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Abstract—In wind turbine blade maintenance, path planning 

for wall-climbing robots is a critical issue. The large size and 

complex curvature variations of turbine blades pose unique 

challenges to path planning. To address this problem, this study 

proposes an energy-consumption-based bio-inspired neural 

network method for complete coverage path planning. By 

considering the robot's energy consumption, this method better 

integrates height differences, angle differences, and distance 

differences between grid cells, optimizing the robot's energy 

expenditure on the map. The simulation results show that the 

algorithm can effectively handles the size and curvature variations 

of wind turbine blades, providing an efficient and reliable solution 

for the path planning of wall-climbing robots.  

Keywords—Wind turbine blade, Complete coverage path 

planning, Energy consumption, Bio-inspired neural network 

I. INTRODUCTION  

With the rapid development of wall-climbing robot 
technology, these robots have been increasingly deployed in 
defect detection tasks for structures such as bridges, ship hulls, 
and wind turbine blades. Defect detection on wind turbine 
blades often necessitates operation in high-altitude and complex 
curved surface environments, where traditional manual 
inspection methods pose significant safety risks and are 
inefficient. Wall-climbing robots demonstrate high adaptability 
on wind turbine blades, enabling precise detection of surface 
defects without risking human injury and at a lower maintenance 
cost. For the extensive surface areas of wind turbine blades, 
automatic and efficient path planning is crucial for wall-
climbing robots to autonomously execute defect detection tasks, 
thereby significantly improving inspection efficiency and 
reducing energy consumption. 

Path planning algorithms for robots can be categorized into 
point-to-point path planning and area coverage path planning. 
The primary objective of point-to-point path planning is to find 
a collision-free path from the start point to the endpoint, whereas 
coverage path planning aims to determine a path that traverses 
all points within an area or volume while avoiding obstacles. For 
wall-climbing robots tasked with defect detection on wind 

turbine blades, the path planning algorithm falls under coverage 
path planning. Coverage path planning algorithms can be 
divided into cell decomposition methods, grid-based methods, 
multi-robot methods, etc.[1][2][3]. However, most of these 
focus on two-dimensional plane coverage issues and seldom 
consider the impact of three-dimensional terrain on path 
planning, often neglecting height differences in the map 
environment, which increases the robot's energy consumption. 
Conversely, three-dimensional maps present challenges of high 
computational complexity and intricate planning. In this context, 
a 2.5D map, which combines a two-dimensional map with 
height information, can consider the impact of height on energy 
consumption while maintaining low computational 
requirements. 

A unique aspect of the wind turbine blade inspection task is 
that defects detected by the wall-climbing robot on the blade 
surface act as real-time obstacles, similar to a mine-sweeping 
problem (i.e., finding mines in a locally unknown map). The 
planning path of the wall-climbing robot must efficiently cover 
the entire work area while avoiding defects on the blade. Bio-
inspired neural networks, inspired by biological behaviors, can 
handle environmental changes or uncertainties such as suddenly 
appearing obstacles by processing sensor data and 
environmental information in real-time and making quick 
planning decisions. Additionally, bio-inspired neural networks 
ensure low computational burden, making them suitable for use 
in embedded devices. Enhancements to their heuristic functions 
can improve performance and achieve more optimal solutions. 

To address the environmental changes that may occur on 
wind turbine blades and consider the height variations on the 
blade surface, we propose an energy consumption model for 
wall-climbing robots that incorporates angle differences, height 
differences, and distance differences. Based on this model, we 
improve the bio-inspired neural network to overcome the 
limitations of traditional two-dimensional plane coverage path 
planning algorithms, thereby reducing the energy consumption 
of wall-climbing robots on wind turbine blades. 
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The rest of this paper is organized as follows. Section II 
provides a detailed analysis of key research areas on wind 
turbine blades, extraction of height information, and 
construction of a 2.5D grid map[4], which serves as the basis for 
establishing the energy consumption model for the wall-
climbing robot. A bio-inspired neural network-based coverage 
path planning algorithm that considers the energy consumption 
model is then developed. Section III presents a set of simulations 
to validate the advantages of the proposed algorithm compared 
to traditional two-dimensional plane coverage path planning 
algorithms. Finally, Section IV concludes the paper. 

II. THE IMPROVED BINN COMPLETE COVERAGE PATH 

PLANNING BASE ON ROBOT ENERGY CONSUMPTION MODEL 

A. Wind Turbine Blade typical Region Analysis  

To simulate the actual working environment on wind turbine 
blades and in consideration of the computational results and 
structural design requirements, areas with significant curvature 
and where wall-climbing robot adhesion is more challenging 
were selected as key research focuses. The large size and 
complex surface curvature variations of wind turbine blades 
necessitate this focus. The curvature variations on the surface of 
the wind turbine blade are illustrated in Fig. 1. Brightly colored 
regions, indicating areas with dramatic curvature changes, often 
represent bottlenecks in path planning. As shown in the figure, 
the blade surface generally has small curvature, with larger 
curvature areas primarily concentrated at the blade root and tip. 
The lower half of the blade has a slightly larger curvature 
compared to the upper half and thus should be considered a 
priority area in the study.  

 

(a) The curvature of the upper half of the blade 

 

(b) The curvature of the lower half of the blade 

Fig. 1. Curvature variation on the surface of wind turbine blades 

For the two typical types of damage on wind turbine blades, 
their occurrence areas are shown in Fig. 2. Typically, the 
damage at the blade tip region is erosion, where the curvature is 
larger. The typical defect between the root region and two-thirds 
of the blade length is cracking, where the curvature is smaller. 

 

Fig. 2. Vulnerable areas of the blade 

Based on the occurrence areas and curvature conditions of 
these two different types of damage, the typical operational 
regions of the wind turbine blade are extracted. The extracted 
typical erosion and crack regions are shown in Fig. 3. 

 

(a) Typical region at the root of the blade 

 

(b) Typical region in the middle of the blade 

 

(c) Typical region at the tip of the blade 

Fig. 3. Extracted three typical regions of the blade 

B. Extraction of Height Information in typical Regions 

In full coverage path planning tasks, traditional 2D grid 
maps typically contain only planar positional information and 
cannot fully reflect the complexity of real-world environments. 
In practical applications, environments are often three-
dimensional, with various height variations such as slopes, steps, 
and obstacles. These height variations significantly impact path 
planning, and ignoring height information can result in planned 
paths that are infeasible in actual execution, potentially leading 
to safety hazards. Generally, full coverage path planning for 
robots only considers the impact of positional changes in two-
dimensional coordinates. In this paper, considering the 
specificity of the working environment, the surface of wind 
turbine blades is not a flat plane but has certain height and 
curvature variations. When a legged wall-climbing robot crawls 
on the surface of a wind turbine blade, its movement needs to be 
combined with its adhesion state. By incorporating height 
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information, paths can be planned more accurately to reduce 
redundant coverage and missed areas, thereby improving task 
efficiency and resource utilization. 

We first project the typical regions of the blade onto the xy-
plane and divide the xy-plane into grids. For each grid, we obtain 
the z-coordinate of the center point on the corresponding surface 
by using the four corner points of the grid. These center points 
are then extracted as point cloud information. 

C. Construction of A 2.5D Grid Map 

A 2.5D grid map is a representation method that combines 

two-dimensional planar positions with height information. 

Each grid cell contains not only planar coordinates but also 

height values. By incorporating height information, path 

planning algorithms can better avoid obstacles, select optimal 

paths, and prevent unnecessary climbing or descending, thus 

improving planning efficiency and reducing energy 

consumption. For the typical regions mentioned in the previous 

section, it is necessary to first rasterize the environment map 

and assign different values to the states of each grid cell to 

construct a two-dimensional grid map. 

 

Fig. 4. Correspondence between the 2D grid map and the Biological Inspired 

Neural Network (BINN)  

The correspondence between the 2D grid map and the 

Biological Inspired Neural Network (BINN) is shown in Fig. 4. 

A corresponding 2D neural network is constructed from the 2D 

grid map, where each grid in the grid map is represented by a 

neuron in the neural network. Each neuron can sense other 

neurons within a radius 𝑅 to determine the next move direction. 

Based on this 2D grid map, height information for each grid is 

acquired. The height represented by each grid is stored in the 

grid map, constructing 2.5D grid maps for the typical mid-

section region, as shown in Fig. 5. 

 

Fig. 5. 2.5D grid map of the typical mid-section region  

D. Establishment of the Energy Consumption Model  

When operating on wind turbine blades, due to the immense 
size of the blades and the limited mobility of wall-climbing 
robots, it is necessary to manage the robot's endurance time on 

the blades. The energy consumption of the wall-climbing robot 
directly affects its operational efficiency and continuous 
working time. By establishing an energy consumption model, 
the required energy for the robot to complete full coverage 
defect detection on the wind turbine blade can be accurately 
predicted. This ensures that the robot operates within a safe 
energy consumption range, preventing safety incidents such as 
adhesion failure or falling due to excessive energy consumption. 
This, in turn, optimizes power management strategies, extends 
the robot's working time, and reduces the need for frequent 
recharging or battery replacement. Additionally, the energy 
consumption model provides important references for path 
planning. By analyzing the energy consumption of different 
paths, the path with the lowest energy consumption can be 
chosen, ensuring that the robot can efficiently complete blade 
inspection and maintenance tasks. 

To perform reasonable full coverage path planning for the 
wall-climbing robot, it is necessary to establish its energy 
consumption model. The wall-climbing robot designed in this 
paper uses a four-legged pneumatic pump adsorption system to 
adhere to the surface of the wind turbine blade. The kinematic 
diagram of a single leg mechanism of the robot is shown in Fig. 
6. The energy consumption of the wall-climbing robot during 
inspection on the wind turbine blade surface mainly comes from 
the robot's control system and motion system. 

 

Fig. 6. Kinematic diagram of the robot's single-leg mechanism  

As shown in Fig. 7, the wall-climbing robot can move in 
eight directions, and its main movement modes can be divided 
into: 1) rotation mode and 2) linear movement mode.  

 

Fig. 7. Kinematic diagram of the robot's single-leg mechanism  

The robot's movement in the eight directions can be 
decomposed into a combination of these two movement modes. 
Let 𝑡𝑟 be the time taken for the wall-climbing robot to rotate, 𝑡𝑠 
be the time taken for the wall-climbing robot to move linearly in 
a straight direction, 𝑃𝑐 be the power of the wall-climbing robot's 
control module, 𝐸𝑐  be the energy consumed by the control 
module, 𝐸𝑚 be the energy consumed by the motion module, and 
𝐸𝑠𝑢𝑚 be the total energy consumption of the wall-climbing robot. 

 ( )sum c m c r s mE E E P t t E= + = + +  (1) 

Since the wall-climbing robot's movement in eight directions 
can be decomposed into a combination of rotation mode and 
linear movement mode, let the energy consumption in rotation 
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mode be 𝐸𝑟  and the energy consumption in linear movement 
mode be 𝐸𝑠, namely: 

 m r sE E E= +  (2) 

The magnitudes of  𝐸𝑟  and 𝐸𝑠  are primarily related to the 
rotation angle 𝛼, the linear movement distance 𝑑, and the height 
difference ∆ℎ  between two grids, namely: 

 ( , , ) ( , , )m r sE E d h E d h =  +   (3) 

Let the rotation angles of joints A, B, and C be 𝜃1, 𝜃2, 𝜃3 
respectively. To ensure that the end effector always remains 
vertical, it is stipulated that the rotation angle of joint C is equal 
in magnitude but opposite in direction to that of joint B, i.e. 
𝜃3 = −𝜃2 . The lengths of links 1, 2 and 3 are 𝑙1 , 𝑙2 , 𝑙3  
respectively. The geometric relationship of a single leg is shown 
in Fig. 8. 

 

Fig. 8. Geometric relationship of the robot's single leg  

The relationship between the rotation angles and the lengths of 

the links can be derived as follows: 

 
1

1 1

2 2

sin

sin

d l

h l

 





=


=
 =

 (4) 

When the wall-climbing robot is in rotation mode, the rotation 

angle 𝛼  is the rotation angle 𝜃1  of joint A, and the linear 

movement distance 𝑑 = 0. Set  𝜃𝑟2  and 𝜃𝑟3  to fixed values. 

When 𝜃𝑟1 is not zero, i.e., the wall-climbing robot is in rotation 

mode, make it effective; otherwise, set them all to zero. By 

controlling with a very small positive number 𝜖, the rotation 

angles of each joint can be obtained as follows: 

 
1

2 1 1

3 1 1

( / 6) ( / )

( / 6) ( / )

r

r r r

r r r

 

   

  



 

 =


=  +
 = −  +

 (5) 

When the wall-climbing robot is in linear movement mode, the 

rotation angle 𝛼 is determined by the required linear movement 

distance 𝑑, and the rotation angle 𝜃𝑠2 of joint B is determined 

by the height difference between two grids. The rotation angles 

of each joint can be obtained as follows: 

 

1
1 1

1
2 2

1
3 2

sin ( / )

sin ( / )

sin ( / )

s

s

s

d l

h l

h l

 

 

 

−

−

−

 =


= 
 = − 

 () 

Therefore, 𝜏 represents the joint motor torque and 𝜂 represents 

the joint motor efficiency, the energy consumed by the wall-

climbing robot's motion module can be obtained as: 

 3 3

1 1
( ) ( )

ri si
m r s

i i
E E E

   

 = =

 
= + = + 

 (7) 

The movement relationship between the robot as a whole and 

its individual legs is considered. The total energy consumed by 

the wall-climbing robot to move in any of the eight directions 

is: 

 3

1
8 4( / ) ( )sum c ri si

i
E P    

=
= + +  (8) 

III. SIMULATION AND DISCUSSION 

Biologically Inspired Neural Network (BINN) performs full 
coverage path planning by mimicking the behavior of biological 
systems. Through the neural network model, it enables the robot 
to autonomously navigate and cover tasks in complex 
environments. BINN utilizes the activities and interactions of 
neurons to simulate the navigation mechanisms of biological 
organisms, possessing adaptive and dynamic planning 
capabilities. The BINN basic shunting equation is as follows[5]: 

 
1

( )[[ ] [ ] ] ( )[ ]
i n

i i i ij j i i
j

dX
AX B X I X D X I

dt


+
+ −

=
= − + − + − +

 (9) 

Where 𝐴 is the decay rate of neuronal activity, 𝐵 and 𝐷 are 
the upper and lower limits of neuronal activity, and 𝑛  is the 
number of neighboring neurons within the sensing radius 𝑅R of 
the 𝑖 − 𝑡ℎ neuron. In this paper, 𝑅 = 2, meaning the states of 
the eight neighboring neurons within the neighborhood are used 
as reference values[6]. 𝐼𝑖  represents the external input, which is 
expressed as follows: 

 
,  Uncovered area

( ) ,  Obstacle area

0,   area

E

f x E

Covered




= −



 (10) 

The overall process of full coverage path planning based on 
BINN takes map information and the robot's positioning 
information as inputs and outputs a complete path. First, the 
input information is initialized, a grid map is created, and a 
corresponding neural network is constructed to represent the 
state of the grid cells. The robot starts from the initial position to 
cover the area, determining the next target cell through a priority 
heuristic formula. After the robot moves to the next target cell, 
the target cell becomes the current cell, and the current cell is 
marked as covered, updating the grid map[7].When the robot 
finds that all eight surrounding grids have been traversed, it 
indicates that the robot is trapped. Based on the current traversal 
situation of the entire grid network, it chooses to either escape 
the dead zone to an undetected grid or end the robot's inspection 
activity[8]. 

A. Mission Scenarios 

By proportionally scaling the typical middle region of a 
blade, a 2.5D grid map is constructed as the simulated 
environment for the robot. The grid map is sized 20×20. The 
robot starts from the same position, and the movement ends 
when all grids have been traversed. The original BINN 
algorithm is compared with the energy consumption model-
improved BINN algorithm. 

B. Simulation Result and Discussion 

By simulating the traversal of the robot on the grid map using 
the current BINN algorithm and the energy-consumption-
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considering BINN algorithm, both algorithms are able to 
successfully complete the full coverage path planning. 

The changes in neuronal activity during the grid traversal are 
shown in Fig. 9, compared to the neuronal activity after the grid 
traversal is completed, as shown in Fig. 10. 

 

Fig. 9. The neuronal activity during the grid traversal  

 

Fig. 10. The neuronal activity after the grid traversal is completed  

Through simulation, the full coverage path of the traditional 
BINN algorithm can be obtained as shown in Fig. 11, and the 
full coverage path of the energy-consumption-considering 
BINN algorithm is shown in Fig. 12. 

 

Fig. 11. Full coverage path of the traditional BINN algorithm  

 

Fig. 12. Full coverage path of the energy-consumption-considering BINN 

algorithm  

By comparison, we can obtain the evaluation data for the 
traditional BINN algorithm and the energy-consumption-
considering BINN algorithm. We mainly consider total path 
length, repeat rate, and energy consumption. The data obtained 
is shown in Table 1.  

By comparison, we can see that although the total path length 
and repeat rate of the BINN algorithm increase when energy 
consumption is considered, the energy consumed is actually less 
due to the consideration of height and energy consumption 
information. This indicates that when the BINN algorithm takes 
energy consumption into account, it can achieve better results in 
terms of the robot's endurance and work efficiency. 

TABLE I.  PERFORMANCE EVALUATION 

BINN 

Algorithm 

Evaluation Metrics 

Energy consumption Path length Repeat rate 

Traditional 2259.94 397.48 0.03 

Improved 1775.19 439.56 0.14 

IV. CONCLUSION 

Our research demonstrates the substantial benefits of 
integrating energy consumption considerations into BINN-
based path planning algorithms. The improved algorithm not 
only ensures complete coverage but also optimizes energy usage, 
thereby extending the operational lifespan and efficiency of 
robotic systems. These findings provide valuable insights for 
future developments in robotic path planning, emphasizing the 
importance of energy-aware strategies in enhancing 
performance and sustainability. 

REFERENCES 

[1] ACAR E U，P. B. Jackson, and J. C. Smith, “Morse Decompositions 
for Coverage Tasks,” International Journal of Robotics Research, vol. 
21, no. 4, pp. 331-344, 2002. 

[2] LUO C, YANG S X, "A Solution to Vicinity Problem of Obstacles in 
Complete Coverage Path Planning," in Proceedings of the International 
Conference on Robotics and Automation, IEEE, 2002, pp. 612-617. 

[3] MAZA and A. OLLERO, “Multiple UAV cooperative searching 
operation using polygon area decomposition and efficient coverage 
algorithms,” in Distributed Autonomous Robotic Systems 6, Tokyo: 
Springer Japan, 2007, pp. 221-230. 

[4] P. Fankhauser and M. Hutter, “A Universal Grid Map Library: 
Implementation and Use Case for Rough Terrain Navigation,” in Robot 
Operating System (ROS): The Complete Reference (Volume 1), A. 
Koubaa, Ed. Springer, 2016, ch. 5. 

[5] S. X. Yang and C. Luo, “A neural network approach to complete coverage 
path planning,” IEEE Transactions on Systems, Man, and Cybernetics, 
Part B (Cybernetics), vol. 34, no. 1, pp. 718-724, 2004. 

[6] M. A. V. J. Muthugala, S. M. B. P. Samarakoon, and M. R. Elara, "Toward 
energy-efficient online complete coverage path planning of a ship hull 
maintenance robot based on Glasius bio-inspired neural network," Expert 
Systems with Applications, vol. 187, 2022, Art. no. 115940. 

[7] P. Manoonpong, L. Patanè, et al., “Insect-inspired robots: bridging 
biological and artificial systems,” Sensors, vol. 21, no. 22, 2021, Art. no. 
7609. 

[8] B. Sun, D. Zhu, C. Tian, et al., “Complete coverage autonomous 
underwater vehicles path planning based on Glasius bio-inspired neural 
network algorithm for discrete and centralized programming,” IEEE 
Transactions on Cognitive and Developmental Systems, vol. 11, no. 1, pp. 
73-84, 2018

 

474


