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Abstract—Facing numerous challenges in traditional Power 

Grid Wireless Sensor Networks (PGWSNs), including inaccurate 

node clustering, low energy efficiency, and shortened network 

lifetime, this study proposes an innovative energy-efficient 

clustering algorithm—an improved Particle Swarm Optimization 

algorithm (CEPSO). The algorithm employs a unique elite 

strategy by constructing a multi-level elite pool to retain 

outstanding individuals generated during iterations, thereby 

accelerating the iterative process. To address the complexity and 

diversity of the power grid environment, the algorithm 

incorporates Cubic chaotic mapping to enhance performance 

and adaptability to complex environments. By comparing and 

analyzing with traditional clustering methods such as LEACH, 

SEP and standard PSO, the CEPSO algorithm underwent 

extensive simulation tests on key metrics such as network delay, 

energy consumption reduction, and network lifetime extension. 

The research results indicate that the CEPSO algorithm 

significantly outperforms the compared algorithms in all 

performance metrics, providing an efficient solution for 

extending the lifetime of PGWSNs. 

Keywords—Grid Wireless Sensor Networks, Improved Particle 

Swarm Optimization, Energy-efficient clustering 

I. INTRODUCTION  

In recent years, Wireless Sensor Networks (WSNs) 
technology has rapidly developed. WSNs consist of various 
types of sensor nodes, forming extensive monitoring networks 
to accurately collect field information. In power grid 
environments, these networks enable wireless communication 
via single-hop or multi-hop routing and play a crucial role in 
extreme environment monitoring[1, 2]. 

Despite their easy deployment, these micro sensors are 
limited by battery energy, making it challenging to extend 
WSNs' lifespan. Researchers have proposed various clustering-
based protocols to improve energy efficiency and extend 
lifespan. Recently, computational intelligence techniques such 
as neural networks, reinforcement learning, and swarm 
intelligence have been widely applied to solve WSN design 
issues, including cluster head selection, clustering optimization, 
network security, data aggregation, and time synchronization. 

Given the close correlation and interdependence of nodes, 
traditional predefined clustering rules are no longer suitable. 
Additionally, the dynamic nature of power grid environments 
requires algorithms to adapt to energy consumption, network 
density changes, and environmental fluctuations. Swarm 
intelligence algorithms, especially PSO, have gained attention 
for their excellent global search capabilities and adaptive 
solutions. ACO algorithms, which mimic ant foraging behavior, 
effectively balance energy consumption and extend network 
lifespan[3]. 

Clustering methods in PGWSNs are based on bio-inspired 
algorithms, which are capable of providing optimal clustering 
solutions within a limited time. Arjunan, S and Sujatha, P[4]. 
developed an algorithm called Fuzzy Logic and ACO Hybrid 
Protocol, which combines fuzzy logic and ACO techniques for 
CH selection and routing optimization. Although the algorithm 
demonstrates significant energy efficiency and network 
lifetime extension, it still has certain limitations in handling 
complex real-time data transmission requirements. Considering 
factors such as node residual energy, distance to the base 
station, and node density, the algorithm can achieve energy 
balance and effective CH selection under uneven network 
conditions[5].  
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Maheshwari, P; Sharma, AK and Verma, K[6]. developed 
an energy-efficient Cluster Head selection and routing 
optimization algorithm called Butterfly Optimization 
Algorithm and Ant Colony Optimization (BOA-ACO). This 
algorithm utilizes the Butterfly Optimization Algorithm for CH 
selection and employs the Ant Colony Optimization algorithm 
to determine the optimal routing path from the CH to the base 
station. Although the BOA-ACO algorithm shows significant 
energy efficiency and network lifetime improvement, it still 
has limitations in handling complex real-time data transmission 
requirements. Therefore, by considering factors such as node 
residual energy, physical distance, and node density, this 
algorithm effectively achieves energy balance and CH 
selection under uneven network conditions.  

Kotary, DK and Nanda, SJ[7]. proposed a distributed 
robust data clustering algorithm for WSNs based on Diffusion 
Moth Flame Optimization (DMFO). This algorithm employs a 
diffusion strategy, collaborating by sharing the best moth 
positions and corresponding fitness values to ensure globally 
optimal cluster partitions at each sensor node. Although DMFO 
demonstrates superior cluster quality and computational 
efficiency, its complexity significantly increases when 
handling larger datasets and a higher number of sensor nodes, 
as the size of sensor data and the number of nodes increase, the 
runtime of DMFO also increases, indicating that further 
optimization is needed for its application in dynamic WSNs. 

Over time, various optimization strategies have 
increasingly been used to enhance the global search 
performance of bio-inspired algorithms. Chaotic strategies can 
effectively improve the global search ability of algorithms. For 
example, Sivakumar, D; Devi, SS and Nalini, T[8]. developed 
an energy-aware clustering protocol (EACP-CGTOA) using 
the Chaotic Gorilla Troops Optimization Algorithm (CGTOA) 
for WSNs. This algorithm improves the diversity of solutions 
and algorithm performance by using circular chaotic mapping 
to replace population initialization. The EACP-CGTOA model 
constructs a fitness function based on neighbor distance, 
distance to the base station, and energy ratio, achieving good 
optimization results. 

Elite strategies are an effective means of enhancing the 
convergence speed of bio-inspired algorithms. Gong, YP; Li, 
CQ and Fang, XS[9]. integrated elite strategies into the cloning 
process of snake optimization, effectively improving the 
algorithm's convergence speed. Similarly, Xie, JP et al[10]. 
combined elite strategies with the Seagull Optimization 
Algorithm, applying it to solve complex problems in intelligent 
poultry farming. Nevertheless, these strategies have not been 
able to retain all historically excellent individuals, leading to 
the loss of some superior solutions during iterations. 

Overall, Despite the extensive exploration of various 
clustering methods in existing literature, many of these 
approaches often overlook key factors such as node residual 
energy, intra-cluster distance, and the distance to the base 
station, which are vital for the clustering performance of 
PGWSNs. To bridge this research gap, this paper introduces a 
new clustering model specifically designed for PGWSNs and 
proposes an innovative bio-inspired clustering method that 
integrates chaotic mapping with a multi-elite pool strategy to 
achieve the optimal clustering scheme. Moreover, by 
developing new chaotic mapping and elite strategies, this study 

aims to enhance the algorithm's search efficiency and solution 
quality, thereby speeding up its convergence. Through these 
strategies, the study seeks to optimize energy efficiency in 
PGWSNs and significantly prolong the lifespan of WSNs in 
power grid systems, offering an efficient and practical solution 
for future PGWSNs deployments. 

II. SYSTEM MODEL 

In PGWSNs, the integrated energy model plays a crucial 
role in calculating energy consumption. The energy used for a 
link includes both the transmission and reception of data. 
PGWSNs nodes are equipped with data aggregation functions, 
which notably reduce the data volume that cluster heads (CHs) 
need to send. Consequently, this decreases the energy 
consumption associated with data transmission in PGWSNs. 
The overall energy consumption model can be summarized as 
follows: 

( ) ( ) ( )sd rv rh, , ,mE E m d E m d E m d= + +
 

(1) 

In this model, the energy consumption is determined by the 
distance between the transmitter and receiver, utilizing either 
the free space channel or the multipath fading channel. If the 

distance is below the threshold 0d the free space (is) model is 

employed; if the distance is equal to or exceeds 0d the 

multipath (smp) model is applied. Let elecE . present the energy 

required by the electronic circuits, and smpε , epresent the 

energy required by the amplifier in the free space and 
multipath models, respectively. The energy required to transmit 
m bits of data over a distance d can be expressed as follows: 

( ) ( ) ( )sd sd dec sd amp

2
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(2) 

The energy consumption for a data receiving node to 
receive m bits of data is given by: 

( ) 2
rv elec is,E m d mE m dε+=

 
(3) 

The amount of energy required to perform data fusion on m 
bits of data is: 

( ),da elecE m d mE=
 

(4) 

elecE  depends on several factors, such as digital coding, 

modulation, filtering, and signal spreading. The amplifier 

energy 2 4
is smpd dε ε . depends on the distance between the 

transmitter and receiver, as well as the acceptable bit error rate. 

The distance threshold 0d  is defined as fs mpε ε , When the 

distance is less than the threshold 0d , the free space 

propagation model is used to calculate energy consumption; 

when the distance is equal to or greater than 0d , the multipath 

attenuation model is applied. In both cases, the energy 
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consumption for transmitting 1 bit of data is denoted as eE . 

The energy loss coefficient for free space propagation is 

fsε ,and for multipath propagation, it is mpε . 

During data communication, non-cluster head nodes, after 
sensing data from the collection point, send this data to the 
cluster head node they belong to. Typically, the distance from 
these non-cluster head nodes to the cluster head is relatively 
short, so data transmission follows the free space propagation 
model. Based on this model, the energy consumption required 
when a non-cluster member node transmits k bits of 
information can be calculated using the following formula: 

( ) ( )2 ,non ch e fs ClustersE i kE k D i jε− = +
 

(5) 

Here, ( )2 ,ClustersD i j  represents the distance between non-

cluster node i and its corresponding cluster head j. The cluster 
head node first receives data from its cluster members, then 
integrates this data with the information collected from the 
monitoring terminal. The aggregated data is subsequently 
transmitted to the base station. This section assumes that in 
each data transmission cycle, the cluster head node processes 
and transmits k bits of data to the sink node, and the energy 
consumption during this process can be calculated using a 
specific formula. 

2

4
1

cluster cluster

fs toBS

ch e CE e

mp toBS

k dalive alive
E kE kE kE

k d

  
= − + + +  
  

ε

ε
 (6) 

The energy consumption mainly consists of three parts: 
receiving energy, processing energy, and transmission energy. 
Here, alive represents the number of monitoring terminal nodes 
that are still operational, cluster denotes the total number of 

clusters, and CEE  refers to the energy consumed by the cluster 

head node during data processing and reception.  
The grid wireless sensor system network model in this 

paper is shown in Fig.1: 

 
fig 1. PGWSNs networks model 

 

III. CEPSO FOR PGWSNS 

In the model presented in this paper, special consideration 
is given to large-scale power grid monitoring environments 

where the base station is positioned centrally within the region. 
Despite the base station's central location, significant distances 
exist between monitoring points and the base station, resulting 
in substantial energy loss. Consequently, the energy consumed 
by nodes transmitting information to the base station is 
proportional to their relative distance to the base station, 
whether the data is transmitted directly (single-hop) or via 
intermediate nodes (multi-hop). As a result, nodes closer to the 
base station deplete their energy more quickly than those 
further away. 

To optimize the energy usage efficiency of nodes within 
the network, this paper proposes an algorithm that divides the 
monitoring area and introduces varying competition radii to 
form clusters of different sizes. This approach addresses the 
"hot spot" phenomenon caused by uneven energy consumption, 
thereby extending the network's service life and ensuring the 
continuous stability of power grid monitoring, leading to more 
efficient energy management and network operation. 

Currently, many heuristic clustering algorithms used for 
PGWSNs face issues of local optima and uneven energy 
distribution. To address these problems, this study proposes a 
cluster routing strategy based on the CEPSO algorithm. The 
CEPSO algorithm draws inspiration from the foraging 
behavior of birds, demonstrating excellent global search 
capabilities and the ability to converge quickly and stably. In 
this algorithm, each particle represents a potential solution, and 
by simulating the iterative update process of the population, the 
optimal solution is gradually discovered. This algorithm not 
only features rapid convergence but is also relatively simple to 
implement, making it suitable for practical deployment. 

The following sections will provide a detailed introduction 
to the key aspects of the CEPSO algorithm, including the 
objective function, the encoding scheme and initial setup of 
particles, position updates, and the overall algorithmic 
workflow. 

A. Encoding Scheme And Initialization 

In the context of PGWSNs, the initial steps for 
implementing CEPSO for clustered routing strategies involve 
selecting the encoding method for the algorithm. While both 
binary and integer encoding techniques are widely used, binary 
encoding appears to be more suitable for nodes in PGWSNs. In 
this case, the size of the particle swarm remains constant at p, 
and each particle represents a specific clustered routing 
configuration throughout the process, with its length equivalent 
to the total number of wireless sensor nodes in the PGWSNs. 
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(7) 

Assuming the total number of sensors in the PGWSNs is S, 
the particle swarm G can be defined as shown in (7). In this 
setting, the length of all particles within the swarm is S, with 
values limited to either 0 or 1. Here, 1 indicates that the node is 
a Cluster Head (CH), while 0 indicates that the node is a 
Cluster Member (CM). In each round, the ratio of nodes 
designated as CHs and CMs will not exceed the predefined 
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proportion BCH. The number of cluster head nodes is given 

by: *numCH S BCH= . 

B. Update The State 

In the context of PGWSNs, for the CEPSO algorithm, the 
position characteristics of particles are crucial as they represent 
potential solutions. Simultaneously, velocity directly influences 
the update of positions, making the precise adjustment of 
position and velocity update strategies particularly important. 
Based on (8) and (9), the state of each sample is updated as 
follows:  

( ) ( ), 1 , 1 1 , , 2 2 , ,* * * * *i t i t i t i t g t i tv v c r p s c r p sη+ = + − + −  (8) 

, 1 , , 1 , 1*i t i t i t i ts s xν ξ+ + += + +  (9) 

Here, ,i tv  and , 1i tv +  represent the velocity of the particle at 

generation t and t+1, respectively. Similarly, ,i ts  and , 1i ts +  

denote the position of the particle at generation t and t+1, 

respectively. ,i tp  and ,g tp  represent the particle's historical 

best position and the global best position from generation t, 

respectively. η indicates the inertia weight of the particle. , 1i tx +  

is the chaotic factor at generation t+1, and ξ is the influence 

coefficient of this chaotic factor. 1c  and 2c re learning 

parameters, generally set to 2. 1r  and 2r re two independent 

random numbers ranging between 0 and 1.This method not 
only emphasizes the importance of optimizing routing selection 
in PGWSNs but also considers the dynamic adjustment of 
particle positions and velocities to adapt to the exploration of 
the solution space, thereby further optimizing the energy-
efficient clustering routing problem in Grid Wireless Sensor 
Networks. 

C. CEPSO Algorithm Flow 

The execution process of the CEPSO algorithm is as 
follows. Meanwhile, Algorithm 1 represents the pseudocode 
for CEPSO cluster head selection optimization in PGWSNs. 

Step 1. Initialize the CEPSO parameters for clustering in 
PGWSNs, including the maximum number of iterations, the 
number of sensors, the population size, and the chaotic factor. 
Randomly generate the initial population using (7) and deploy 
the PGWSNs. 

Step 2. Calculate the fitness values of the population 
according to the fitness function, and record the historical best 
values of the particles and the global best value of the 
population. 

Step 3. Calculate and update the velocity of the particles 
using (8). 

Step 4. Update the positions of the particles using a chaotic 
optimization strategy based on (9). 

Step 5. Apply the elite strategy to update the contents of the 
elite pool and include them in the next iteration. 

Step 6. Constrain the velocity and position of the 
population within specified ranges. 

Step 7. Check if the number of iterations has reached the 
set value. If so, the algorithm terminates and outputs the 
optimal solution. Otherwise, continue to execute Step 2. 

Algorithm 1 Procedure for CEPSO in PGWSNs 

Require: Population size NUM; Maximum number of iterations MAX_iter; 
Sensor nodes S; Cluster head nodes CH_num; Field size n×m; 

Ensure: The optimal solution; 

1. Initialize CEPSO parameters for PGWSNs; 

2. Randomly initialize the velocities and positions of k particles; 

3. Initialize parameters of the Cubic chaotic strategy; 

4. While i < MAX_iter do 

5. Calculate the fitness of the population; 

6. Record the best particle and the global best fitness; 

7. Update the velocities of the population; 

8. Execute the Cubic chaotic mapping strategy; 

9. Update the multi-elite pool; 

10. Constrain the velocities and positions of the population; 

11. End while; 

12. Return the optimal solution. 

IV. EXPERIMENT AND ANALYSIS 

In this section, to validate the effectiveness of the CEPSO 
protocol in PGWSNs, this study compares it with the LEACH, 
SEP, and standard PSO clustering algorithms. Each clustering 
algorithm operates in rounds. The practicality and efficiency of 
the CEPSO algorithm are evaluated through systematic 
monitoring, recording, and analysis of node energy 
consumption and clustering performance. 

The experiments were conducted using MATLAB 2020b 
software on a computer equipped with an Intel (R) Core (TM) 
i5-13500H CPU and 16GB of memory, running Windows 10. 
This setup ensures the stability and reliability of the 
experiments, allowing for an accurate reflection of the 
performance characteristics and advantages of the CEPSO 
algorithm in practical applications. 
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fig 2. Comparison of optimization algorithms 
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fig 3. PGWSNs clustering diagram 

 
In the experimental section of this paper, the performance 

of four optimization algorithms in Power Grid Wireless Sensor 
Networks (PGWSNs) is compared: PSO, LEACH, SEP, and 
the proposed CEPSO. The results in Fig.2 indicate that in the 
initial iteration process, the cost function values of PSO and 
LEACH rapidly decline, but they tend to stabilize after 
approximately 100 iterations, with relatively high final cost 
function values. The performance of the SEP algorithm is 
slightly better than that of the PSO and LEACH algorithms but 
still inferior to the CEPSO algorithm. CEPSO exhibits the 
fastest convergence rate and the lowest final cost function 
value, demonstrating significant advantages. 

Fig.3 shows the distribution of sensor nodes before and 
after clustering. The left panel displays the random distribution 
of nodes, while the right panel shows the distribution after 
cluster head selection using the CEPSO algorithm. Cluster 
head nodes are marked with green triangles and are connected 
to the central gateway node, forming an efficient data 
transmission path. Through the optimization of the CEPSO 
algorithm, the sensor network achieves effective cluster head 
selection, significantly improving energy efficiency and 
network lifespan. 

V. CONCLUSION 

Therefore, an innovative clustering algorithm, CEPSO, has 
been proposed and applied to enhance the energy efficiency 
and optimize the lifespan of PGWSNs. In this study, we first 
introduced a new algorithm that combines a unique elite 
strategy with chaotic mapping to overcome the limitations of 
traditional clustering methods. Numerical simulations were 
conducted using CEPSO, LEACH, SEP, and standard PSO, 
and the results were compared to validate the effectiveness of 
CEPSO. The results show that CEPSO demonstrates 
significant advantages in key performance indicators, such as 
reducing energy consumption and extending network lifetime, 
compared to LEACH, SEP, and standard PSO. This algorithm 
is stronger and more efficient than existing heuristic methods, 
capable of avoiding local optima while searching for better 
solutions. 
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