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Abstract—This paper studies the strategy consensus problem
of networked evolutionary agmes (NEGs) under degree-based
pinning control. Firstly, two necessary and sufficient conditions
are given for the strategy consensus of NEGs based on different
premises. Secondly, an algorithm is obtained to get the minimal-
agent control based on degree for making the NEGs achieve
the strategy consensus. Thirdly, as application, we present two
sufficient conditions for the strategy consensus of NEGs with two
kinds of special networked graph: wheel graph and fn×3 flower
graph. Finally, an illustrative example is employed to show the
effective of the obtained results.

Index Terms—networked evolutionary games, pinning control,
strategy consensus, semi-tensor product of matrices

I. INTRODUCTION

Evolutionary games theory was first proposed for describing
the evolutionary of living things in nature [1]. Since then,
evolutionary games theory has been widely developed, repre-
sentative scholars are Maynard Smith and Price [2]. With the
rapid development of evolutionary games theory, many related
problems in large and small fields have been effectively solved,
such as biology, economics, mathematics and so on [3], [4].

Although evolutionary games theory has been widely devel-
oped [5], most of them are assumed to be played against each
player. Considering the fact that in most practical scenarios,
each player only plays with her or his neighbors. Based on
above background in evolutionary games, NEGs have appeared
and been extensively studied [6].

There is a very important problem in NEGs, that is, the
problem of strategy consensus. In short, the main purpose of
the consensus problem is to design an effective control so that
all agents reach a consistent strategy. This problem is not only
applied in networked evolutionary games, but also in multi-
agent system [7], economical systems [8], and so forth [9].

This work was supported by the National Natural Science Foundation of
China under Grant 62073054, 62173054, 62373072.

Recently, professor Cheng proposed an effective mathemat-
ical tool of the semi-tensor product of matrices (STP). It
breaks the limitation of the original matrix product dimension.
Cheng et al used the STP method to transform the evolutionary
dynamical of NEGs into the algebraic form of the logical
dynamical system [6]. Based on this theoretical method, a
large number of studies on Boolean networks and NEGs
emerged [10], [11].

Research has shown that for biological systems or complex
networks, when a part of the nodes are imposed control, it
may be easier to show the good performance of the system or
network’s characteristic [12]. For example, imposing control
over the states Mdm2 and Wipl can promote apoptosis [13].
This control strategy is called pinning control. However, stud-
ies of NEGs using pinning controls have not yielded relevant
results [14], [15].

To address this challenge, we study the strategy consensus
problem under fixed pinning control. In comparison with the
previous studies, our contribution is three folds.

(i) For the first time, the pinning control based on fixed
strategy is transformed into its algebraic form, and
the necessary and sufficient conditions of its strategy
consensus are given.

(ii) Second, an algorithm is given to find the minimum
number of agents under the pinning control with degree.

(iii) Thirdly, as an application, the sufficient conditions of
the NEG with wheel graph and fn×3 flower graph for
strategy consensus problem are given.

The rest of this paper is organized as follows. Basic nota-
tions and knowledge are introduced in Section 2. The main
results are presented in Section 3. An effective example is
addressed in Section 4. Finally, conclusion is presented in
Section 5.
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II. PRELIMINARIES

We first provide some notations that are needed in the
sequel: Rowi(A) represents the i-th column of matrix A.
Row(A) denotes the set of all columns of matrix A. ∗ denotes
the Khatri-Rao product of matrices. Blki(A) denotes the i-th
n× p block of an n×mp matrix A. n denotes the STP.

An NEG, denoted by ((N,E), G,Ξ), consists of

(i) (N,E) is a graph, where N = {1, 2, · · · , n} is the set
of nodes and E ⊆ N ×N is the set of edges;

(ii) G = (N,S, {Ci, i ∈ N}) is the fundamental network
game (FNG), where N = {1, 2, · · · , n} is the set of
players, S :=

∏n
i=1 Si is the set of profiles, Si is the

strategy set of player i. Assume that the payoff matrix
of the FNG about the player i has the following form:

Ci =

c
i
1,1 · · · ci1,k
...

...
cik,1 · · · cik,k

 ; (1)

(iii) Ξ is an strategy update rule (SUR), which is determined
by a set of mappings:

xi(t+1) = gi(xj(t), τj(t); j ∈ U(i) ∪ {i}), t ∈ N, (2)

where U(i) is the set of neighbors of player i ∈ N , and
the overall payoff τi(t) of player i at time t is computed
by:

τi(t) =
Σj∈U(i)C

i
xi(t),xj(t)

|U(i)|
, i ∈ N. (3)

Throughout this paper, we just consider the following SUR,
namely unconditional imitation with fixed priority: the strategy
of player i at time t+1, denoted by xi(t+1), is selected from
the best strategy among the strategies of its neighbors j ∈ U(i)
and itself at time t, that is,

xi(t+ 1) = {xj′(t) : j′ = arg max
j∈U(i)∪{i}

cj(x(t))}. (4)

Consider an NEG ((N,E), G,Ξ) and assume Si = Dk,
i ∈ N . Using the STP method and letting xi(t) = l ∼ δlk,
l ∈ Dk, Cheng et al. [6] established an algebraic form of (4):

xi(t+ 1) = Mix(t), i ∈ N, (5)

where Mi ∈ Lk×kn . Multiplying all the n equations together,
we derive the following algebraic state space representation of
the considered NEG:

x(t+ 1) = Lx(t), (6)

where L = M1 ∗M2 ∗ · · · ∗Mn ∈ Lkn×kn .
The definition of strategy consensus is presented below.
Definition 1: The NEG ((N,E), G,Ξ) is said to achieve

strategy consensus at γ ∈ Dk, if there exists an integer T ∈ N
such that xi(t;x(0)) = γ, ∀ i ∈ N holds for any integer t ≥ T
and any initial strategy profile x(0) ∈ Dnk .

III. MAIN RESULT

A. Strategy consensus of NEGs via pinning control

The set of pinning players in the NEG is denoted by Θ,
that is, xθ(t) = γ, ∀ θ ∈ Θ, ∀ t ∈ N. Furthermore, for the
convenience of studying, we label the players in N according
to the following rule: p ≤ q if and only if |U(p)| ≥ |U(q)|.

In the following, using the vector form of logical variables
and setting x(t) = nni=1xi(t), where xi(t) = ε ∼ δεk, one can
convert system (6) into an equivalent algebraic form with only
one high-degree node, that is, player 1:

x(t+ 1) = Lnni=1 xi(t)

= Lx1(t) nni=2 xi(t)

= Blkγ(L) nni=2 xi(t)

:= L̃x̃(t),

where L̃ = Blkγ(L) and x̃(t) = nni=2xi(t).
Noticing that x1(t+ 1) = δγk , we have

L̃x̃(t) = x1(t+ 1)x̃(t+ 1)

= δγk x̃(t+ 1).

Furthermore,

(δγk )>L̃x̃(t) = (δγk )>δγk x̃(t+ 1), (7)

which together with (δγk )>δγk = 1 shows that

x̃(t+ 1) = (δγk )>L̃x̃(t). (8)

Based on Definition 1 and (8), we derive the following
result.

Theorem 1: The NEG ((N,E), G,Ξ) with pinning control
player 1 achieves strategy consensus at γ ∈ Dk, if and only if

Rowσ
{

[(δγk )>L̃]k
n−1}

= 1>kn−1 , (9)

where σ = 1 + (γ − 1)k
n−1−1
k−1 .

proof : (Necessity) Suppose that the NEG ((N,E), G,Ξ)
achieves strategy consensus. Then, by Definition 1, there exists
an integer T ∈ N such that xi(t;x(0)) = δγk , ∀ i ∈ N hold for
any integer t ≥ T and any initial strategy profile x(0) ∈ Dnk .
Since player 1 is a pinning control player, one obtains:

x1(t) = δγk , ∀ t ∈ N.

Therefore, one can conclude from (8) that

x̃(t) = (δγk )>L̃x̃(t− 1)

= [(δγk )>L̃]tx̃(0), ∀ t ≥ T.

Thus, we have

Rowσ
{

[(δγk )>L̃]t
}

= 1>kn−1 .

In the following, we prove that t ≤ kn−1. In fact, if t >
kn−1, there exists an initial profile x̃(0), an integer T ′ > kn−1.
We have x̃(t) 6= x̃(e), ∀ 0 ≤ t ≤ T ′ − 1 and x(T ′) = xe.
Due to system (8) has kn−1 different profiles, there exists two
integers 0 ≤ t1 ≤ t2 ≤ T ′ − 1, we obtain x̃(t1) = x̃(t2) 6= xe.
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Thus, the trajectory of system (8) starting from x̃(0) = x̃(t1)
forms a loop, that is

x̃(t1)→ x̃(t1 + 1)→ · · · → x̃(t2).

Therefore, there is a contradiction to the Definition 1, which
together with the proof of necessity shows that (9) holds.

(Sufficiency) Suppose that (9) holds. We need to prove that
the system achieves strategy consensus at γ ∈ Dk. In fact,
from (9) it is easy to see that

[(δγk )>L̃]k
n−1

i,j = 0,∀ i 6= σ, j = 1, · · · , kn−1,

and
[(δγk )>L̃]k

n−1

i,j = 0, i = σ, j = 1, · · · , kn−1.

Thus, we know that the profile of the system starting from any
initial profile x̃(0) ∈ Dn−1k will reach the profile xe = (δγk )n

and then stays at xe forever. �
Assume that there are η, 1 < η ≤ n, pinning control players

and fix their strategies to δγk , NEGs can reach the strategy
consensus. By generalizing formula (7), we can get

((δγk )η)>L̃x̃(t) = ((δγk )η)>(δγk )ηx̃(t+ 1). (10)

Corollary 1: The NEG((N,E), G,Ξ) under pinning control
achieves strategy consensus, if and only if

Rowσ
{

[((δγk )η)>L̃]k
n−η}

= 1>kn−η , (11)

where σ = 1 + (γ − 1)k
n−η−1
k−1 , η is the number of pinning

control players.
Based on the above Theorem 1 and Corollary 1, below, we

consider a more general case. We establish Algorithm 1 to get
the minimal-agent pinning control under degree.

Algorithm 1 Construction algorithm of NEG’s strategy con-
sensus to obtain minimal-agent pinning control under degree
Require: Given N = [1, · · · , n], C = [ ]
Ensure: r = |Ci|

Step 1: Verify whether the NEG((N,E), G,Ξ) can reach
the strategy consensus.
Step 2: If it is not satisfied, let C1 = [1], N1 = [2, · · · , n],
and verify whether the NEG satisfies (9) according to the
Theorem 1.
Step 3: If it is still not satisfied, enter the follow loop.
for i = 2, · · · , n do
Ni = [i+ 1, · · · , n] and Ci = [1, · · · , i]
r = |Ci|
if The NEG satisfies formula (11) then

return
end if

end for
Step 4: Until there exists i such that the NEG satisfies the
condition of Corollary 1 under the premise of Ni = [i +
1, · · · , n], Ci = [1, · · · , i] and r = |Ci|, the NEG reaches
the strategy consensus.

Remark 1: As it can be seen from formulas (9) and
(11), STP method is used to study the strategy consensus of

NEGs, but the major drawback is that when players have k
strategies, the dimension of the matrix is very large, resulting
in MATLAB can not be solved, which encourages us to carry
out the following research.

B. Special Networked Graph
As an application, we study two kinds of special networked

structures. In this section, we give the sufficient conditions for
these special networked graphs to only impose pinning control
on the node with the largest degree to make the NEG reach
strategy consensus.

Chemical compounds and drags are often modeled as graph
where each vertex represents an atom of molecule, and cova-
lent bounds between the corresponding vertices. An indicator
defined over this molecular graph, the Wiener index, has been
shown to be strongly correlated to various chemical properties
of the compounds. Paper [16] determined the Wiener index of
gear fan graph, wheel graph and so on.

First, we study a special network structure in graph theory:
wheel graph.

Definition 2: Place a vertex in a circle of order n−1, connect
this vertex with all vertices on the circle, and the resulting
simple graph of order n is called a wheel graph of order n
[17].

Without loss of generality, taking W7 as an example, its
networked graph is as follows:

Fig 1: The networked graph of W7.
In the following, based on the need of the research, we give

the definition of the payoff vector and payoff matrix.
Definition 3: Given t ∈ N, the profiles x(t) ∈ Dnk , the

profile payoff vector for player i ∈ N in the networked
evolutionary game is defined as

Π(i, x(t)) =
[
[Π(i, x(t))]1, · · · , [Π(i, x(t))]n

]
, (12)

where

[Π(i, x(t))]j =

{
ci,j(xi(t), xj(t)), if(i, j) ∈ E,
0, if(i, j) /∈ E.

(13)

Further, the profile payoff matrix is defined as:

Π(t) =

Π(1, x(t))
...

Π(n, x(t))

 . (14)

Based on the characteristics of the wheel graph, player 1
is designated as the pinning control player, and the sufficient
condition for strategy consensus of the NEG is provided.

Theorem 2: For the wheel graph, if there exists the pos-
itive integer µ ∈ N such that for any profile x′(µ) ∈{
x(µ)|x1(µ) = γ,∀ xi(µ) ∈ Dk, i ∈ {2, · · · , n}

}
, we have

1

n− 1

n∑
i=1

Πi,1(µ) ≥ 1

3

n∑
i=1

Πi,j(µ),∀ j ∈ {2, · · · , n}, (15)
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then the NEG achieves strategy consensus.
proof : For Wn, player 1 has n−1 neighbors. In conjunction

with the definition of the payoff matrix Π for the first round
of the game, Row1(Π) represents the payoff between player 1
and player i, i ∈ {2, · · · , n} in the first round of the game.

Likewise, player i, i ∈ {2, · · · , n} has three neighbours.
Therefore, in the first round of the game, when the equation
(15) holds, we have:

xi(t) = x1(t),∀ i ∈ {2, · · · , n},∀ t ≥ µ.

Thus, the NEG achieves strategy consensus. �
The following, we will study another special type of net-

work graph in graph theory: flower networked graph. First of
all, we give the definition of flower graph.

Definition 4: A graph G is called an fn×m flower graph if
it has n vertices which form an n-cycle and n sets of m− 2
vertices each which form m-cycles around the n-cycle so that
each m-cycle uniquely intersects the n-cycle on a single edge.
This graph will be denoted by fn×m [18].

Here, we delve into the study of a relatively simple floral
pattern networked graph: fn×3 flower graph. The n nodes
forming the central cycle have a degree of 4, while the
remaining nodes have a degree of 2. Now, we will begin
studying the simple flower networked graph. Similarly, taking
f6×3 as an example, its networked graph is:

Fig 2: The networked graph of f6×3.
Remark 2: Based on the characteristics of the fn×3 flower

graph, player i, i ∈ {1, · · · , n} has the same degree, which
makes the selection of control players more complex compared
to the wheel graph.

Specially, in the study of fn×3 flower graph, the general-
ization of the situation payoff vector, defining its form as:

Π̂(i, z(t)) =
[
[Π̂(i, z(t))]1, · · · , [Π̂(i, z(t))]2n

]
, (16)

where, z(t) represents the situation of networked evolutionary
game at time t with networked graph fn×3.

Theorem 3: For the fn×3 flower graph, if there exists the
moment ν, for any profiles z′(ν) ∈

{
z′(ν)|zκ(ν) ∈ Dk,∀ κ ∈

{1, · · · , n},∀ r ∈ {n+ 1, · · · , 2n}
}

, the following holds:

1

4

2n∑
i=1

[Π̂(κ, z′(ν))]i ≥
1

2

2n∑
i=1

[Π̂(r, z′(ν))]j , (17)

thus, the NEG achieves strategy consensus.
proof : According to the properties of the fn×3 flower graph,

player i, i ∈ {1, · · · , n} has 4 neighboring players. Player

j ∈ {n+ 1, · · · , 2n} has 3 neighboring players. According to
equation (3):

τκ(ν) =
1

4

2n∑
i=1

[Π̂(κ, z′(ν))]i, κ ∈ {1, · · · , n}, (18)

τr(ν) =
1

3

2n∑
i=1

[Π̂(r, z′(ν))]j ,∀ r ∈ {n+ 1, · · · , 2n}. (19)

According to the equation (18) and (19), for ∀ κ ∈ {1, · · · , n},
∀ r ∈ {n+ 1, · · · , 2n}, τκ(ν + 1) ≥ τr(ν + 1), we have:

xr(ν + 1) = xκ(ν + 1) = γ,∀ t ≥ ν,

where, ∀ κ ∈ {1, · · · , n}, ∀ r ∈ {n+ 1, · · · , 2n}.
Below, we prove the above equation for ∀ t ≥ ν + 1 using

mathematical induction. Assuming that xα(t) = γ,∀ α ∈
{1, · · · , 2n} holds when t = k, then according to equation
(18) and (19), xi(k + 1) = xji(k) = γ holds, where ji = j∗.
By the induction hypothesis, we can conclude xr(t) = γ,
∀ r ∈ {1, · · · , 2n}, ∀ t ≥ ν + 1, t ∈ N.

In summary, the NEG with fn×3 as the networked graph
achieves strategy consensus under the degree-based pinning
control. �

Remark 3: The method of STP is compared to the method
of payoff matrix for the strategy consensus on NEGs based
on pinning control. The algorithm complexity decreases from
2n to n, significantly addressing the shortcomings mentioned
in Remark 1, thereby improving algorithm efficiency and
effectiveness. Future research will focus on extending this
method to NEGs with general networked graph.

IV. ILLUSTRATIVE EXAMPLE

Example 1: Consider an NEG((N,E), G,Ξ), which has the
following items.
• The player set N = {1, 2, 3, 4}, and the strategy set
Si = {1, 2}, i = 1, 2, 3, 4.

• The networked topological structure for the players is
Figure 1.

• The basic game is the boxed pigs game whose payoff
double matrix is shown in TABLE 1.

• The evolutionary rule is (4).

TABLE I
PAYOFF MATRIX OF BOXED PIGS GAME

M F
M (3, 1) (2, 2)
F (4,−1) (0, 0)

The following table establishes the algebraic form of NEG,
where ”M” and ”F” are denoted by ”1” and ”2”, respectively.

Fig 3: The networked graph of Example 1.
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TABLE II
PAYOFFS→DYNAMICS OF THE NEG

x(t) 1111 1112 1121 1122

c1(t) 3 8
3

8
3

7
3

c2(t) 3 8
3

7
3

7
3

c3(t) 3 8
3

4 8
3

c4(t) 3 4 7
3

8
3

x1(t+ 1) 1 1 1 1

x2(t+ 1) 1 2 2 2

x3(t+ 1) 1 2 2 2

x4(t+ 1) 1 2 2 2

x(t) 1211 1212 1221 1222

c1(t)
8
3

7
3

7
3

2

c2(t) 4 8
3

8
3

4
3

c3(t)
8
3

7
3

8
3

4
3

c4(t)
8
3

8
3

7
3

4
3

x1(t+ 1) 1 1 1 1

x2(t+ 1) 2 2 2 1

x3(t+ 1) 2 2 2 1

x4(t+ 1) 2 2 2 1

According to the following table, we can get

M1 = δ2[1 1 1 1 1 1 1 1],M2 = δ2[1 2 2 2 2 2 2 2],

M3 = δ2[1 2 2 2 2 2 2 2],M4 = δ2[1 2 2 2 2 2 2 2].

Thus, we have

L̃ = δ16[1 8 8 8 8 8 8 1].

According to the Theorem 1, when player 1’s strategy is δ12
and r = 1, we can get

(δ12)T L̃ = δ8[1 8 8 8 8 8 8 1].

After calculation, it can be obtained that

Row1[(δ12)T L̃]8 = 1T8 .

Therefore, according to the Theorem 1, the NEG can reach
strategy consensus under the degree-based pinning control.

Remark 4: Figure 4 illustrates a comparison of the state tran-
sition diagram for NEG under degree-based pinning control
(Case 1) and non-degree-based pinning control (Case 2). As
can be seen from Figure 4, without the use of the degree based
pinning control study, the strategy consensus to the δ116 cannot
be achieved, which proves the effectiveness of this method.

Fig 4: State transition diagram of Example 1.

V. CONCLUSION

In this paper, we have studied the strategy consensus of
NEGs under the pinning control. By transforming the algebraic
form, the necessary and sufficient conditions for the strategy
consensus of NEGs under the degree-based pinning control
are given. In addition, the design algorithm of constructing
minimal-agent pinning control under degree is given. Finally,
by defining the payoff matrix, the strategy consensus problem
of NEGs with two kinds of special network topologies is
studied. Further results will look at how this can be done on
general network graphs.
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