibration strategies are not suitable for 
quadruped robots. 

Directing against the above issues, this study introduces the 
concept of a virtual fixed base and designs a non-redundant 
parameter identification method based on the virtual fixed base. 
The leg of quadruped robots is similar to a serial robotic arm 
attached to the body. Therefore, the virtual fixed base is 
transformed from the floating base of a quadruped robot by 
fixing its body pose to set up a hypothetical coordinate system. 
The error parameter set is defined by combining non-redundant 
kinematic parameters with a high impact on the foot-end 
position [18-21], along with uncertain parameters of the hand-eye 
calibration matrix. A parameter error model and a least square 
identification method are established based on the DH parameter 
method.  

The structure of this paper is as follows. Section Ⅱ defines 
the coordinate system and establishes the single-legged 
kinematic model. Section Ⅲ designs the overall scheme of 
parameter identification. Section IV involves simulations and 
experiments. Section Ⅴ is the conclusion of this paper. 

II. KINEMATIC MODEL 

In this section, the 12-DOF series-legged quadruped robot is 
studied. To effectively analyze the kinematics of the quadruped 
robot, the relevant coordinate systems are defined and the single-
legged kinematic model is established, which is the foundation 
of the identification method. 

A. Coordinate System Definition 

Based on the geometric structure of the 12-DOF series-
legged quadruped robots, coordinate systems are established at 
the geometric center of the body, hip joint, and foot end, as 
shown in Fig.1. The specific definitions are as follows. 

264979-8-3503-5030-2/24/$31.00 ©2024 IEEE

20
24

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

ut
om

at
io

n,
 C

on
tr

ol
 a

nd
 R

ob
ot

ic
s E

ng
in

ee
rin

g 
(C

AC
RE

) |
 9

79
-8

-3
50

3-
50

30
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CA
CR

E6
23

62
.2

02
4.

10
63

50
29



  

 
Fig. 1. Coordinate System Definition of Quadrupeds 

{𝐵}: Body coordinate system. The origin is located in the 
geometric center of the body, with the X-axis pointing directly 
in front of the body and the Z-axis pointing in the vertical body 
upward direction. 

{𝐻}: Hip joint base coordinate system. The origin is located 
in the center of the side-swinging hip joint, and the axis 
directions are fixed relative to the body. 

{𝐹}: Foot coordinate system. The origin is located in the 
center of the foot, and the axis directions are fixed relative to the 
foot. 

B. Single-legged Kinematic Model 

The single leg of a quadruped robot can be regarded as a 
serial robotic arm with 3 joints. Using the DH parameter method, 
it is easy to obtain 𝐏ி 

ு , which is the foot-end position relative 
to the joint angle position described in the hip joint base 
coordinate system {𝐻}. The kinematic model of a single leg can 
be obtained as follows: 

𝐩ி 
ு = ൥

𝑐ଵ𝑐ଶଷ𝑙ଶ + 𝑐ଵ𝑐ଶ𝑙ଵ + 𝑠ଵ𝜔
𝑠ଶଷ𝑙ଶ + 𝑠ଶ𝑙ଵ

−𝑠ଵ𝑐ଶଷ𝑙ଶ − 𝑐ଶ𝑙ଵ + 𝑐ଵ𝜔
൩ (1) 

Where 𝜔 represents hip dislocation; 𝑙ଵ  and 𝑙ଶ  represent the 
connecting rod length of thigh and calf respectively; 𝑐௜௝  and 
𝑠௜௝  represent cos(θଵ + θଶ) and sin(𝜃ଵ + 𝜃ଶ) respectively. 

III. PARAMETER IDENTIFICATION METHOD 

A. Parameter Identification Process 

The parameter identification process is as follows: 

(1) Modelling: Establish the single-leg kinematic model 
of the quadruped robot. 

(2) Measurement: Obtain the time-synchronized foot-
end position and joint angle data. 

(3) Identification: Input the foot-end position errors to 
get the identification values. 

(4) Compensation: Compensate the single-leg model 
with kinematic parameter errors. 

The kinematic parameter identification process is shown in 
Fig. 2. In identification, the foot-end position's Jacobian matrix 
is utilized as the parameter error model, and the identification 
method employs the least square approach. In measurement, a 
hand-eye calibration strategy is designed to uniform the 
measured foot-end positions and the nominal values, which are 
described in different coordinate systems. These positions are  

 
Fig. 2. Kinematic Parameter Identification Process 

obtained by using a position-measuring device and the joint 
angles of the robot respectively. 

B. Hand-eye Calibration Strategy 

The key to parameter identification is the hand-eye 
calibration. The measuring device acts as an "eye", capturing 
information about the foot-end position 𝐩 

ௌ
ி
௥௘௟  which is 

described in the measuring coordinate system {S}. The end of 
the robot acts as a "hand", and its nominal foot-end position 𝐩  

ு
ி  

calculated by a kinematic model is described in {H}. To solve 
the inconsistency between "eye" and "hand" coordinate systems, 
it is essential to establish the transformation matrix from {H} to 
{S} 𝐓ு

ௌ  to unify the positional descriptions. 

However, as shown in Fig. 3, since the coordinate system {B} 
is attached to a floating base, the transformation matrix 𝐓஻

ௌ  is 
variable and difficult to measure, which makes the matrix 𝐓ு

ௌ  
hard to calculate. 

 
Fig. 3. Coordinate Transformation for Hand-eye Calibration 

To solve the hand-eye calibration problem caused by the 
floating base, a parameter identification scenario applicable to 
quadruped robots is designed, as shown in Fig. 4.  

 
Fig. 4. Kinematics Parameter Identification Scenario 
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 In Fig. 4, {S} is the reference coordinate system of the 
measuring device. 4 points are marked at the body to 
conveniently introduce the backplane coordinate system {Bp} as 
a virtual fixed base. The robot is fixed in a lying position on a 
platform and its legs move continuously to cover the maximum 
motion range. Meanwhile, an optical motion capture system 
works as the position-measuring device to obtain real-time foot-
end positions by capturing the coordinates of marker points. 

𝐓ு
ௌ  can be decomposed into 3 parts by introducing the {𝐵𝑝} 

coordinate system, as shown in Fig. 3. 

𝐓ு
ௌ = 𝐓 ஻௣

ௌ 𝐓 ஻
஻௣

𝐓ு
஻ (2) 

Where, 𝐓ு
஻  is determined by the body length 𝑙௕  and 

width  ω௕  of the quadruped robot. And there are only 
translational and rotational relations in the Z-axis between the 
{𝐵𝑝} system and the {𝐵} system. The rotation angle is defined 
as α௛  and the translational distance as 𝑧௛ , which can be 
determined by measurement. 

The expression of 𝐓஻
஻௣  is as follows: 

𝐓஻
஻௣

= 𝐑୞(α୦)𝐃୞(z୦) = ൦

cos (α୦) −sin (α୦)

sin (α୦) cos (α୦)
0 0
0 0

0                 0
0                 0

1 z୦

0 1

൪ (3) 

Where, 𝐑୞(α୦)  is the rotation transformation matrix 
around the Z-axis. 𝐃୞(z୦)  is the translation transformation 
matrix along the Z-axis. 

Therefore, the key to the hand-eye calibration problem can 
be transformed into determining 𝐓஻௣

ௌ , which is to calculate 𝐩஻௣
ௌ  

and 𝐑஻௣
ௌ . The specific steps are as follows: 

1) Calculate 𝒑஻௣
ௌ  

Assume the origin of {𝐵𝑝} as the center point of the 4 
marked points, the expression is as follows: 

𝐩஻௣
ௌ = ෍ 𝐩୧

ସ

୧ୀଵ

(4) 

2) Calculate 𝑹஻௣
ௌ  

The rotation matrix can be composed of column vectors with 
unit axes. 

𝐑஻௣
ௌ = [s𝐱ොಳ೛

s𝐲ොಳ೛
s𝐳ොಳ೛] (5) 

By noting the positions of the marker points in Fig. 1 as 
𝐩ଵ、𝐩ଶ、𝐩ଷ、𝐩ସ in counter-clockwise order, starting from the 
left front, s𝐱ොಳ೛

ands𝐳ොಳ೛
 can be represented by the coordinates of 

the 4 marker points. 

s𝐱ොಳ೛
can be expressed as: 

s𝐱ොಳ೛
=

𝐩ଵ + 𝐩ସ − 𝐩ଶ − 𝐩ଷ

‖𝐩ଵ + 𝐩ସ − 𝐩ଶ − 𝐩ଷ‖ଶ

(6) 

s𝐳ොಳ೛
can be expressed as: 

s𝐳ොಳ೛
=

(𝐩ଵ − 𝐩ଶ) × (𝐩ଷ − 𝐩ସ)

‖(𝐩ଵ − 𝐩ଶ) × (𝐩ଷ − 𝐩ସ)‖ଶ

(7) 

Therefore, s𝐲ොಳ೛
can be expressed as: 

s𝐲ොಳ೛
=

s𝐳ොಳ೛×s𝐱ොಳ೛

ቛs𝐳ොಳ೛×s𝐱ොಳ೛
ቛ

ଶ

(8) 

After the Smithsonian orthogonalization of each unit axis, 
the final rotation matrix 𝐑஻௣

ௌ  is obtained. 

C. Error Parameter Set 

The single-legged kinematic model is established using DH 
parameters. For a 3-joint serial robotic arm, it is theoretically 
necessary to identify 16 linkage parameters in 4 groups. Some 
of these kinematic parameters have the same effect on the foot-
end position, which means that there are redundant parameters 
in the identification model. Therefore, only 3 joint angle biases 
and 3 connecting rod lengths are selected as the parameters to be 
identified. 

In addition, during hand-eye calibration, inaccurate positions 
of the marking points may lead to small deviations in 𝐓஻௣

஻ . 
Therefore, α௛ and𝑧௛ are also considered as parameters to be 
identified. 

The error parameter set can be defined as follows: 

ΔΘ = [Δθଵ  Δθଶ  Δθଷ  Δω  Δlଵ  Δlଶ  Δα୦  Δz୦]୘ (9) 

 Based on the error parameter set, the parameter error model 
can be obtained. 

D. Parameter Error Model 

Taking {Bp} as the fixed base coordinate system in the 
parameter identification process, the parameter error model is 
the mapping matrix of the position vector deviation Δ 𝐩ி

஻௣  with 
respect to the error parameter ΔΘ. Based on the single-legged 
kinematics and the transferability of the transformation matrix, 
the expression 𝐩ி

஻௣  is as follows: 

𝐩ி
஻௣

= 𝐓 ஻
஻௣

𝐓 ு
஻ 𝐩ி

ு = 

቎

cα౞
(sଶଷlଶ + sଶlଵ + 0.5lୠ) + sα౞

(cଵcଶଷlଶ + cଵcଶlଵ + sଵω − 0.5ωୠ)

sα౞
(sଶଷlଶ + sଶlଵ + 0.5lୠ) − cα౞

(cଵcଶଷlଶ + cଵcଶlଵ + sଵω − 0.5ωୠ)

−sଵcଶଷlଶ − sଵcଶlଵ + cଵω + z୦

቏

 

 

(10) 

Assuming that the deviations are small enough, the 
expression of Δ 𝐩ி

஻௣  can be obtained by taking the partial 
derivation of formula (10) with respect to Θ: 

Δ 𝐩ி
஻௣

= 𝐉(Θ)ΔΘ (11) 

The expression 𝐉(Θ) is as follows: 

𝐉(Θ)=቎

−s஑౞
(sଵcଶଷlଶ + sଵcଶlଵ − cଵω)

c஑౞
(sଵcଶଷlଶ + sଵcଶlଵ − cଵω)

−cଵcଶଷlଶ − cଵcଶlଵ − sଵω

 

c஑౞
(cଶଷlଶ + cଶlଵ) − s஑౞

(cଵsଶଷlଶ + cଵsଶlଵ)

s஑౞
(cଶଷlଶ + cଶlଵ) + c஑౞

(cଵsଶଷlଶ + cଵsଶlଵ)

sଵsଶଷlଶ + sଵsଶlଵ

 

c஑౞
cଶଷlଶ − s஑౞

cଵsଶଷlଶ s஑౞
sଵ c஑౞

sଶାs஑౞
cଵcଶ c஑౞

sଶଷାs஑౞
cଵcଶଷ

s஑౞
cଶଷlଶ + c஑౞

cଵsଶଷlଶ −c஑౞
sଵ s஑౞

sଶ − c஑౞
cଵcଶ s஑౞

sଶଷ − c஑౞
cଵcଶଷ

          sଵsଶଷlଶ             cଵ −sଵcଶ                   −sଵcଶଷ
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−s஑౞
(sଶଷlଶ + sଶlଵ + 0.5lୠ) + c஑౞

(cଵcଶଷlଶ + cଵcଶlଵ + sଵω − 0.5ωୠ) 0

c஑౞
(sଶଷlଶ + sଶlଵ + 0.5lୠ) + s஑౞

(cଵcଶଷlଶ + cଵcଶlଵ + sଵω − 0.5ωୠ)    0

                                                    0                                                                      1

቏

                                                       

 

(12) 

E. Least Square Parameter Identification Method 

The leg joints are controlled to move continuously to cover 
the maximum motion range. Then taking n sets of foot-end 
positions and joint angles, identification equations for the 
kinematic parameters can be obtained by using the least square 
method. 

ΔΘ෡ = (𝐉መ(Θ)୘𝐉መ(Θ))ିଵ𝐉መ(Θ)୘Δ 𝐩ෝ 
஻௣

ி (13) 

Where, 

𝐉መ(Θ) = [𝐉୘(Θଵ) 𝐉୘(Θଶ) … 𝐉୘(Θ୬)]୘ (14)

Δ 𝐩ෝ 
஻௣

ி = [Δ 𝐩ிଵ
୘

 
஻௣ Δ 𝐩ிଶ

୘
 

஻௣ … Δ 𝐩ி୬
୘

 
஻௣ ]୘ (15)

Δ 𝐩ி୧ 
஻௣ = 𝐩ி୧

୰
 

஻௣ − 𝐩 
஻௣

ி୧
୬ (16)

 

In formula (16), 𝐩ி୧
୰

 
஻௣  is the actual foot-end position, 

which can be obtained by converting the coordinate system with 
𝐩 

ௌ
ி୧
୰  captured by the measuring device. 𝐩 

஻௣
ி୧
୬  is the nominal 

foot-end position, which can be obtained by converting the 
coordinate system with 𝐩 

஻
ி୧
୬ . 

F. Algorithmic Pseudo-code 

Based on the above parameter identification scheme, the 
pseudo-code of the algorithm is as follows. 

Algorithm Non-redundant Parameter Identification Method 
Based on A Virtual Fixed Base 
Input: n sets of joint angles 𝛉, foot-end position 𝐩 

ௌ
ி
௥௘௟ 

Output: results of error parameter Δ𝚯 
Initialization: body marker position coordinates, nominal 
kinematic model parameters 
1: Obtain 𝐓஻௣

ௌ  based on formula (4~8) 
2: Obtain 𝐩 

஻௣
ி୧
௥  by transforming the coordinate of 𝐩 

ௌ
ி௜
  

3: Obtain 𝐩 
஻௣

ி୧
௡  based on formula (10) 

4: Obtain Δ 𝐩ி
஻௣  based on formula (15) and (16) 

5: Obtain 𝐽መ(𝚯) based on formula (12) and (14)  
6: Obtain Δ𝚯෡  based on formula (13) 
7: Return Δ𝚯෡  

IV. SIMULATION AND EXPERIMENT 

A. Simulation analysis 

1) Parameter setting and simulation process 
Referring to the kinematic parameters of the A1 robot and 

taking the left front leg as an example, the nominal, actual, and 
error values of the kinematics are set before simulation, as 
shown in Table 1. Set the error ranges of the joint angle and 
measuring devices as [-1.0deg,1.0deg], [-1.0mm,1.0mm] 
respectively to simulate the noise of sensors. The simulation 
process is as follows: 

Firstly, Use the nominal kinematic parameters Θ௡  in Table 
1 to build the pre-identification single-legged kinematic model 
and the parameter error model; Use the real kinematic 
parameters Θ௥  to obtain the real kinematic model. Then, 
randomly select 1000 groups of target sampling points, and input 
the above data into the models. Jacobian matrix of the foot-end 
position error and the parameter error model can be obtained 
subsequently. Finally, use the least square method to obtain the 
identification results. 

2) Result analysis 
The kinematic parameters were identified using the data of 

1000 target sampling points. The results are shown in Table 2. 
The average percentage error of the error parameters 
identification results was 91.87%. Taking the absolute accuracy 
of the foot-end position as the evaluation index, the root mean 
square error(RMSE) of the foot-end position was 16.5mm before 
identification, and it was reduced to 1.0mm after identification. 
The average accuracy was improved by 94.16%. 

The above data illustrate the effectiveness of the algorithm. 
Fig. 5 shows the curve of the kinematic parameter identification 
results with respect to the number of target sampling points. It is 
evident that as the number of sampling points increases, the 
identification results for each parameter gradually approach the 
actual value, indicating rapid convergence. 

Fig. 6 shows the visualization of the nominal and actual foot-
end positions. Before compensation, the position error is 
obvious, and the error is reduced and close to the actual value 
after compensation.

TABLE I.  SIMULATION PARAMETERS OF KINEMATICS IDENTIFICATION (TAKING THE LEFT FRONT LEG AS AN EXAMPLE) 

Parameter 𝜽𝟏
𝒊𝒏𝒊𝒕\deg 𝜽𝟐

𝒊𝒏𝒊𝒕\deg 𝜽𝟑
𝒊𝒏𝒊𝒕\deg 𝝎\m 𝒍𝟏\m 𝒍𝟐\m 𝒛𝒉\m 𝜶𝒉\deg 𝒍𝒃\m 𝝎𝒃\m 

Nominal value 𝚯𝒏 
Actual value 𝚯𝒓 
Error value 𝚫𝚯 

0.0 
1.0 
1.0 

0.0 
1.5 
1.5 

0.0 
2.0 
2.0 

-0.08 
-0.0838 
-0.0038 

0.2 
0.21 
0.01 

0.2 
0.22 
0.02 

0.06 
0.065 
0.005 

0.0 
3.0 
3.0 

0.361 
0.361 

0.0 

0.094 
0.094 

0.0 

 

TABLE II.  SIMULATION RESULTS OF KINEMATICS IDENTIFICATION (TAKING THE LEFT FRONT LEG AS AN EXAMPLE) 

Error parameter 𝜟𝜽𝟏
  𝜟𝜽𝟐

  𝜟𝜽𝟑
  𝜟𝝎 𝜟𝒍𝟏 𝜟𝒍𝟐 𝜟𝒛𝒉 𝜟𝜶𝒉 

Identification value 1.200deg 1.536deg 2.275deg -0.00348m 0.0098m 0.194m 0.0048m 3.112deg 
Actual value 1.000deg 1.500deg 2.000deg -0.00380m 0.0100m 0.020m 0.005m 3.000deg 

Accuracy rate 77.8% 95.7% 86.4% 88.9% 97.7% 96.9% 96.3% 95.2% 
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(a)Joint Angle Deviation 

 

   (b)Connecting Rod Deviation 

Fig. 5. Kinematic Parameter Identification Results 

B. Experimental setting and analysis 

1) Experimental setting 
In order to verify the reliability of the method in this paper, 

the leg kinematic parameters of the actual robot are calibrated. 
The NOKOV optical motion capture system was used as the 
measuring device, which utilized optical imaging technology to 
capture the coordinates of the marked points in real time with 
sub-millisecond accuracy. The experimental scenario is shown 
in Fig. 7, where marker points are installed at the body and foot 
end of the A1 robot, and the joints of a single leg are sequentially 
controlled to move in a wide range of periodic motions. ROS 
nodes were used to capture the joint information of the A1 robot 
and point information of the measuring device during the motion 
process. After time synchronization on this information, the 
initial experimental data is obtained. 

 

Fig. 7. Parameter Recognition Experimental Scenarios 

 
(a) Before Compensation 

 

(b) After Compensation 

Fig. 6. Comparison of Foot-end Position Error in Simulation 

2) Result analysis 
Taking the left front leg as an example, the kinematic error 

parameters of the actual robot are identified as ΔΘி௅ =
[1.611𝑑𝑒𝑔, 0.178𝑑𝑒𝑔, 5.714𝑑𝑒𝑔, 2.22𝑚𝑚, 1.41𝑚𝑚, 16.1𝑚𝑚].
The data show that all joint angles of the robot have some bias, 
and the calf rod length errors are comparatively large. Using the 
point information of the measuring device as reference data, the 
RMSE of the foot-end position after compensation is reduced 
from 22.2mm to 3.90mm, with an accuracy improvement of 
82.43%. Fig. 8 shows the foot-end position error before and after 
parameter compensation, which shows that the compensated 
foot-end position is very close to the actual value, and the error 
is significantly reduced. 

 
  (a) Before Compensation   
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   (b) After Compensation 

Fig. 8. Comparison of Foot-end Position Error in Simulation 

V. CONCLUSION 

In this paper, a leg kinematic parameter identification 
method for quadruped robots based on a virtual fixed base is 
presented, which solves the problem of reduced control accuracy 
caused by inaccurate kinematic parameters. By fixing the pose 
of the body and introducing the virtual fixed base, a new hand-
eye calibration strategy applicable to the quadruped robot is 
designed, and the corresponding kinematic parameter 
identification scheme is proposed. The simulation results show 
that the error parameters can rapidly converge to the accurate 
values, and the experimental results show that the position error 
of the foot end is significantly reduced after parameter 
compensation. This verifies the effectiveness and practicality of 
the method. 
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