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Abstract—In order to solve the problem that the uniform 

speed model of lidar odometer can’t accurately predict the 

location at variable speed, the method based on height feature 

map is proposed in this paper, which extracts co-visible regions 

between adjacent frames and matches them in feature grid maps 

to obtain initial position and orientation. By testing it on the kitti 

data and compared it with F-LOAM, this method shows better 

accuracy in trajectory and improves the stability of the 

algorithm at low iteration. 
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I. INTRODUCTION  

With the development of autonomous driving and the 
increasing demand, SLAM(Simultaneous Localization And 

Mapping) shows broader  prospect and valuable research 

significance. Nowadays, SLAM primarily revolves around two 
core sensors: lidar and camera, which leading to the 
development of single-sensor SLAM or multi-sensor fusion 
SLAM. 

Lidar SLAM is divided into 2D SLAM and 3D SLAM. 2D 
lidar SLAM has developed from the initial filtering scheme to 
the current optimized scheme, and the positioning accuracy 
and mapping effect have been greatly improved. A milestone 
in this field is the Cartographer [1] algorithm proposed by 
Google, which presents a complete Lidar SLAM solution 
based on graph optimization. Its correlation scan matching 
method offers improved point cloud registration in dynamic 
environments. 

Among 3D Lidar SLAM methods, pure Lidar SLAM is 
represented by the LOAM [2](Lidar Odometry and Mapping) 
series, which proposes a point cloud registration scheme based 
on point cloud features. This approach significantly improves 
registration speed and enables real-time processing of 3D point 
clouds. Point cloud feature extraction not only streamlines 
massive point cloud data but also enhances the expressiveness 
of the processed data regarding the environment, leading to 
better performance in non-degraded scenarios.  

A-LOAM extracts line features, surface features, corner 
points, and surface points from adjacent point clouds. It then 
constructs residuals based on the distances from corner points 
to line features and the distances between surface points and 
surface features. The optimization variables involve 
displacement vectors and XYZ axis rotation angles and 
iterative calculations yield optimized and accurate poses.  

 Based on A-LOAM, F-LOAM [3] proposes a "two-step 
method" to de-distort the point cloud, improving the time 

consuming iterative de-distortion process. Furthermore, Lie 
group Lie algebra is used to construct optimization variables, 
which optimizes the solution space and significantly improves 
location accuracy and speed. 

 LeGO-LOAM [4] is a SLAM algorithm designed for 
uneven ground and incorporates loop closure detection to 
optimize uneven ground scenarios while ensuring lightweight 
processing. The development of loop closure detection makes 
the Lidar SLAM more effective [5]. 

In summary, the above methods mainly optimize the 
feature extraction, the process of nonlinear optimization and 
the construction ground constraints, but are insufficient for 
initial position and orientation of nonlinear optimization. 
Therefore, feature matching based on the height feature map 
[6] is used to estimate the initial position and orientation. 
Firstly, the height of the lidar point cloud is used as the feature 
map. Secondly, the common view between two feature map is 
obtained. Thirdly, By comparing the difference between 
common views, the initial position and orientation are obtained. 
Finally these initial values are used in ICP(iterative nearest 
point) [7] instead of the uniform motion model. 

II. METHODOLOGY 

A. Pose Calculation Based on 3D Lidar 

Lidar SLAM is usually positioned by point cloud 
registration. One of the most commonly used solutions is ICP, 
which recursively obtains the robot's pose in the world 
coordinate system. LOAM proposes point cloud matching 
based on point cloud features on point-to-point ICP, which not 
only improves the operation efficiency but also improves the 
solution accuracy. 

Scan-to-scan only uses the point clouds of two adjacent 
scans for matching, but this method uses too little point cloud 
information, resulting in low pose accuracy. Therefore, a map 
composed of point clouds within a certain range is used as the 
matching object, and the current scan is used for matching with 
it to get the pose by scan-to-map. 

The pose transformation between two consecutive scans 

of the 3D point cloud can be represented by a homogeneous 

transformation matrix T. Assuming that the 3D lidar 

displacement and rotates at a constant speed, then the initial 

value of the current lidar pose can be deduced by linear 

interpolation based on the previously obtained pose change. 

Define 𝑻𝑲
𝑾as the pose of the 𝑘𝑡ℎ scan in the world coordinate 

system, then the initial pose estimation of the 𝑘𝑡ℎ scan can be 

expressed as 
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 𝑻𝒌𝟎
𝑾 = 𝑻𝒌−𝟏

𝑾 (𝑻𝒌−𝟐
𝑾− · 𝑻𝒌−𝟏 

𝑾 ) (1) 

 

𝑷(𝒌,𝒊)
𝑩  is the  𝑖𝑡ℎ  point of the  𝑘𝑡ℎ  scan in the lidar 

coordinate system, then the coordinates of this point in the 

world coordinate system can be expressed as (2). 

 

 𝑷(𝒌,𝒊)
𝑾 = 𝑻𝒌

𝑾 · 𝑷(𝒌,𝒊)
𝑩  (2) 

 
When multiplied with the homogeneous transform matrix, 

𝑷(𝒌,𝒊)
𝑩  is augmented into a vector with four rows and one 

column, where the last element is 1. 

Define 𝑴𝟎:𝐤
𝑾  as the point cloud geometry from the initial 

moment to the current moment in the world coordinate 

system, 𝑑𝐸  and 𝑑𝐻  are respectively the distance from the 

corner point to the corresponding edge line and the distance 

from the plane feature point to the corresponding plane 

distance: 

 

 𝑓𝐸(𝑷(𝒌,𝒊)
𝑾 , 𝑴𝟎:𝒌

𝑾 ) = 𝑑𝐸 (3) 

     𝑓𝐸(𝑷(𝒌,𝒊)
𝑾 , 𝑴𝟎:𝒌

𝑾 ) = 𝑑𝐻  (4) 

 

The overall cost function can be unified as (5). 

 

 𝑓𝐸(𝑷(𝒌,𝒊)
𝑾 , 𝑴𝟎:𝒌

𝑾 ) = 𝑑𝐻 + 𝑑𝐸 = 𝒅 (5) 

 

The objective function of the ICP algorithm for point-line-

surface features can be expressed as (6). 

 

 𝑚𝑖𝑛
𝑻𝒌
𝑾

1

2
𝑑2 (6) 

 

Since the Lie group T does not satisfy the addition 

operation in operation, the iterative calculation of the pose 

increment cannot be performed. Instead, the Lie algebra ε is 

used for the incremental solution at the optimization 

calculation. The mapping relationship between T and ε can be 

simply expressed as a logarithmic relationship: 

 

 𝑙𝑛𝑻 = 𝜺 (7) 

 

The original target function is equivalent to: 

 

 min
𝜺𝒌
𝑾

1

2
𝒅2 (8) 

 

The Jacobian matrix J is: 

 

 J =
𝜕𝒅

𝜕𝜺𝒌
𝑾 (9) 

 

Solve the incremental equation using the Gauss-Newton: 

 

 H(εk
W)Δεk

W=g(εk
W) (10) 

 

where 𝐇(𝛆𝐤
𝐖) and 𝐠(𝛆𝐤

𝐖) are (11)、(12). 

 

 H(εk
W)=J(εk

W)J(εk
W)

T
 (11) 

 g(εk
W)=-J(εk

W)·d (12) 

 

Solve the pose of the current lidar scan represented by Lie 

algebra in the world coordinate system: 

 

 𝜺𝒌
𝑾 = 𝜺𝒌

𝑾 + 𝜟𝜺𝒌
𝑾 (13) 

 

Then calculate the pose T of the current scan through the 

exponential mapping relationship (14). 

 

 𝒆𝜺 = 𝑻 (14) 

B. Extract The Feature of Similar Point Cloud  

The original point cloud data contains a large number of 
points, and the feature extraction can reduce the amount of data 
while enhancing the features of the point cloud, without losing 
accuracy. 

The extraction of feature points from the original point 
cloud data is mainly to obtain the corner points and surface 
points. A corner point is a point where the curvature changes 
greatly, which can be defined by equation (15). 

 

 𝑐(𝑘,𝑖) =
1

2𝑛
∑ ‖(𝑷(𝒌,𝒊)

𝑩 − 𝑷(𝒌,𝒋)
𝑩 )‖

𝑛

𝑗=−𝑛,𝑗≠0
 (15) 

 

Use the above point cloud features to form the point-line 

residual function and the point-line residual function 

respectively: 

 

 𝑑𝐸 =
|(𝑬(𝒌,𝒊)

𝑩 −𝑬(𝒌−𝟏,𝒋)
𝑩 )×(𝑬(𝒌,𝒊)

𝑩 −𝑬(𝒌−𝟏,𝒍)
𝑩 )|

|𝑬(𝒌−𝟏,𝒋)
𝑩 −𝑬(𝒌−𝟏,𝒋)

𝑩 |
 (16) 

 
E is a point set containing only edge points. Its subscript 𝑘 

denotes the current scan, 𝑘 − 1 represents the previous scan. 𝑖 
is the edge point of the current scan, and  j and 𝑙 are the points 
on the two scanning lines closest to 𝑖 in the previous scan. 

The point-plane residual function is (17). 

 

 𝑑𝐻 =

(𝑯(𝒌,𝒊)
𝑩 −𝑯(𝒌−𝟏,𝒋)

𝑩 )·(
(𝑯(𝒌−𝟏,𝒋)

𝑩 −𝑯(𝒌−𝟏,𝒍)
𝑩 )×

(𝑯(𝒌−𝟏,𝒋)
𝑩 −𝑯(𝒌−𝟏,𝒎)

𝑩 )
)

|(𝑯(𝒌−𝟏,𝒋)
𝑩 −𝑯(𝒌−𝟏,𝒍)

𝑩 )×(𝑯(𝒌−𝟏,𝒋)
𝑩 −𝑯(𝒌−𝟏,𝒎)

𝑩 )|
 (17) 

 
H is a point set containing only surface points. Its subscript 

𝑘 denotes the current scan, 𝑘 − 1 represents the previous scan. 
𝑖 is the surface point of the current scan, and j and 𝑙 are the 
points on the two scanning lines closest to 𝑖 in the previous 
scan. 𝑚 is the surface point closest to 𝑖, belonging to the two 
scanning lines mentioned above. 

Using the 3D point sets H and E, a 2D point cloud 
orientation grid map is constructed, which contains specific 3D 
information. The construction involves creating a circular fan 
graph in the robot coordinate system which is expanded  like 
Fig. 1. The number of rings, denoted as 𝑁𝑟, is determined by 
the displacement resolution and the size of the circular fan 
graph. Similarly, the number of fans in each ring, denoted as 
𝑁𝑠, is determined by the custom angular resolution. Different 
colors represent different heights. 
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(a) point cloud pose grid map at time 𝑚 

 

 
(b) point cloud pose grid map at time 𝑛 

Fig. 1 2D point cloud pose grid map 

   

Then we construct a point cloud displacement grid map from 
the three-dimensional point sets H and E. This grid map is used 
to estimate the initial value of the displacement. The point cloud 
displacement grid map is converted from a scan of point cloud 
data in the robot coordinate system to a grid point cloud map 
with the bottom left corner point as the origin. The value of 
each grid is determined by the highest point cloud height 
within that grid in Fig. 2. 

 

(a) point cloud displacement grid map at time 𝑚 

 

(b)point cloud displacement grid map at time 𝑛 

Fig. 2 2D point cloud displacement grid map 

 

Due to the limitation of grid map resolution, if the velocity 
change is gentle, the initial value cannot be corrected by this 
method. Therefore, the resolution of grid map can be set higher 
if mobile robot is a low-speed model. Subsequently, the initial 
pose value is obtained by comparing the point cloud with the 
grid map. Finally, this initial pose estimation is sent to the ICP 
(Iterative Closest Point) scan-to-map matching algorithm. 
Displacement will cause different ranges of point clouds so we 
need to extract the common view range of point cloud. It is 
good for matching different kinds of grid maps. 

Note that the point cloud orientation grid map and point 

cloud displacement grid map at a certain historical moment in 

the robot coordinate system are denoted as 𝑱𝒎
𝑩 , 𝑲𝒎

𝑩  and the 

other is 𝑱𝒏
𝑩, 𝑲𝒏

𝑩 at the current time. Then the poses in the world 

coordinate system corresponding to the two moments are 𝑻𝒎
𝑾、

𝑻𝒏
𝑾, and the relative pose transformation from m to n is (18). 

 

 𝑻𝒏
𝒎 = 𝑻𝒎

𝑾−
· 𝑻𝒏

𝑾 (18) 

 

Convert the point cloud in the robot coordinate system 

obtained at time n to the robot coordinate system at time m: 

 

 𝑷𝒏′
𝑩 = 𝑻𝒏

𝒎− · 𝑷𝒏
𝑩 (19) 

 

Then the point cloud feature maps �̅�𝒎
𝑩、�̅�𝒎

𝑩、 �̅�𝒏
𝑩、�̅�𝒏

𝑩 in 

the same coordinate system are obtained. 

Filter 𝑷𝒎
𝑩、𝑷𝒏′

𝑩 according to viewpoint visibility [8], and 

we can get the common-view point cloud grid map �̃�𝒎
𝒎𝒏′、

�̃�𝒎
𝒎𝒏′、�̃�𝒏

𝒎𝒏′、�̃�𝒏
𝒎𝒏′. 

C. Initial Position and Orientation Estimation Optimization 

According to the conclusions of M. Brossard [9], the 
variance of the scan matching algorithm depends on the 
accuracy of the initial pose estimation. In other words, when 
the initial position and orientation is accurate enough, the scan 
matching algorithm achieves higher accuracy. 

The initial value optimization is divided into initial position 
estimation and initial orientation estimation. In initial value 
optimization, the sequence of initial value estimation needs to 

be determined. Assuming that the 𝑖𝑡ℎ  scan and the  𝑗𝑡ℎ  scan  
are two adjacent frames, we obtain the relative pose 

transformation ∆𝒒𝒋
𝒋−𝟏

 from the previous scan to the current 

scan using the constant velocity motion assumption, with the 

rotation angle denoted as 𝜃𝑗
𝑗−1

. 𝜗  is the rotation angle 

threshold. If 𝜃𝑗
𝑗−1

> 𝜗 , the priority is given to orientation 

estimation. Otherwise, position estimation takes priority. 

The point cloud pose grid maps �̃�𝒎
𝒎𝒏′and �̃�𝒏

𝒎𝒏′ are used for 

orientation estimation. These grid maps are stored as matrices, 

both having the size of 𝑎 row and 𝑏 columns. Let 𝑴𝒋 represent 

the  𝑗𝑡ℎ  column of �̃�𝒏
𝒎𝒏′ , and 𝑁𝑗  denote the  𝑗𝑡ℎ  column of 

�̃�𝒏
𝒎𝒏′. 𝑴𝜟𝒒 represents the new matrix obtained by shifting all 

column vectors of �̃�𝒎
𝒎𝒏′to the right by 𝜟𝒒 columns. For vectors 

extending beyond column b , they are appended at the 

beginning of the matrix. 
 

 min
𝜟𝒒

∑ ‖𝑴𝜟𝒒
𝒋
−𝑴𝒋‖

𝑏

𝑗=0 0

 (20) 
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 In other words, the purpose of expression (20) is to match 
Fig. 1 (a) and Fig. 1 (b) and get the 𝜟𝒒  from time m  to 
n .Obviously, Fig. 1 (a) needs to be translated 3 units in the 
negative direction of Ns to be consistent with Fig. 1 (b) so 𝒒 is 
3 units which means rotating around the Z-axis of the local 
coordinate system at time m. 

Typically Vehicles do not turn quickly so an exhaustive 

method can be used to find the optimal value of  ∆q. Taking 

±10 times of the resolution as the exhaustive interval, the 

optimal angle of rotation around the Z-axis is expressed as 

follows: 

 
𝒒𝒏𝟎
𝒘 = 𝒒𝒎

𝒘 ∗ 𝚫𝒒 (21) 

 
𝒒𝒎
𝒘  is the global orientation at time m and is derived from 

the uniform motion model. 𝒒𝒏𝟎
𝒘  is the initial global orientation 

at time 𝑛0. 

Initial position estimation uses the point cloud 

displacement grid maps �̃�𝒎
𝒎𝒏′ and �̃�𝒏

𝒎𝒏′ . Firstly, �̃�𝒎,∆𝒒
𝒎𝒏′  is 

rotated by ∆𝒒 from time 𝑚 to 𝑛 and stored as matrices with 

dimensions of 𝑢 rows and 𝑣 columns. Similar to the process of 

estimating orientation,  the optimal value of ∆𝑥 and ∆𝑦 can be 

solved by an exhaustive search and the difference between 

�̃�𝒎,∆𝒒
𝒎𝒏′ transformed by displacement and �̃�𝒏

𝒎𝒏′  matrix is 

computed to obtain the zero norm, which is expressed as (22). 

 

min
∆𝑥,∆𝑦

‖�̃�𝒎,∆𝒒
𝒎𝒏′ − �̃�𝒏

𝒎𝒏′‖
0

(22) 

 

This process helps to get the displacement ∆𝑥  and ∆𝑦  by 

minimizing the zero norm. The displacement correction vector 

∆𝑡 is formed by combining (∆𝑥, ∆𝑦, 0) and initial position at 

time n can be represented as follows: 

 

 𝒕𝒏𝟎
𝒘 = 𝒕𝒎

𝒘 + 𝒒𝒏𝟎
𝒘 ⊗𝚫𝒕 (23) 

 
Where 𝒕𝒎

𝒘 represents the global position at time 𝑚 .⊗ 
denotes the operation satisfying quaternion multiplication. 
𝒒𝒏𝟎
𝒘 ⊗𝚫𝒕 is the relative displacement from time 𝑚 to time 𝑛. 

To put it another way, the purpose of expression (22) is to 
match Fig. 2 (a) and Fig. 2 (b) and get the  ∆𝑥 and ∆𝑦 on XY 
direction from time m to n so ∆𝑥 is 2 units and ∆𝑦 is 0 units. 
At last, the vector (2,0,0) is modified to 𝒕𝒎

𝒘 . 

To sum up, the initial estimates of the orientation 𝒒𝒏𝟎
𝒘  and 

the position 𝒕𝒏𝟎
𝒘  are obtained at the current time 𝑛. 

III. EXPERIMENT 

 The SLAM system runs on ubuntu 18.04 with AMD 
5600H.Based on the open-source work F-LOAM, we design 
an initial value optimization module and test it on the KITTI 
dataset. 

Firstly, F-LOAM and ours are tested on KITTI under low 
iteration and their trajectories are shown in Fig. 3 and Fig. 4. 

 

Fig. 3 Trajectory under low iteration. (It obviously shows the 

trajectory built failed under low iteration count.) 

 

 

Fig. 4 Trajectory after initial value optimization. (After initial value 

optimization, the trajectory is built better.) 

 

Because of road containing two continuous turns at 90 
degree, the initial value provided by uniform motion model is 
not enough accurate for ICP and it can’t accurately estimate the 
pose under low iteration as depicted in Fig. 3.After initial value 
optimization module, the trajectory has been significantly 
improved at the same low iterations as depicted in Fig. 4. 

 

Fig. 5 Trajectory comparison on kitti00 
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 In Fig. 5, the dashed line is ground truth of kitti00. 
Compared to the blue line generated by F-LOAM, the green 
line after initial value optimization is closer than it. However, 
The trajectory after initial value optimization still can not be 
closed loop. 

Table I Evaluation of trajectory accuracy 

 max mean RMSE min 

Floam 11.33832 3.817776 4.611978 0.194833 

Ours 7.040827 2.893429 3.423987 0.207286 

 

Table II Evaluation of trajectory smoothness 

 median SSE STD 

Floam 3.273746 96588.609088 2.587455 

Ours 2.414997 53237.275980 1.830781 

 Besides, Table I and Table II show that our method is better 
than F-LOAM on the max, mean, RMSE(root mean square 
error), SSE(the sum of squares due to error) and STD(standard 
deviation) of trajectory error. Max, mean, RMSE, min 
straightly reflect the error between a trajectory and the ground 
truth. And the key of  analysis is RMSE and STD. RMSE 
shows the square root of difference between the observed 
value and the ground truth, which reflects the accuracy of lidar 
odometer. STD stands for smoothness of difference between a 
trajectory and the ground truth. Usually, smaller RMSE and 
STD means a smoothness more accuracy and smoothness 
trajectory. 

 

Fig. 6 Trajectory comparison on kitti01 

 Compared with kitti00, kitti01 has simple environment 
features and no loop closure. In Fig. 6, the green line and blue 
line almost overlap so the trajectories can not show which one 
is better. 

Table III Evaluation of trajectory accuracy 

 max mean RMSE min 

Floam 47.77344 16.10824 18.79549 0.360834 

Ours 46.74350 16.10200 18.74953 0.399953 

 

Table IV Evaluation of trajectory smoothness 

 median SSE STD 

Floam 16.27044 326775.3196 9.684791 

Ours 16.19694 315179.2152 9.605754 

 However, Table III and Table IV show that trajectory 
accuracy and smoothness are improved by initial value 
optimization except for the minimum, which proves the 
stability of the model of initial value optimization under simple 
environmental characteristics. 

 Through the comparative experiment with F-LOAM, this 
initial value optimization based on the height feature map can 
solve the question caused by uniform motion model, which 
makes better location under low iteration and variable speed. 

IV. CONCLUSION AND OUTLOOK 

 In this paper, a solution to uniform motion model which 
can not accurately estimate initial value at variable speed is 
proposed, which builds two kinds of grids by extracting height 
feature and get the initial value by minimizing zero norm. In 
addition, this method makes the front-end error smaller and has 
better accuracy at low iterations, which alleviates the error 
accumulation in the front-end and optimizes the initial value 
when the uniform speed model is inaccurate and makes lidar 
odometry more stable. In the future, research should consider 
the potential effects of resolution of grid map more deeply, 
which will reduce affect of resolution on accuracy of initial 
value. 
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