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Abstract—Piezoelectric actuator is widely utilized in ultra-
precision position fields. However, it is challenged by difficulty
modeling dynamic properties, such as hysteresis, creep, vibration,
etc. Therefore, this paper presents a model-free feedforward
control strategy of Radial Basis Functions Neural Network
(RBFNN) for piezoelectric actuator. RBFNN is used to estimate
the inverse dynamic model of the piezoelectric actuator, and
avoiding the difficult modeling and impossible to invert problems.
This feedforward controller has model-free advantage that it
does not depend on the specific physics-based model and is
only data-driven by references and control signals. The param-
eters of RBFNN are training by offline methods and online
learning strategy especially. The offline learning method can
compensate the trained trajectory with high precision, but for the
untrained trajectory, the compensation accuracy is insufficient.
For unknown target trajectories, the online learning strategy is
proposed, which utilizes current data for parameter iteration and
updating to improve control accuracy. Finally, simulation verify
that the proposed model-free feedforward control strategy is
effective. Especially the online learning strategy has the adaptive
ability and generalization ability for unknown trajectory targets.

Index Terms—difficulty modeling, radial basis function neural
network, feedforward compensation, online learning

I. INTRODUCTION

The requirement for precise positioning of ultra-precision
manufacturing equipment has led to extensive research and
development in precision engineering. Piezoelectric actuator
has been extensively used over the past few years as a source
of precision positioning in a wide range of commercial ap-
plications. The main application areas include precision man-
ufacturing, medical technology, robotics, aerospace, and con-
sumer electronics. In particular, they are most widely used in
components such as micropumps/microreactors/micromixers
[1] [2], micromanipulators [3] [4], microvalves [5], microjet
dispensers [6] [7], atomic force microscopes [8] [9], tool
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feeding mechanisms [10] [11], vibration isolation systems
[12], etc. In addition, piezoelectric actuator has the advantages
of fast response speed, high stiffness/load capacity, low energy
consumption and cleanroom compatibility, which is very suit-
able for application in the field of chip manufacturing [13]-
[15]. Although there are many advantages of piezoelectric
actuator, its difficult modeling problem leads to model inaccu-
racy and low control accuracy, which limits the application and
development of piezoelectric actuator. For the model-based
control method, a model is built based on the mechanism of the
piezoelectric actuator and then its inverse is solved to design
the controller.

In recent years, many physics-based and phenomenological
models have been built to solve difficult modeling problems
such as hysteresis, creep, and vibration, these models mainly
include Jiles-Atherton, Domain Wall, Duhem, Dahl, Bouc -
Wen, Backlash, Maxwell - Slip, Preisach, Prandtl - Ishlinskii,
Viscoelastic creep model, etc. Common physics-based models
include the Jiles-Atherton model and the Domain Wall model.
These models are usually very complex and limited to a
single object. The physical characteristics of the piezoelectric
actuator are highly complex, which presents a significant
challenge in modelling [16]. Phenomenological models are
also the most widely used model at present, including Duhem
model, Dahl model, Bouc-Wen model [17]- [19], etc. Lin used
a generalized Duhem hysteresis model to model the hysteresis
characteristics of the biaxial piezoelectric positioning platform,
and designed a controller to compensate the hysteresis for
platform tracking control [20]. Ahmad employed the Dahl hys-
teresis model to characterise the hysteretic nonlinear behaviour
of the piezoelectric actuator and designed a Dahl feed-forward
compensator that did not involve inverse model calculation in
order to circumvent the potential complexity of such a calcula-
tion. [21]. The hysteresis nonlinear model based on the model
is capable of describing the hysteresis dynamic characteristics
of a piezoelectric actuator. However, the structure is complex,
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the parameters are challenging to determine, and the model’s
accuracy is not optimal. Although the integral hysteresis model
improves the accuracy of the model, it has no theoretical
inverse model and can only approximate inverse model, which
is not conducive to controller design. For phenomenological
models, model errors due to the unmodeled portion, and errors
in the identification process can combine to affect the control
accuracy. In addtiton, the problem of non-theoretical inverse
modules and difficult inverse modules is also very tricky. If
only these models are used for control, there will be a large
comprehensive error [22].

Thus, model-free control approach is specially appropriate
for this case, which does not require accurate modeling of the
piezoelectric actuator. Only the input and output data of the
piezoelectric actuator are used for training and the resulting
controller is able to compensate accurately. This approach
is a good solution to the problem of difficult modeling and
no theoretical inverse modeling. For example, Al-Mahasneh
proposed a reinforcement learning algorithm based on net-
work supervised control, which compensates nonlinear errors
through reinforcement learning feedforward control structure,
and solves the problem of difficult modeling of typical nonlin-
ear time-varying systems [23]. Li presents a finite-time sliding-
mode controller (SMC) based on the disturbance observer
(DOB) and a radial basis function neural network (RBFNN).
This control method avoids the establishment of complex mod-
els and can meet the requirements of high frequency control
[24]. Yang proposed a combined control of feedforward and
feedback In the feedforward loop, a multilayer feedforward
neural network is used to directly obtain the inverse of the
model and improve the control bandwidth [25]. Takemura
et al. proposed an iterative learning feedforward control that
does not require a mathematical model. Compared with the
traditional based model, this method can more easily fit the
nonlinear characteristics, avoid the problems of inaccurate and
difficult modeling [26].

However, the above method only trains and compensates
the hysteresis nonlinearity of piezoelectric actuator, and do
not realize the static and dynamic compensation of the whole
piezoelectric actuator. When the target trajectory changes,
the compensation ability of the model-free controller de-
creases, and the whole control system is poor in generalization
and adaptability. Therefore, this paper proposes the RBFNN
model-free feedforward controller for piezoelectric actuator,
which takes four trajectory-related parameters as training
inputs and control quantities as training outputs, and the
RBFNN parameters include offline training and online training
methods. The compensation effect of the proposed model-free
control is simulated under trigonometric function trajectory
tracking targets with different frequencies. For the unknown
target trajectory, an online learning strategy is proposed to
utilize the current data for parameter iteration and updating
to improve the control accuracy. Finally, the effectiveness
of the proposed model-free feedforward control method is
verified by simulation, especially the online learning strategy
has the adaptive ability and generalization ability for unknown

trajectory targets.
The main contribution of this paper is that the RBFNN

is model-free control. It overcomes the problem of difficult
modeling/no theoretical inverse modeling due to hysteresis
nonlinearity, improves the adaptability and generalization abil-
ity of the control system to unknown trajectories. It is suitable
for complex, nonlinear, time-varying, or unknown systems,
and improves the overall descriptive ability of the system.

Part A of section II illustrates the main structure of the
RBFNN model-free feedforward controller. Part B of section
II derives the iterative equation for offline parameter optimiza-
tion. Part C of section II is based on the RBFNN model-free
feedforward controller proposed in part A, and the controller
parameters are updated by acquiring the current piezoelectric
actuator data in real time in an online learning manner.
Section III simulates of the proposed RBFNN controller’s is
carried out by targeting the trigonometric function trajectories
with different frequencies and the adaptability in the case of
unknown trajectories is verified.

II. RBFNN MODEL-FREE FEEDFORWARD CONTROLLER

A. RBFNN model-free feedforward controller structure

The RBFNN is used to design a model-free feedforward
controller for the piezoelectric actuator neural network. It has
three layers, including input layer, hidden layer and output
layer. The input layer is the data related to the reference
trajectory, and the expression of the input layer is (1).

X =
[
r (k), v (k), a (k), jerk (k)

]T
(1)

where k is the Current time step, r, v, a, jerk are the reference
trajectory, velocity, acceleration, and jerk. Too many hidden
layer nodes can lead to long learning time, resulting in
redundant resources, while too few hidden nodes can lead to
poor generalization. Therefore, it is necessary to select the best
number of neuron nodes in the hidden layer. Equation (2) is
an empirical equation for the range of nodes in the hidden
layer of the neural network.

j =
√
nin + nout + a j = (1, 2, 3, ..., 15) (2)

where j is the number of selected hidden layer neuron nodes,
nin is the number of neurons in the input layer of the network,
nout is the number of neurons in the output layer of the
network, and a is a constant between 1-15. Therefore, the
selection range of the number of hidden layer nodes of the
neural network should be 7-17, and the specific number should
be determined by comparison with the minimum sum of
squares due to error(SSE) as the selection criterion during
neural network training. By summarizing relevant studies, j is
about 15, the mean square error is the smallest, so 15 nodes are
first given priority to train the network to analyze the training
effect. The kernel function of the hidden layer is the Gaussian
radial basis function as (3).

hj = exp(−∥X − Cj∥2

2b2j
) (3)
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where Cj is the center vector of node j and bj is the base
width parameter of node j, as shown in (3), (4).

Cj =
[
c1j , c2j , c3j , c4j

]T
(4)

bj = [b1, b2, b3, ..., b15]
T (5)

The network weights is (6).

wj = [w1, w2, w3, ..., w15]
T (6)

The control signal is a single output voltage signal, so the
output layer node is 1, the function hj and weights ω of
each node in the kernel hidden layer are linearly weighted,
the neural network is required to give the control signal Un

of the piezoelectric actuator , n is the current sample. The
feedforward control signal is calculated as (7).

Un (n) = h1ω1 + h2ω2 + h3ω3 + · · ·+ h15ω15 (7)

Therefore, the RBFNN model-free feedforward controller
structure is shown in Fig. 1. The boundary condition of the
basis width parameter bj can be obtained as [0,2], and the
boundary condition of the voltage control signal un of the
piezoelectric actuator is [0,10] volts.

B. Offline Parameter optimization

U(n) is the sum of control signals, including feedforward
and feedback. The effectiveness of the training of a neural
network is judged by the SSE of one sample.The internal
parameters Cj , bj , ω are all optimized in a gradient descent
manner, and the loss/performance function is (8).

Eo(n) =
1

2

n∑
k=1

(U(k)− Un(k))
2 (8)

Therefore, the gradient expressions and iterative expressions
for the center vector, base width parameter, and weights are
obtained as in (9) to (14).

∆ωjo(n) =
n∑

k=1

∂Eo(n)

∂ωjo(n)
= −

n∑
k=1

[U (k)− Un (k)]hjo (9)

∆cjio(n) =
n∑

k=1

[U (k)− Un (k)]wjo
xio − cjio

b2jo
(10)

∆bjo(n) =
n∑

k=1

[U (k)− Un (k)]wjohjo
∥X − Cjo∥2

b3jo
(11)

cjio(n+ 1) = cjio(n)− η1 ×∆cjio(n) (12)

bjo(n+ 1) = bjo(n)− η2 ×∆bjo(n) (13)

ωjo(n+ 1) = ωjo(n)− η3 ×∆ωjo(n) (14)

The offline optimization algorithm of RBFNN model-free
feedforward controller is Table. 1.

Fig. 1. The framework of RBFNN model-free feedforward controller

TABLE I
THE OFFLINE OPTIMIZATION ALGORITHM OF RBFNN MODEL-FREE

FEEDFORWARD CONTROLLER

Algorithm 1: Offline RBFNN model-free feedforward controller De-
signing

1. Conduct different frequencies trigonometric trajectory tracking
closed-loop tracking experiments, clean and normalize data;
2.Initialize C, b, ω by random assignment;
2. Get X , Un, U , bj , Cj , ωj for the current sample n;
3. Calculate the Gaussian kernel function h by (3) and the feedforward
control signal Un(n) by (7);
4. Calculate the feedforward controller cost function Eo(n) by (8);
5. If Eo(n) does not converge to the target value, calculate the
∆cjio,∆bjo,∆ωjo by (9)-(11), and update the parameters by (12)-
(14);
6. Repeat step 2-5 until the parameters iterate to the threshold.
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C. Online learning Parameter optimization

The internal parameters of the RBFNN model-free feedfor-
ward controller established in part A are obtained by offline
learning and are not updated and corrected in real-time opera-
tion. Although it solves the problem of difficult modeling or no
theoretical inverse model, the RBFNN model-free feedforward
controller will regard the trajectory not involved in the training
as an unknown target, and it cannot guarantee that it still has
good control effect and stability.

To solve the above problems, on the basis of the RBFNN
model-free feedforward control, the parameter update mode is
improved to the online learning mode, and the RBFNN model-
free feedforward control strategy is formed. When the new
trajectory was used as the tracking target and the tracking error
increased abnormally, RBFNN responded to the data changes
in real time, learned and corrected the control quantity. There-
fore, updating the parameters online can dynamically adapt to
the trajectory changes and maintain good control accuracy. The
online learning flow of the RBFNN model-free feedforward
controller is Fig. 2.

Fig. 2. The online learning flow of the RBFNN model-free controller

The main content of online learning RBFNN model-free
feedforward control strategy is as follows: when the piezo-
electric actuator runs for the first time, the RBFNN model-free
feedforward controller learns the internal relationship between
the reference trajectory related parameters and the feedback
control quantity through the closed-loop control system. Start-
ing from the second run of the piezoelectric actuator, the total
control amount of feedforward + feedback is taken as the
learning objective. The RBFNN model-free controller learns
the latest total control quantity through multiple times and
updates the parameters online. By updating and modifying
the parameters, the RBFNN model-free feedforward controller
gradually plays the main control role, while the feedback
controller is mainly used to improve the stability of the system
and further compensate the accuracy.

Offline parameter optimization can prevent RBFNN from
overfitting by cross-validation(CV), but online parameter op-
timization does not have samples consistent with training to
prevent overfitting. Here, the regularization is used to optimize

the parameters online to avoid overfitting. A regularization
term is added to the online parameter optimization objective
function El(n) as (16).

El(n) = Eo(n) +
λ

2

∑
i,j

[wl(n)
2 + cl(n)

2 + bl(n)
2] (15)

Therefore, the gradient expression for online parameter
optimization is (16)-(18).

∆cjil(n) =
n∑

k=1

[U (k)− Un (k)]wjl
xil − cjil

b2jl
+ λcjil (16)

∆bj l(n) =
n∑

k=1

[U (k)− Un (k)]wjlhjl
∥X − Cjl∥2

b3jl
+ λbjl

(17)

∆ωjl(n) = −
n∑

k=1

[U (k)− Un (k)]hjl + λωjl (18)

When there are unknown changes in the trajectory tracking
target and the tracking error increases, it means that the
RBFNN model-free feedforward cannot compensate the target
well, and the online parameter optimization recursive (19)-(21)
is used to reduce the tracking error.

cjil(n+ 1) = cjil(n) + η1 ×∆cjil(n) (19)

bjl(n+ 1) = bjl(n) + η2 ×∆bjl(n) (20)

ωjl(n+ 1) = ωjl(n) + η3 ×∆ωjl(n) (21)

The online optimization algorithm of RBFNN model-free
feedforward controller is Table. 2.

TABLE II
THE ONLINE OPTIMIZATION ALGORITHM OF RBFNN MODEL-FREE

FEEDFORWARD CONTROLLER

Algorithm 2: Online RBFNN model-free feedforward controller De-
signing

1. Set the RBFNN feedforward control to the initial value (0),and
initialize C, b, ω by random assignment;
2. Conduct trajectory tracking experiment to obtain reference trajecto-
ries and control signal as training samples;
3. Get X , Un, U , bj , Cj , ωj for the current sample;
4. Calculate the Gaussian kernel function h by (3) and the feedforward
control signal Un(n) by (7);
5. Calculate the feedforward controller cost function El(n) by (15);
6. If El(n) does not converge to the target value, calculate the
∆cjil,∆bjl,∆ωjl by (16)-(18), and update the parameters by (19)-
(21);
7. Repeat step 2-6 until the parameters iterate to the threshold.
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III. SIMULATION

A. simulation setup

Other researchers in this subject have established the math-
ematical model of the piezoelectric table with a flexure hinge
and completed the model identification experiment, which
lays the foundation for this simulation [27]. The simulation
model is a piezoelectric table with a flexure hinge, witch
includes a piezoelectric actuator, a flexhinge amplification
mechanism(The displacement amplification ratio of the flexure
hinge mechanism is 6.1), a drive amplifier with a magnification
of 15 times, a capacitive displacement sensor with a sensitivity
of 20 µm/V and a resolution of 2.5 nm. In order to verify the
effectiveness of the proposed RBFNN model-free feedforward
controller, trigonometric signals with different frequencies
are used as the tracking target. Two groups of comparative
experiments were designed:

Simulation 1: Different controllers are used to track the
trigonometric reference trajectories at different frequencies.
The controller includes open-loop feedforward control based
on inverse Hammerstein model(IFF), feedforward feedback
composite control based on inverse MPI lag model(IFF+FB)
[27], and RBFNN model-free feedforward feedback composite
controller (OfflineRBFNN+FB). The curves and error curves
for tracking trigonometric reference trajectories at 1Hz, 10Hz,
and 100Hz using different controllers are shown in Fig. 3 to
Fig. 7.

Simlation 2: The dynamic learning effect of the online
learning RBFNN model-free feedforward controller is tested
with a 100 Hz high-frequency trajectory tracking signal as
an example. The iterative trend of the tracking error with
the number of runs using the online parameter optimization
method is shown in Fig. 8. When the tracking target changes
from a 100Hz trigonometric function curve to the fourth-order
function curve (not train, which is an unknown trajectory for
RBFNN), the iterative process through the online parameter
optimization method is shown in Fig. 9.

(a) 1Hz (b) 10Hz

(c) 50Hz (d) 100Hz

Fig. 3. Simulation results of trajectory tracking curve

Fig. 4. Simulation results of 1Hz trajectory tracking error

Fig. 5. Simulation results of 10Hz trajectory tracking error

Fig. 6. Simulation results of 50Hz trajectory tracking error

Fig. 7. Simulation results of 100Hz trajectory tracking error

B. simulation results and discussion

Discussion 1: The maximum error and root mean square
error of the three control modes are Table. 3. It can be verified
that the RBFNN model-free feedforward controller has higher
accuracy than the model-based controller at different tracking
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Fig. 8. Error iteration procedure using Online RBF+FB at 100Hz

Fig. 9. Iterative procedure for Online parameter optimization under unknown
training trajectories(the fourth-order function curve)

frequencies, especially in terms of modeling difficulties and
model uncertainties caused by hysteresis nonlinearity, the
model-free feedforward controller has a great advantage.

TABLE III
COMPARISON OF THE MAXIMUM ERROR AND RMS OF THE ERROR OF THE

THREE CONTROL MODES

Trajectory Controller emax (µm) erms (µm)

IFF 1.5648 0.5973

1Hz IFF+FB 0.1396 0.0361

OfflineRBFNN+FB 0.0605 0.0163

IFF 2.3229 0.7118

10Hz IFF+FB 0.5410 0.2377

OfflineRBFNN+FB 0.0931 0.0268

IFF 3.1484 1.0548

50Hz IFF+FB 1.6544 0.8004

OfflineRBFNN+FB 1.2890 0.5899

IFF 4.8841 1.7496

100Hz IFF+FB 2.3757 1.3476

OfflineRBFNN+FB 1.9490 0.9610

Discussion 2: From Fig. 8 and Fig. 9, it can be verified
that compared with the offline parameter optimization method,

the online parameter optimization can effectively reduce the
tracking error caused by the unknown trajectory, and has the
ability of online adjustment and learning.

IV. CONCLUSION

Aiming at the difficult modeling problem of Piezoelectric
actuator due to hysteresis nonlinearity, creep and vibration, this
paper proposes the RBFNN model-free feed-forward controller
with data-driven, neural network, and model-free as the char-
acteristics. The whole paper derives and details the controller
in terms of its structure, parameter optimization, online learn-
ing, and then simulates the effect of the RBFNN model-free
feedforward controller. The main contribution of this paper
is that RBFNN is model-free control, which overcomes the
difficult modeling/no theory inverse modeling problem. It is
suitable for complex, nonlinear, time-varying, or unknown
systems, and improves the overall descriptive capability of the
system.

However, there are still some limitations in this study, such
as the inconvenient stability analysis of the neural network
controller and the lack of physical interpretation, which hinder
the application and development in engineering.

Future work will be guided by this strategy and further
verify the effect of the strategy on the piezoelectric actuator
stage using the simulation results as a reference; in addition,
a disturbance observer can be introduced for further compen-
sation and correction.
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